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Abstract

Document-level Event Factuality Identification
(DEFI) refers to identifying the degree of cer-
tainty that a specific event occurs in a docu-
ment. Previous studies on DEFI failed to link
the document-level event factuality with vari-
ous sentence-level factuality values in the same
document. In this paper, we innovatively pro-
pose an event factuality inference task to bridge
the sentence-level and the document-level event
factuality semantically. Specifically, we present
a Sentence-to-Document Inference Network
(SDIN) that contains a multi-layer interaction
module and a gated aggregation module to inte-
grate the above two tasks, and employ a multi-
task learning framework to improve the perfor-
mance of DEFI. The experimental results on
the public English and Chinese DLEF datasets
show that our model outperforms the SOTA
baselines significantly.

1 Introduction

Document-level Event Factuality Identification
(DEFI) predicts the factual property of an event
from the view of a document, i.e., describing
whether an event is evaluated as a fact, a counter-
fact, or a possibility. It is essential for many NLP
applications, such as rumor detection (Qazvinian
et al., 2011) and sentiment analysis (Klenner and
Clematide, 2016). Based on Saurí (2008), Qian
et al. (2019) summarized document-level event fac-
tuality into the following five categories: CerTain
Positive (certainly happens, CT+), PoSsible Pos-
itive (possibly happens, PS+), CerTain Negative
(certainly not happens, CT-), PoSsible Negative
(possibly not happens, PS-), Underspecified (factu-
ality is uncommitted, Uu). Different from Sentence-
level Event Factuality Identification (SEFI) which
determines the factuality based on a single sentence
in which the event is located, DEFI is a more chal-
lenging task and needs to synthesize the semantics
of sentence-level mentions of the document.

Figure 1: An example of annotated sentence-level and
document-level event factuality.

Figure 1 illustrates the relationship and differ-
ences between sentence-level and document-level
event factuality. The document-level event “tear up
textbooks” is denoted by the event trigger (the main
word that most clearly expresses the occurrence of
an event) “tear” and is mentioned in sentences S1,
S2, S4, S5. In S1, since the trigger “tearing” is
negated by the negative cue “banned”, its sentence-
level factuality is CT-. Similarly, the factuality of
“tear” in S4 is PS- according to the speculative cue
“unlikely”. On the contrary, “tearing” in S2 and
S5 are not affected by any negative or speculative
information, and they have the same factuality, i.e.,
CT+. Although those four event mentions (the sen-
tence containing the event trigger) have various
sentence-level factuality values, from the perspec-
tive of the document, the document-level factuality
value of the event “tear up textbooks” is unique,
which is determined as CT- .

From Figure 1, we can observe that the factuality
of a specific event at the document-level and the
sentence-level semantics may be not always con-
sistent, making it challenging when leveraging the
sentence-level factuality values. All previous work
did not explore the relationship between sentence-
level and document-level event factuality in depth,
and usually let models learn global information
from the document automatically, often resulting
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in noisy semantics.
In this paper, we re-consider the document-level

factuality from a new perspective, i.e., associat-
ing document-level factuality with its core event
mentions that has the same factuality (e.g., S1 in
Figure 1), while weakening the other event men-
tions with different factuality values that may im-
pose a negative effect (e.g., S2 and S5 in Figure 1).
For this purpose, we exploit the sentence-level and
document-level factuality to propose a novel event
factuality inference task, which can semantically
bridge the above two-level factuality to determine
whether an event mention is core or not. Taking
Figure 1 as an example, we can assign S1, S2, and
S4 with three inference labels (i.e., Support, Refute,
and Conjecture), representing how they contribute
to inferring the document factuality. The inference
task uses the event mentions with inference labels
for training, making it feasible to measure the im-
portance of event mentions for overall factuality
identification. Specifically, we propose a Sentence-
to-Document Inference Network (SDIN) with two
modules, where one is a multi-layer interaction
module for solving the inference task and can pro-
vide useful features for DEFI through a multi-task
learning framework, and the other is a gated ag-
gregation module that can selectively aggregate
semantic and factual features in event mentions for
factuality identification. Overall, our main contri-
butions can be summarized as follows:

1) We first propose an event factuality inference
task to connect the sentence-level and document-
level factuality, which can effectively utilize the
sentence-level information and provide a new re-
search direction for DEFI.

