@inproceedings{wu-etal-2023-rethinking-model,
title = "Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models",
author = "Wu, Di and
Ahmad, Wasi and
Chang, Kai-Wei",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.410/",
doi = "10.18653/v1/2023.emnlp-main.410",
pages = "6642--6658",
abstract = "Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7{\%} semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2023-rethinking-model">
<titleInfo>
<title>Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wasi</namePart>
<namePart type="family">Ahmad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.</abstract>
<identifier type="citekey">wu-etal-2023-rethinking-model</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.410</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.410/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6642</start>
<end>6658</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models
%A Wu, Di
%A Ahmad, Wasi
%A Chang, Kai-Wei
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wu-etal-2023-rethinking-model
%X Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.
%R 10.18653/v1/2023.emnlp-main.410
%U https://aclanthology.org/2023.emnlp-main.410/
%U https://doi.org/10.18653/v1/2023.emnlp-main.410
%P 6642-6658
Markdown (Informal)
[Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models](https://aclanthology.org/2023.emnlp-main.410/) (Wu et al., EMNLP 2023)
ACL