@inproceedings{zhang-etal-2022-pre-trained,
title = "Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection",
author = "Zhang, Jianguo and
Hashimoto, Kazuma and
Wan, Yao and
Liu, Zhiwei and
Liu, Ye and
Xiong, Caiming and
Yu, Philip",
editor = "Liu, Bing and
Papangelis, Alexandros and
Ultes, Stefan and
Rastogi, Abhinav and
Chen, Yun-Nung and
Spithourakis, Georgios and
Nouri, Elnaz and
Shi, Weiyan",
booktitle = "Proceedings of the 4th Workshop on NLP for Conversational AI",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlp4convai-1.2/",
doi = "10.18653/v1/2022.nlp4convai-1.2",
pages = "12--20",
abstract = "Pre-trained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pre-trained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We construct two new datasets, and empirically show that pre-trained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2022-pre-trained">
<titleInfo>
<title>Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianguo</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuma</namePart>
<namePart type="family">Hashimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caiming</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on NLP for Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Spithourakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elnaz</namePart>
<namePart type="family">Nouri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiyan</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pre-trained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We construct two new datasets, and empirically show that pre-trained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks.</abstract>
<identifier type="citekey">zhang-etal-2022-pre-trained</identifier>
<identifier type="doi">10.18653/v1/2022.nlp4convai-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.nlp4convai-1.2/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>12</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection
%A Zhang, Jianguo
%A Hashimoto, Kazuma
%A Wan, Yao
%A Liu, Zhiwei
%A Liu, Ye
%A Xiong, Caiming
%A Yu, Philip
%Y Liu, Bing
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Rastogi, Abhinav
%Y Chen, Yun-Nung
%Y Spithourakis, Georgios
%Y Nouri, Elnaz
%Y Shi, Weiyan
%S Proceedings of the 4th Workshop on NLP for Conversational AI
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F zhang-etal-2022-pre-trained
%X Pre-trained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pre-trained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We construct two new datasets, and empirically show that pre-trained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks.
%R 10.18653/v1/2022.nlp4convai-1.2
%U https://aclanthology.org/2022.nlp4convai-1.2/
%U https://doi.org/10.18653/v1/2022.nlp4convai-1.2
%P 12-20
Markdown (Informal)
[Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection](https://aclanthology.org/2022.nlp4convai-1.2/) (Zhang et al., NLP4ConvAI 2022)
ACL