@inproceedings{he-etal-2023-diffusionbert,
title = "{D}iffusion{BERT}: Improving Generative Masked Language Models with Diffusion Models",
author = "He, Zhengfu and
Sun, Tianxiang and
Tang, Qiong and
Wang, Kuanning and
Huang, Xuanjing and
Qiu, Xipeng",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.248/",
doi = "10.18653/v1/2023.acl-long.248",
pages = "4521--4534",
abstract = "We present DiffusionBERT, a new generative masked language model based on discrete dif- fusion models. Diffusion models and many pre- trained language models have a shared training objective, i.e., denoising, making it possible to combine the two powerful models and enjoy the best of both worlds. On the one hand, dif- fusion models offer a promising training strat- egy that helps improve the generation quality. On the other hand, pre-trained denoising lan- guage models (e.g., BERT) can be used as a good initialization that accelerates convergence. We explore training BERT to learn the reverse process of a discrete diffusion process with an absorbing state and elucidate several designs to improve it. First, we propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step based on the information of each token. Sec- ond, we investigate several designs of incorpo- rating the time step into BERT. Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improve- ment over existing diffusion models for text (e.g., D3PM and Diffusion-LM) and previous generative masked language models in terms of perplexity and BLEU score. Promising re- sults in conditional generation tasks show that DiffusionBERT can generate texts of compa- rable quality and more diverse than a series of established baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2023-diffusionbert">
<titleInfo>
<title>DiffusionBERT: Improving Generative Masked Language Models with Diffusion Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengfu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianxiang</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiong</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuanning</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present DiffusionBERT, a new generative masked language model based on discrete dif- fusion models. Diffusion models and many pre- trained language models have a shared training objective, i.e., denoising, making it possible to combine the two powerful models and enjoy the best of both worlds. On the one hand, dif- fusion models offer a promising training strat- egy that helps improve the generation quality. On the other hand, pre-trained denoising lan- guage models (e.g., BERT) can be used as a good initialization that accelerates convergence. We explore training BERT to learn the reverse process of a discrete diffusion process with an absorbing state and elucidate several designs to improve it. First, we propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step based on the information of each token. Sec- ond, we investigate several designs of incorpo- rating the time step into BERT. Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improve- ment over existing diffusion models for text (e.g., D3PM and Diffusion-LM) and previous generative masked language models in terms of perplexity and BLEU score. Promising re- sults in conditional generation tasks show that DiffusionBERT can generate texts of compa- rable quality and more diverse than a series of established baselines.</abstract>
<identifier type="citekey">he-etal-2023-diffusionbert</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.248</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.248/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>4521</start>
<end>4534</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DiffusionBERT: Improving Generative Masked Language Models with Diffusion Models
%A He, Zhengfu
%A Sun, Tianxiang
%A Tang, Qiong
%A Wang, Kuanning
%A Huang, Xuanjing
%A Qiu, Xipeng
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F he-etal-2023-diffusionbert
%X We present DiffusionBERT, a new generative masked language model based on discrete dif- fusion models. Diffusion models and many pre- trained language models have a shared training objective, i.e., denoising, making it possible to combine the two powerful models and enjoy the best of both worlds. On the one hand, dif- fusion models offer a promising training strat- egy that helps improve the generation quality. On the other hand, pre-trained denoising lan- guage models (e.g., BERT) can be used as a good initialization that accelerates convergence. We explore training BERT to learn the reverse process of a discrete diffusion process with an absorbing state and elucidate several designs to improve it. First, we propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step based on the information of each token. Sec- ond, we investigate several designs of incorpo- rating the time step into BERT. Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improve- ment over existing diffusion models for text (e.g., D3PM and Diffusion-LM) and previous generative masked language models in terms of perplexity and BLEU score. Promising re- sults in conditional generation tasks show that DiffusionBERT can generate texts of compa- rable quality and more diverse than a series of established baselines.
%R 10.18653/v1/2023.acl-long.248
%U https://aclanthology.org/2023.acl-long.248/
%U https://doi.org/10.18653/v1/2023.acl-long.248
%P 4521-4534
Markdown (Informal)
[DiffusionBERT: Improving Generative Masked Language Models with Diffusion Models](https://aclanthology.org/2023.acl-long.248/) (He et al., ACL 2023)
ACL