@inproceedings{jun-etal-2022-anna,
title = "{ANNA}: Enhanced Language Representation for Question Answering",
author = "Jun, Changwook and
Jang, Hansol and
Sim, Myoseop and
Kim, Hyun and
Choi, Jooyoung and
Min, Kyungkoo and
Bae, Kyunghoon",
editor = "Gella, Spandana and
He, He and
Majumder, Bodhisattwa Prasad and
Can, Burcu and
Giunchiglia, Eleonora and
Cahyawijaya, Samuel and
Min, Sewon and
Mozes, Maximilian and
Li, Xiang Lorraine and
Augenstein, Isabelle and
Rogers, Anna and
Cho, Kyunghyun and
Grefenstette, Edward and
Rimell, Laura and
Dyer, Chris",
booktitle = "Proceedings of the 7th Workshop on Representation Learning for NLP",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.repl4nlp-1.13/",
doi = "10.18653/v1/2022.repl4nlp-1.13",
pages = "121--132",
abstract = "Pre-trained language models have brought significant improvements in performance in a variety of natural language processing tasks. Most existing models performing state-of-the-art results have shown their approaches in the separate perspectives of data processing, pre-training tasks, neural network modeling, or fine-tuning. In this paper, we demonstrate how the approaches affect performance individually, and that the language model performs the best results on a specific question answering task when those approaches are jointly considered in pre-training models. In particular, we propose an extended pre-training task, and a new neighbor-aware mechanism that attends neighboring tokens more to capture the richness of context for pre-training language modeling. Our best model achieves new state-of-the-art results of 95.7{\%} F1 and 90.6{\%} EM on SQuAD 1.1 and also outperforms existing pre-trained language models such as RoBERTa, ALBERT, ELECTRA, and XLNet on the SQuAD 2.0 benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jun-etal-2022-anna">
<titleInfo>
<title>ANNA: Enhanced Language Representation for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changwook</namePart>
<namePart type="family">Jun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansol</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Myoseop</namePart>
<namePart type="family">Sim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyun</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jooyoung</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyungkoo</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghoon</namePart>
<namePart type="family">Bae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Representation Learning for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bodhisattwa</namePart>
<namePart type="given">Prasad</namePart>
<namePart type="family">Majumder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleonora</namePart>
<namePart type="family">Giunchiglia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="given">Lorraine</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Grefenstette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Rimell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained language models have brought significant improvements in performance in a variety of natural language processing tasks. Most existing models performing state-of-the-art results have shown their approaches in the separate perspectives of data processing, pre-training tasks, neural network modeling, or fine-tuning. In this paper, we demonstrate how the approaches affect performance individually, and that the language model performs the best results on a specific question answering task when those approaches are jointly considered in pre-training models. In particular, we propose an extended pre-training task, and a new neighbor-aware mechanism that attends neighboring tokens more to capture the richness of context for pre-training language modeling. Our best model achieves new state-of-the-art results of 95.7% F1 and 90.6% EM on SQuAD 1.1 and also outperforms existing pre-trained language models such as RoBERTa, ALBERT, ELECTRA, and XLNet on the SQuAD 2.0 benchmark.</abstract>
<identifier type="citekey">jun-etal-2022-anna</identifier>
<identifier type="doi">10.18653/v1/2022.repl4nlp-1.13</identifier>
<location>
<url>https://aclanthology.org/2022.repl4nlp-1.13/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>121</start>
<end>132</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ANNA: Enhanced Language Representation for Question Answering
%A Jun, Changwook
%A Jang, Hansol
%A Sim, Myoseop
%A Kim, Hyun
%A Choi, Jooyoung
%A Min, Kyungkoo
%A Bae, Kyunghoon
%Y Gella, Spandana
%Y He, He
%Y Majumder, Bodhisattwa Prasad
%Y Can, Burcu
%Y Giunchiglia, Eleonora
%Y Cahyawijaya, Samuel
%Y Min, Sewon
%Y Mozes, Maximilian
%Y Li, Xiang Lorraine
%Y Augenstein, Isabelle
%Y Rogers, Anna
%Y Cho, Kyunghyun
%Y Grefenstette, Edward
%Y Rimell, Laura
%Y Dyer, Chris
%S Proceedings of the 7th Workshop on Representation Learning for NLP
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F jun-etal-2022-anna
%X Pre-trained language models have brought significant improvements in performance in a variety of natural language processing tasks. Most existing models performing state-of-the-art results have shown their approaches in the separate perspectives of data processing, pre-training tasks, neural network modeling, or fine-tuning. In this paper, we demonstrate how the approaches affect performance individually, and that the language model performs the best results on a specific question answering task when those approaches are jointly considered in pre-training models. In particular, we propose an extended pre-training task, and a new neighbor-aware mechanism that attends neighboring tokens more to capture the richness of context for pre-training language modeling. Our best model achieves new state-of-the-art results of 95.7% F1 and 90.6% EM on SQuAD 1.1 and also outperforms existing pre-trained language models such as RoBERTa, ALBERT, ELECTRA, and XLNet on the SQuAD 2.0 benchmark.
%R 10.18653/v1/2022.repl4nlp-1.13
%U https://aclanthology.org/2022.repl4nlp-1.13/
%U https://doi.org/10.18653/v1/2022.repl4nlp-1.13
%P 121-132
Markdown (Informal)
[ANNA: Enhanced Language Representation for Question Answering](https://aclanthology.org/2022.repl4nlp-1.13/) (Jun et al., RepL4NLP 2022)
ACL
- Changwook Jun, Hansol Jang, Myoseop Sim, Hyun Kim, Jooyoung Choi, Kyungkoo Min, and Kyunghoon Bae. 2022. ANNA: Enhanced Language Representation for Question Answering. In Proceedings of the 7th Workshop on Representation Learning for NLP, pages 121–132, Dublin, Ireland. Association for Computational Linguistics.