@inproceedings{zeng-song-2021-variational,
title = "Variational Weakly Supervised Sentiment Analysis with Posterior Regularization",
author = "Zeng, Ziqian and
Song, Yangqiu",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.285/",
doi = "10.18653/v1/2021.eacl-main.285",
pages = "3259--3268",
abstract = "Sentiment analysis is an important task in natural language processing (NLP). Most of existing state-of-the-art methods are under the supervised learning paradigm. However, human annotations can be scarce. Thus, we should leverage more weak supervision for sentiment analysis. In this paper, we propose a posterior regularization framework for the variational approach to the weakly supervised sentiment analysis to better control the posterior distribution of the label assignment. The intuition behind the posterior regularization is that if extracted opinion words from two documents are semantically similar, the posterior distributions of two documents should be similar. Our experimental results show that the posterior regularization can improve the original variational approach to the weakly supervised sentiment analysis and the performance is more stable with smaller prediction variance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-song-2021-variational">
<titleInfo>
<title>Variational Weakly Supervised Sentiment Analysis with Posterior Regularization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziqian</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis is an important task in natural language processing (NLP). Most of existing state-of-the-art methods are under the supervised learning paradigm. However, human annotations can be scarce. Thus, we should leverage more weak supervision for sentiment analysis. In this paper, we propose a posterior regularization framework for the variational approach to the weakly supervised sentiment analysis to better control the posterior distribution of the label assignment. The intuition behind the posterior regularization is that if extracted opinion words from two documents are semantically similar, the posterior distributions of two documents should be similar. Our experimental results show that the posterior regularization can improve the original variational approach to the weakly supervised sentiment analysis and the performance is more stable with smaller prediction variance.</abstract>
<identifier type="citekey">zeng-song-2021-variational</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.285</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.285/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3259</start>
<end>3268</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Variational Weakly Supervised Sentiment Analysis with Posterior Regularization
%A Zeng, Ziqian
%A Song, Yangqiu
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F zeng-song-2021-variational
%X Sentiment analysis is an important task in natural language processing (NLP). Most of existing state-of-the-art methods are under the supervised learning paradigm. However, human annotations can be scarce. Thus, we should leverage more weak supervision for sentiment analysis. In this paper, we propose a posterior regularization framework for the variational approach to the weakly supervised sentiment analysis to better control the posterior distribution of the label assignment. The intuition behind the posterior regularization is that if extracted opinion words from two documents are semantically similar, the posterior distributions of two documents should be similar. Our experimental results show that the posterior regularization can improve the original variational approach to the weakly supervised sentiment analysis and the performance is more stable with smaller prediction variance.
%R 10.18653/v1/2021.eacl-main.285
%U https://aclanthology.org/2021.eacl-main.285/
%U https://doi.org/10.18653/v1/2021.eacl-main.285
%P 3259-3268
Markdown (Informal)
[Variational Weakly Supervised Sentiment Analysis with Posterior Regularization](https://aclanthology.org/2021.eacl-main.285/) (Zeng & Song, EACL 2021)
ACL