2) We devise a novel Sentence-to-Document In-
ference Network (SDIN) containing a multi-layer
interaction module and a gated aggregation module
for the inference and identification task, and con-
sider a multi-task learning framework to improve
the performance.

3) The experimental results on the DLEF dataset
(Qian et al., 2019) demonstrate that our model
achieves tremendous improvements over various
strong baselines.

2 Related Work

In Sentence-level Event Factuality Identification
(SEFI), Saurí (2008) and Lotan et al. (2013)
used rule-based methods, and then many stud-
ies (de Marneffe et al., 2012; Saurí and Pustejovsky,

2012; Lee et al., 2015; Qian et al., 2015) used ma-
chine learning-based methods, which relied on the
annotated information. Deep learning methods (He
et al., 2017; Qian et al., 2018a,b; Veyseh et al.,
2019) have also been widely used in recent years
and have achieved significant results.

Compared with SEFI, Document-level Event
Factuality Identification (DEFI) is still in the ex-
ploratory stage. Qian et al. (2019) gave the full def-
inition of DEFI and constructed a Document-Level
Event Factuality corpus (DLEF) on the basis of
sentence-level annotations, in which both sentence-
level and document-level factuality of event trig-
gers were annotated. Based on the DLEF dataset,
Qian et al. (2019) and Huang et al. (2019) proposed
LSTM-based methods to solve the new DEFI task.
Zhang et al. (2021) used cross-domain corpora
to train a BERT-CRF model for detecting nega-
tion and speculation scope, and introduced scope
features into DEFI. Cao et al. (2021) proposed
an Uncertain Local-to-Global Network (ULGN),
which integrated the local uncertainty as well as the
global structure. Zhang et al. (2022b) proposed a
novel Heterogeneous Semantics-Syntax-fused Net-
work (HS2N) for DEFI, which integrated semantic
and syntactic information and considered inter-and-
intra sentence interaction.

Recently, some work has broadened the direc-
tion of DEFI research. Qian et al. (2022a) con-
structed a larger DLEF-v2 corpus to expand the
DLEF. A complete sentence is used in DLEF-v2 in-
stead of a trigger word to represent an event. In ad-
dition, DLEF-v2 only annotates the document-level
factuality related to the event, and no longer per-
forms sentence-level annotations, which supports
end-to-end work. Based on DLEF-v2, Qian et al.
(2022a) proposed a novel end-to-end reinforced
multi-granularity hierarchical attention network to
learn information at different levels of granularity
from tokens and sentences hierarchically. Qian
et al. (2022b) proposed a new framework formu-
lating DEFI as Machine Reading Comprehension
(MRC) tasks considering both Span-Extraction and
Multiple-Choice. Distinct from these mentioned
efforts, Zhang et al. (2022a) constructed a new
Evidence-Based Document-Level Event Factual-
ity corpus EB-DLEF, and proposed a pipeline ap-
proach to solve the new introduced evidential sen-
tence selection task and event factuality identifi-
cation task. Zhang et al. (2023) introduced a two-
stage data augmentation strategy from text to graph
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Sentence
Factuality

Document Factuality

CT+ PS+ CT- PS- Uu
CT+ SP CJ RF CJ UK
PS+ CJ SP CJ RF UK
CT- RF CJ SP CJ UK
PS- CJ RF CJ SP UK
Uu UK UK UK UK UK

Table 1: The construction of inference labels in event
factuality inference task.

via contrastive learning to solve the problem of data
scarcity in DEFI.

3 Event Factuality Inference Task

3.1 Inference Labels
Inspired by claim verification (Thorne et al., 2018)
and interpretability against the experimental results,
we define four inference labels based on the re-
lationship between sentence-level and document-
level event factuality, which represent the local
inference of the event mention on the document-
level factuality. The explanation of each inference
label is as follows and the constructed results are
shown in Table 1.

Support (SP): The sentence-level event factual-
ity is the same as the document-level one (both of
them are NOT Uu). In this case, the event mention
has a positive effect on the inference of document-
level event factuality.

Refute (RF): The sentence or document has a
negative factuality value (i.e., CT- or PS-), while
the other does not. In this case, the event men-
tion negatively affects the document-level factual-
ity value.

