@inproceedings{dai-etal-2021-ultra,
title = "Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model",
author = "Dai, Hongliang and
Song, Yangqiu and
Wang, Haixun",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.141/",
doi = "10.18653/v1/2021.acl-long.141",
pages = "1790--1799",
abstract = "Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine entity typing task is that human annotated data are extremely scarce, and the annotation ability of existing distant or weak supervision approaches is very limited. To remedy this problem, in this paper, we propose to obtain training data for ultra-fine entity typing by using a BERT Masked Language Model (MLM). Given a mention in a sentence, our approach constructs an input for the BERT MLM so that it predicts context dependent hypernyms of the mention, which can be used as type labels. Experimental results demonstrate that, with the help of these automatically generated labels, the performance of an ultra-fine entity typing model can be improved substantially. We also show that our approach can be applied to improve traditional fine-grained entity typing after performing simple type mapping."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dai-etal-2021-ultra">
<titleInfo>
<title>Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongliang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haixun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine entity typing task is that human annotated data are extremely scarce, and the annotation ability of existing distant or weak supervision approaches is very limited. To remedy this problem, in this paper, we propose to obtain training data for ultra-fine entity typing by using a BERT Masked Language Model (MLM). Given a mention in a sentence, our approach constructs an input for the BERT MLM so that it predicts context dependent hypernyms of the mention, which can be used as type labels. Experimental results demonstrate that, with the help of these automatically generated labels, the performance of an ultra-fine entity typing model can be improved substantially. We also show that our approach can be applied to improve traditional fine-grained entity typing after performing simple type mapping.</abstract>
<identifier type="citekey">dai-etal-2021-ultra</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.141</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.141/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1790</start>
<end>1799</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model
%A Dai, Hongliang
%A Song, Yangqiu
%A Wang, Haixun
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F dai-etal-2021-ultra
%X Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine entity typing task is that human annotated data are extremely scarce, and the annotation ability of existing distant or weak supervision approaches is very limited. To remedy this problem, in this paper, we propose to obtain training data for ultra-fine entity typing by using a BERT Masked Language Model (MLM). Given a mention in a sentence, our approach constructs an input for the BERT MLM so that it predicts context dependent hypernyms of the mention, which can be used as type labels. Experimental results demonstrate that, with the help of these automatically generated labels, the performance of an ultra-fine entity typing model can be improved substantially. We also show that our approach can be applied to improve traditional fine-grained entity typing after performing simple type mapping.
%R 10.18653/v1/2021.acl-long.141
%U https://aclanthology.org/2021.acl-long.141/
%U https://doi.org/10.18653/v1/2021.acl-long.141
%P 1790-1799
Markdown (Informal)
[Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model](https://aclanthology.org/2021.acl-long.141/) (Dai et al., ACL-IJCNLP 2021)
ACL
- Hongliang Dai, Yangqiu Song, and Haixun Wang. 2021. Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1790–1799, Online. Association for Computational Linguistics.