@inproceedings{cassotti-etal-2023-xl,
title = "{XL}-{LEXEME}: {W}i{C} Pretrained Model for Cross-Lingual {LEX}ical s{EM}antic chang{E}",
author = "Cassotti, Pierluigi and
Siciliani, Lucia and
DeGemmis, Marco and
Semeraro, Giovanni and
Basile, Pierpaolo",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.135/",
doi = "10.18653/v1/2023.acl-short.135",
pages = "1577--1585",
abstract = "The recent introduction of large-scale datasets for the WiC (Word in Context) task enables the creation of more reliable and meaningful contextualized word embeddings.However, most of the approaches to the WiC task use cross-encoders, which prevent the possibility of deriving comparable word embeddings.In this work, we introduce XL-LEXEME, a Lexical Semantic Change Detection model.XL-LEXEME extends SBERT, highlighting the target word in the sentence. We evaluate XL-LEXEME on the multilingual benchmarks for SemEval-2020 Task 1 - Lexical Semantic Change (LSC) Detection and the RuShiftEval shared task involving five languages: English, German, Swedish, Latin, and Russian.XL-LEXEME outperforms the state-of-the-art in English, German and Swedish with statistically significant differences from the baseline results and obtains state-of-the-art performance in the RuShiftEval shared task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cassotti-etal-2023-xl">
<titleInfo>
<title>XL-LEXEME: WiC Pretrained Model for Cross-Lingual LEXical sEMantic changE</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierluigi</namePart>
<namePart type="family">Cassotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Siciliani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">DeGemmis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Semeraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierpaolo</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The recent introduction of large-scale datasets for the WiC (Word in Context) task enables the creation of more reliable and meaningful contextualized word embeddings.However, most of the approaches to the WiC task use cross-encoders, which prevent the possibility of deriving comparable word embeddings.In this work, we introduce XL-LEXEME, a Lexical Semantic Change Detection model.XL-LEXEME extends SBERT, highlighting the target word in the sentence. We evaluate XL-LEXEME on the multilingual benchmarks for SemEval-2020 Task 1 - Lexical Semantic Change (LSC) Detection and the RuShiftEval shared task involving five languages: English, German, Swedish, Latin, and Russian.XL-LEXEME outperforms the state-of-the-art in English, German and Swedish with statistically significant differences from the baseline results and obtains state-of-the-art performance in the RuShiftEval shared task.</abstract>
<identifier type="citekey">cassotti-etal-2023-xl</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.135</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.135/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1577</start>
<end>1585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T XL-LEXEME: WiC Pretrained Model for Cross-Lingual LEXical sEMantic changE
%A Cassotti, Pierluigi
%A Siciliani, Lucia
%A DeGemmis, Marco
%A Semeraro, Giovanni
%A Basile, Pierpaolo
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F cassotti-etal-2023-xl
%X The recent introduction of large-scale datasets for the WiC (Word in Context) task enables the creation of more reliable and meaningful contextualized word embeddings.However, most of the approaches to the WiC task use cross-encoders, which prevent the possibility of deriving comparable word embeddings.In this work, we introduce XL-LEXEME, a Lexical Semantic Change Detection model.XL-LEXEME extends SBERT, highlighting the target word in the sentence. We evaluate XL-LEXEME on the multilingual benchmarks for SemEval-2020 Task 1 - Lexical Semantic Change (LSC) Detection and the RuShiftEval shared task involving five languages: English, German, Swedish, Latin, and Russian.XL-LEXEME outperforms the state-of-the-art in English, German and Swedish with statistically significant differences from the baseline results and obtains state-of-the-art performance in the RuShiftEval shared task.
%R 10.18653/v1/2023.acl-short.135
%U https://aclanthology.org/2023.acl-short.135/
%U https://doi.org/10.18653/v1/2023.acl-short.135
%P 1577-1585
Markdown (Informal)
[XL-LEXEME: WiC Pretrained Model for Cross-Lingual LEXical sEMantic changE](https://aclanthology.org/2023.acl-short.135/) (Cassotti et al., ACL 2023)
ACL
- Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis, Giovanni Semeraro, and Pierpaolo Basile. 2023. XL-LEXEME: WiC Pretrained Model for Cross-Lingual LEXical sEMantic changE. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1577–1585, Toronto, Canada. Association for Computational Linguistics.