Conjecture (CJ): The sentence or document has
a speculative factuality value (i.e., PS+ or PS-, re-
gardless of the factuality is simultaneously negative
or not), while the other does not (i.e., CT+ or CT-).
In this case, the event mention has a speculative im-
pact on the inference of document-level factuality.

Unknown (UK): The sentence or document has
a factuality value of Uu, regardless of whether the
two values are the same. In this case, since it is
difficult to determine what effect the event mention
has on the inference of document-level factuality,
we specify a uniform inference label of Unknown.

3.2 Task Formulation
We use D to represent a document and the set
{esi}ni=1 to denote all event mentions in the docu-

ment D. Similar to natural language inference, we
treat an event mention as the hypothesis esh and
the rest of event mentions in the same document as
premises {espi}mi=1 (m = n−1). The task of event
factuality inference is to classify the hypothesis esh
into the output set Y1 ={SP, RF, CJ, UK} based
on the premises {espi}mi=1, while the identification
task treats {esi}ni=1 as input and the output set is
Y2 ={CT+, CT-, PS+, PS-, Uu}.

4 Methodology

We propose a Sentence-to-Document Inference
Network (SDIN) for inference and identification
tasks, which mainly contains two modules of multi-
layer interaction and gated aggregation. The de-
tailed model structure is shown in Figure 2.

4.1 Sentence Encoding
We feed all the event mentions into BERT (Devlin
et al., 2019), using the final hidden state of [CLS]
token to get vectors {si}ni=1(si ∈ Rd), which con-
tains the hypothesis representation sh ∈ Rd and
the set of premises {spi}mi=1(spi ∈ Rd).

4.2 Multi-layer Interaction
End Nodes and Hub Node We design end nodes
and hub node as the basic unit of interaction. Be-
fore initializing the nodes, we use the following
two useful features to enhance the representation
of each premise espi : 1) Inference labels: since
event mentions are annotated with the sentence-
level event factuality, we can assign an inference
label in Table 1 to espi , which represents the local
inference of the premise with regard to the hypoth-
esis esh; 2) The number of inference labels: when
a specific inference label appears more often in
the premises, this label is more representative of
the overall attitude in multiple premises towards
the hypothesis, which is extremely important for
classification of hypothesis.

Since both features can be expressed as discrete
numbers (we use the numbers 0-3 to represent four
inference labels), we denote these two features as a
two-dimensional vector and convert it to a vector
sfi

∈ Rd using a linear layer. Then we initialize
the end node e0i by concatenating the vector spi

with its corresponding feature as follows.

e0i = W1([spi ; sfi
]) + b1 (1)

where W1 ∈ Rd×2d and b1 ∈ Rd are trainable pa-
rameters, “;” denotes the concatenation operation.
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Figure 2: Overall model structure of Sentence-to-Document Inference Network (SDIN).

After obtaining the end nodes set E = {e0i }mi=1,
a biaffine attention (Dozat and Manning, 2017) is
used to take hypothesis as the query vector, and the
result of the interactions between sh and E is used
to initialize the hub node as follows.

α = softmax((EW2)sh +Eu) (2)

h0 =
m∑

i

αi · e0i (3)

where W2 ∈ Rd×d and u ∈ Rd are parameters in
biaffine attention, the term α ∈ Rm is a weight
vector where each element αi in Eq. 3 denotes the
coherence attention weight between the hypothesis
and each end node. The result of interactions is
stored in the hub node h0 ∈ Rd.

Multi-layer Structure To make the current
event mention better integrate information from
the other event mentions to obtain the sentence
embeddings with richer semantics, we propose a
multi-layer structure that allows the end nodes and
hub node to update continuously for further inter-
actions. Each iteration starts by computing the sim-
ilarity between vectors as gate values, and then we
utilize the calculated results to control the update
of end nodes, which can be expressed as follows.

gki = sigmoid((hk)Teki ) (4)

eki = gk−1
i · ek−1

i +(1− gk−1
i ) · hk−1 (5)

where the superscript k indicates the k-th layer in
the stacked structure, and when k is 0, it represents
the initial node. After getting the new end nodes set
Ek = {eki }mi=1, we update the hub node as follows.

favg(E
k) =

∑m
i=1 e

k
i

m
(6)

hk = λ⊙ fba(sh,E
k) + (1− λ)⊙ favg(E

k)
(7)

where fba indicates the biaffine attention, ⊙ means
the element-wise product, λ ∈ Rd is a trainable
parameter that serves to obtain the interactions be-
tween hypothesis and end nodes (i.e., function fba)
while not deviating from the average semantics of
the end nodes (i.e., function favg).

Enhanced Representation Given the hypothe-
sis sh and the hub node hk which passes through
the k-layer structure, inspired by (Conneau et al.,
2017; Ma et al., 2019), then we perform three
matching functions and a transformation to obtain
the following enhanced joint representation.

erk = [sh;h
k; sh ⊙ hk; |sh − hk|] (8)

rk = tanh(W3er
k + b3) (9)

where W3 ∈ Rd×4d and b3 ∈ Rd are parameters
in linear layer. rk is the final representation of the
interactions of hypothesis and premises, which is
used for classification in inference task and pro-
vides shared features for identification task.
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4.3 Gated Aggregation

Gate Mechanism In DEFI, we take each event
mention esi as the hypothesis, and the interactive
features obtained by the multi-layer interaction
module is rki . Then, we apply a linear transfor-
mation to map rki to a scaling vector, and a gate
mechanism with a sigmoid function is used to gen-
erate a mask vector, which can select the most criti-
cal semantic and factual features of event mentions.
The process can be formalized as follows.

γk
i = tanh(W4r

k
i + b4) (10)

g = [σ(γk
i )⊙ si;σ(γ

k
i )⊙ vi;σ(γ

k
i )⊙ rki ] (11)

ski = W5g+b5 (12)

where W4 ∈ Rd×d, W5 ∈ Rd×3d, b4 ∈ Rd, b5 ∈
Rd are trainable parameters, vi ∈ Rd is the vector
of sentence-level factuality value. The result ski ∈
Rd is a more comprehensive representation of esi,
which integrates multiple features.

Interaction and Aggregation We employ the
following self-attention (Vaswani et al., 2017) in set
S = {ski }ni=1 to capture the interactions of event
mentions, selectively integrating information from
other event mentions into the current one.

H = softmax(
QKT

√
dk

)V (13)

Q = WqS,K = WkS,V = WvS (14)

where Wq, Wk, Wv ∈ Rd×d are parameters, dk
is the size of hidden units of BERT, which equals
to d. Then we average each vector hi ∈ Rd in
result H to aggregate the representation of all event
mentions as follows.

havg =

∑n
i=1 hi

n
(15)

4.4 Prediction and Joint Training

We apply the following softmax layers to rk (Eq. 9)
and havg (Eq. 15) for classification of inference and
identification tasks, respectively.

ptk1 = softmax(Wtk1r
k + btk1) (16)

ptk2 = softmax(Wtk2havg + btk2) (17)

where Wtk1 ∈ Rc1×d, Wtk2 ∈ Rc2×d, btk1 ∈ Rc1 ,
btk2 ∈ Rc2 are weights and biases. The cross-
entropy loss for the two tasks are as follows, where
N1, N2 are the number of samples, yi

tk1, yi
tk1 are

the one-hot vector label of the i-th instance.

Ltk1 = − 1

N1

N1∑

i=1

yi
tk1 · log pi

tk1 (18)

Ltk2 = − 1

N2

N2∑

i=1

yi
tk2 · log pi

tk2 (19)

With the consideration of multi-task learning,
the overall training loss is represented as follows.

L = Ltk1 + Ltk2 (20)

To ensure that we jointly train the two coupled
tasks with intensive knowledge communication, we
set the following configurations:

1) The same pre-trained model is used for both
tasks with the parameters shared, which allows the
sentence embeddings to be fine-tuned; 2) The two
tasks share the multi-layer interaction module. On
one hand, as the training of the inference task pro-
ceeds, the generated representations can provide
useful information for factuality identification. On
the other hand, the parameters in the multi-layer
interaction will also be optimized during the train-
ing of identification task, and the noise generated
by a different task will enable this module to have
better generalization performance for inference; 3)
The documents used for training on the inference
task are never used for testing on the other task,
i.e., the gold inference labels will not be obtained
in advance during the testing of identification task.

5 Experimentation

5.1 Datasets and Sampling Strategy

Our experiments are conducted on the DLEF cor-
pus (Qian et al., 2019) and the distribution of
sentence-level and document-level factuality values
is shown in Table 2.

We can observe that the distribution of factual-
ity is unbalanced both in documents and sentences.
The non-uniform distribution of factuality values
also leads to a similar distribution of inference la-
bels. To address this issue, we adopt the following
sampling strategy to selectively choose a portion
of samples for training:

1) If there is only one type of sentence-level
factuality value in a document, resulting in only
one inference label. In this case, we randomly
select one of the event mentions as the hypothesis
and add it to the training set.
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Corpus Factuality Document Sentence

English

CT+ 1150 4401
PS+ 274 574
CT- 279 662
PS- 12 37
Uu 12 71

Chinese

CT+ 2403 11482
PS+ 848 2879
CT- 1342 3923
PS- 36 123
Uu 20 555

Table 2: Statistics of document-level and sentence-level
factuality values in the DLEF corpus.

Type Dataset SP RF CJ UK

Training
English 1038 203 314 64
Chinese 2364 981 1186 411

Testing
English 962 44 113 18
Chinese 3008 245 283 140

Table 3: Inference label distribution in the training set
and testing set for a random fold in the event factuality
inference task.

2) If a document has more than one sentence-
level factuality value, we select all the event men-
tions as the hypothesis that are not labeled as SP
(Support), and ignore the others with SP label.

After sampling, the inference label distribution
is shown in Table 3.

5.2 Experimental Settings

For a fair comparison, we perform 10-fold cross-
validation on both English and Chinese corpora.
Since PS- and Uu documents only cover 1.39%
and 1.20% in the English and Chinese corpora,
respectively, we only focus on the performance
of CT+, PS+ and CT- following previous work
(Qian et al., 2019; Cao et al., 2021). In addition to
using F1-Score to evaluate the performance in each
category, we also use Macro- and Micro-averaging
F1-Score to measure the overall performance.

In our implementations, we use HuggingFace’s
Transformers1 to implement the BERT base model,
which has 12 layers and the hidden units d is 768.
In both sub-corpora and all tasks, the optimal layers
k is 2, c1 and c2 are equal to 4 and 5, the learning
rate is 1e-5, the batch size is set to 8, and the Adam
algorithm is used to optimize the model parameters.

1https://github.com/huggingface/transformers

5.3 Baselines

To verify the effectiveness of the proposed SDIN
model, we conduct the following strong baselines
for fair comparison.

1) Att-Adv (Qian et al., 2019): A LSTM-based
model which utilizes intra- and inter-sentence at-
tention to learn a document representation.

2) BiLSTM (Huang et al., 2019): A BiLSTM-
based model which utilizes a double-layer attention
mechanism to capture the latent correlation features
among event sequences to identify the factuality.

3) BERT-MSF (Zhang et al., 2021): A BERT-
based model which uses BERT-CRF and cross-
domain corpora to detect event-related negation
and speculation scope for factuality identification.

4) ULGN (Cao et al., 2021): A uncertain local-
to-global network which models the uncertainty of
local information and leverages the global structure
to identify the event factuality.

5) HS2N (Zhang et al., 2022b): A heterogeneous
semantics-syntax-fused network which integrates
both semantic and syntactic information, and con-
siders both inter-and-intra sentence interaction.

6) CoDE (Zhang et al., 2023): A model proposes
a two-stage data augmentation strategy from text
to graph via contrastive learning for identifying the
document-level factuality.

5.4 Overall Results

Table 4 shows the performance of each model on
the DLEF corpus, from which we can draw the
following conclusions:

1) Our SDIN model outperforms the baselines in
all metrics. Taking Micro-F1 as an example, com-
pared with SOTA CoDE, our model achieves 3.66
and 2.37 improvements on the English and Chinese
corpora, respectively, proving its effectiveness.

2) Since the number of documents annotated
in the Chinese corpus and the proportion of docu-
ments with speculative or negative factuality values
are significantly larger than those in the English
corpus, all models perform better in the Chinese
corpus, especially in the PS+ and CT- factuality
categories, where the lead is more pronounced.

3) SDIN leads all baselines by a larger margin
in the much smaller DLEF English corpus, demon-
strating that SDIN’s relatively complex model
structure can instead be better adapted to scenarios
with fewer samples.

4) Pre-trained models are critical for DEFI. The
methods (i.e., BERT-MSF, ULGN, HS2N, CoDE,
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Dataset Method CT+ PS+ CT- Macro-F1 Micro-F1

DLEF English

Att-Adv 89.84 62.14 76.87 76.28 83.56
BiLSTM 90.74 75.75 78.82 82.28 86.51
BERT-MSF 92.50 76.38 83.71 84.24 88.64
ULGN 92.49 76.68 84.87 84.68 88.69
HS2N 93.39 84.37 88.46 88.74 90.96
CoDE 93.71 84.21 86.79 88.32 91.23
SDIN(Ours) 97.88 86.93 90.94 92.09 94.89

DLEF Chinese

Att-Adv 87.52 74.06 83.35 81.64 84.03
BiLSTM 89.74 78.52 86.09 85.05 86.64
BERT-MSF 92.09 85.71 90.08 89.35 90.34
ULGN 93.53 90.76 94.99 93.09 93.77
HS2N 92.89 88.93 94.42 92.08 92.95
CoDE 94.26 89.53 94.96 92.92 93.77
SDIN(Ours) 97.48 92.64 95.95 95.37 96.14

Table 4: Experimental results on the English and Chinese DLEF corpora.

Method SP RF CJ UK
HAN(EN) 89.10 50.70 54.51 83.19
MLA(EN) 91.23 53.79 56.88 87.01
SDIN(EN) 91.80 55.87 57.47 86.23
HAN(CN) 88.76 58.44 60.33 91.98
MLA(CN) 90.85 61.89 62.97 93.66
SDIN(CN) 90.71 62.32 64.69 94.90

Table 5: Experimental results of event factuality infer-
ence task.

SDIN) using pre-trained models can achieve sig-
nificant improvements in comparison with other
methods (i.e., Att-Adv, BiLSTM).

5.5 Results of Event Factuality Inference

We report the performance of event factuality in-
ference in Table 5. The models HAN (Ma et al.,
2019) and MLA (Kruengkrai et al., 2021) used for
comparison are two widely used baselines in claim
verification, which have a similar form to our infer-
ence task. From the experimental results we can
learn that:

1) Since the SP (Support) category in the training
set of the inference task has a significantly larger
number of samples than the RF (Refute) and CJ
(Conjecture) categories, it performs significantly
better in both the Chinese and English corpora. Al-
though the UK (Unknown) category achieves good
performance with a small sample size, it shows
more fluctuations during training.

2) In terms of overall performance, our SDIN
model is significantly better than HAN and close

to MLA. It is worth noting that we constructed this
inference task to provide useful features for DEFI
before pursuing better performance.

5.6 Results of End-to-end Setting

The fact that SDIN uses more sentence-level anno-
tation information may lead to unfair comparisons.
To verify the performance of SDIN using predicted
information instead of gold annotations, we use the
following two simple unsupervised approaches to
obtain predicted event mentions and their sentence-
level factuality, transforming SDIN into an end-to-
end model and comparing it fairly with RMHAN
(Qian et al., 2022a) and Ext-TL (Qian et al., 2022b)
on the DLEF-v2 corpus (Qian et al., 2022a).

1) Event mentions: we measure the similarity
between candidate sentences and events by calcu-
lating the ROUGE scores of event sentences and
the remaining sentences. Specifically, the ROUGE-
1 of all sentences and labeled events are calculated,
sorted in reverse order based on their F1 scores,
and the five sentences with the highest scores are
selected as the set of event mentions.

2) Sentence-level factuality: for the event men-
tions obtained in 1), the factuality value is approxi-
mated according to whether they contain negative
or speculative cues from BioScope (Vincze et al.,
2008) and CNeSp (Zou et al., 2015) for English
and Chinese, respectively. Specifically, if the event
mention contains only negative/speculative cues, its
factuality is CT-/PS+; If the event mention contains
both negative and speculative cues, its factuality
is PS-; If the event mention has the word (e.g., if,
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even though) that leads to underspecified seman-
tics, its factuality is Uu; If the event mention does
not meet the above conditions, its factuality is CT+.

The above outputs are then used as an alternative
to annotations to verify the performance of SDIN
on the DLEF-v2 corpus, and its comparison with
RMHAN and Ext-TL is shown in Table 6, from
which the following conclusions can be drawn:

1) Although the DLEF-v2 corpus is significantly
larger than DLEF, after applying simple unsuper-
vised approaches for end-to-end experiments, the
performance of SDIN shows a significant degra-
dation compared to using accurate manually anno-
tated information.

2) SDIN is still significantly leading all strong
baselines. Taking Micro-F1 as an example, com-
pared with the SOTA Ext-TL, SDIN achieves 5.43
and 3.27 improvements in the English and Chinese
corpora, respectively. This proves the effective-
ness of the SDIN model, and also shows that SDIN
is highly robust and can better handle the large
amount of noise present in the input.

5.7 Ablation Study

We conduct the following ablation studies based
on the subsections of §4.2, §4.3, and §4.4 to
demonstrate the effectiveness of the components
in our proposed model SDIN: 1) w/o EH, which
removes the initialization methods of end nodes
and hub node, directly use the representation of
the premises and their element-wise addition as the
end nodes and the hub node; 2) w/o MS, which re-
moves the multi-layer structure and directly use the
initialized hub node as the result of the interaction;
3) w/o ER, which removes the enhanced represen-
tation and directly uses the hub node as the output;
4) w/o GM, which removes the gate mechanism
and replaces it with a simple concatenation; 5) w/o
IA, which removes the interaction and aggregation
component and replaces it with an element-wise
addition in all event mentions; 6) w/o JT, which
removes the joint training approach, i.e., the multi-
layer interaction module is not acted as a shared
layer and the two tasks are trained in a pipeline
manner. The results are presented in Table 7, and
we can find that:

1) Removing EH (w/o EH), MS (w/o MS) and
IA (w/o IA) have a significant impact on perfor-
mance, especially in the English corpus, proving
that they are more effective for factuality identi-
fication. Furthermore, the results show that cap-

Figure 3: Examples for case study. Taking S1 in D1
as an example, refute/refute means the true label and
predicted label, and 0.20 is the calculated probability
score, which is obtained by passing the outputs in Eq.10
through a sigmoid function and then taking their average.
To make the results more intuitive, we normalize all the
scores in a document so that the sum of the scores is 1.

turing the interactions between event mentions is
extremely critical.

2) Removing the joint training mechanism (w/o
JT) will lead to a large magnitude of performance
degradation, indicating that shared layers and multi-
task learning are very effective for DEFI.

3) Removing the components ER (w/o ER) and
GM (w/o GM) has a relatively small impact on the
results as they are simply a more efficient practice
for capturing some critical information, while some
simple alternatives in the ablation study can also
yield good results in most cases.

5.8 Impact of Event Factuality Inference

We summarize the following three aspects to illus-
trate how event factuality inference can be benefi-
cial to DEFI, just as exemplified in Figure 3.

1) All inference labels of event mentions are
identified correctly. If it is true, each sentence is
given an appropriate score (see the D1 in Figure 3,
the scores of S1 and S3 are 0.20 and 0.18, respec-
tively). The scores determine how much informa-
tion is incorporated into the final representation,
then we can get the correct factuality in complex
scenarios, e.g., there are multiple different values
of sentence-level factuality.

2) The inference labels of a small part of the
event mentions are misidentified. In this case, if
the misclassified sentence is not a core event men-
tion, then it will not have a significant impact on
final identification. Furthermore, we find that even
the misclassified core event mentions tend to have
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Dataset Method CT+ PS+ CT- Macro-F1 Micro-F1

DLEF-v2 English
RMHAN 84.35 55.13 56.43 65.30 76.38
Ext-TL 85.23 58.91 61.85 68.66 78.09
SDIN(Ours) 89.56 60.67 70.43 73.88 83.52

DLEF-v2 Chinese
RMHAN 82.60 65.55 73.83 73.99 77.07
Ext-TL 84.91 69.92 77.20 77.34 79.43
SDIN(Ours) 85.16 78.25 81.49 81.79 82.70

Table 6: End-to-end performance on the English and Chinese DLEF-v2 corpora.

Method DLEF English DLEF Chinese

Macro-F1 Micro-F1 Macro-F1 Micro-F1
w/o EH 89.37 (↓ 2.72) 92.81 (↓ 2.08) 93.10 (↓ 2.27) 94.72 (↓ 1.42)
w/o MS 89.66 (↓ 2.43) 92.64 (↓ 2.25) 93.38 (↓ 1.99) 94.74 (↓ 1.40)
w/o ER 90.71 (↓ 1.38) 93.43 (↓ 1.46) 94.21 (↓ 1.16) 95.44 (↓ 0.70)
w/o GM 91.03 (↓ 1.06) 93.51 (↓ 1.38) 94.07 (↓ 1.30) 95.22 (↓ 0.92)
w/o IA 89.01 (↓ 3.08) 92.27 (↓ 2.62) 93.19 (↓ 2.18) 94.05 (↓ 2.09)
w/o JT 89.91 (↓ 2.18) 92.57 (↓ 2.32) 92.92 (↓ 2.45) 93.84 (↓ 2.30)

Table 7: Results of ablation study on DLEF corpus, where the drop (↓) represents the decrease.

a positive effect through the calculated scores (e.g.,
S2 in D1 is misclassified, it still has a score of 0.62),
and the remaining correctly classified non-core sen-
tences have little effect on the results (e.g., S1 and
S3 in D1 have low scores), so that the correct fac-
tuality can also be obtained in some cases.

3) Most of the event mentions are misclassified,
often leading to errors at this point. This situation
occurs infrequently and other models also fail to
classify it correctly.

5.9 Error Analysis

By integrating the performance of the inference
task and the example D2 in Figure 3, we summarize
the following two types of errors:

1) From Table 5, we can observe that “Refute”
and “Conjecture” categories perform worse than
“Support”, making it difficult to classify the doc-
uments that needs to obtain negative or specula-
tive information from event mentions. Specifically,
some critical event mentions are not classified cor-
rectly in inference task and obtain lower scores
(the definition of scores is mentioned in Figure 3),
which leads to the fact that the generated features
of the critical event mentions do not have a suffi-
ciently positive impact on DEFI.

2) In some samples, only one core event men-
tion is valuable for prediction, and other mentions
with various noisy factuality values will interfere
with the correct classification. In this case, we note

that even if each event mention is correctly classi-
fied in the inference task, it is still difficult for the
identification model to correctly capture the most
critical information from the complex relationships
to infer the correct document-level factuality value.
Taking D2 in Figure 3 as an example, the model
correctly identifies the inference labels of S1-S3,
but the core event mention S2 only obtains a score
of 0.31, while the scores of S1 and S3 are 0.33 and
0.36, which lead to a representation for DEFI that
does not incorporate enough core information and
then leads to an error.

6 Conclusion

In this paper, we innovatively employ the relation-
ship between the sentence- and document-level
event factuality to construct an event factuality in-
ference paradigm, which can bridge these two-level
factuality semantically. Moreover, we propose a
Sentence-to-Document Inference Network (SDIN),
which is a multi-task learning framework incor-
porating a multi-layer interaction module and a
gated aggregation module to integrate the task of
document-level event factuality inference and iden-
tification. Experimental results on the English and
Chinese DLEF datasets demonstrate the significant
improvements of our proposed model SDIN, in
comparison with the SOTA baselines. In future
work, we will focus on end-to-end document-level
event factuality identification.
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Limitations

The limitations can be illustrated from the perspec-
tive of task development: DEFI originally evolved
from sentence-level work, as is clearly evident from
the large number of sentence-related annotations
retained in DLEF corpus. Our work benefits from
these abundant annotations and achieves huge per-
formance improvements. Currently, there is a trend
to gradually move towards end-to-end practice in
event factuality identification. For example, the
studies based on the DLEF-v2 (Qian et al., 2022a,b)
and EB-DLEF (Zhang et al., 2022a) corpora have
attempted to use less annotation information. Al-
though these efforts do not achieve competitive
performance for the time being, it is an exciting
research direction because it allows models to be
more easily applied directly to realistic scenarios.
The limitation of our work lies in the fact that it
runs counter to the end-to-end concept, so we need
more other work (e.g, event extraction and SEFI
models) to apply the model to the real world, which
makes our work less applicable.
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