@inproceedings{liu-etal-2020-scmhl5,
title = "Scmhl5 at {TRAC}-2 Shared Task on Aggression Identification: Bert Based Ensemble Learning Approach",
author = "Liu, Han and
Burnap, Pete and
Alorainy, Wafa and
Williams, Matthew",
editor = "Kumar, Ritesh and
Ojha, Atul Kr. and
Lahiri, Bornini and
Zampieri, Marcos and
Malmasi, Shervin and
Murdock, Vanessa and
Kadar, Daniel",
booktitle = "Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/2020.trac-1.10/",
pages = "62--68",
language = "eng",
ISBN = "979-10-95546-56-6",
abstract = "This paper presents a system developed during our participation (team name: scmhl5) in the TRAC-2 Shared Task on aggression identification. In particular, we participated in English Sub-task A on three-class classification ({\textquoteleft}Overtly Aggressive', {\textquoteleft}Covertly Aggressive' and {\textquoteleft}Non-aggressive') and English Sub-task B on binary classification for Misogynistic Aggression ({\textquoteleft}gendered' or {\textquoteleft}non-gendered'). For both sub-tasks, our method involves using the pre-trained Bert model for extracting the text of each instance into a 768-dimensional vector of embeddings, and then training an ensemble of classifiers on the embedding features. Our method obtained accuracy of 0.703 and weighted F-measure of 0.664 for Sub-task A, whereas for Sub-task B the accuracy was 0.869 and weighted F-measure was 0.851. In terms of the rankings, the weighted F-measure obtained using our method for Sub-task A is ranked in the 10th out of 16 teams, whereas for Sub-task B the weighted F-measure is ranked in the 8th out of 15 teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2020-scmhl5">
<titleInfo>
<title>Scmhl5 at TRAC-2 Shared Task on Aggression Identification: Bert Based Ensemble Learning Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pete</namePart>
<namePart type="family">Burnap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wafa</namePart>
<namePart type="family">Alorainy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bornini</namePart>
<namePart type="family">Lahiri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanessa</namePart>
<namePart type="family">Murdock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Kadar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-56-6</identifier>
</relatedItem>
<abstract>This paper presents a system developed during our participation (team name: scmhl5) in the TRAC-2 Shared Task on aggression identification. In particular, we participated in English Sub-task A on three-class classification (‘Overtly Aggressive’, ‘Covertly Aggressive’ and ‘Non-aggressive’) and English Sub-task B on binary classification for Misogynistic Aggression (‘gendered’ or ‘non-gendered’). For both sub-tasks, our method involves using the pre-trained Bert model for extracting the text of each instance into a 768-dimensional vector of embeddings, and then training an ensemble of classifiers on the embedding features. Our method obtained accuracy of 0.703 and weighted F-measure of 0.664 for Sub-task A, whereas for Sub-task B the accuracy was 0.869 and weighted F-measure was 0.851. In terms of the rankings, the weighted F-measure obtained using our method for Sub-task A is ranked in the 10th out of 16 teams, whereas for Sub-task B the weighted F-measure is ranked in the 8th out of 15 teams.</abstract>
<identifier type="citekey">liu-etal-2020-scmhl5</identifier>
<location>
<url>https://aclanthology.org/2020.trac-1.10/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>62</start>
<end>68</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scmhl5 at TRAC-2 Shared Task on Aggression Identification: Bert Based Ensemble Learning Approach
%A Liu, Han
%A Burnap, Pete
%A Alorainy, Wafa
%A Williams, Matthew
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Lahiri, Bornini
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%Y Murdock, Vanessa
%Y Kadar, Daniel
%S Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying
%D 2020
%8 May
%I European Language Resources Association (ELRA)
%C Marseille, France
%@ 979-10-95546-56-6
%G eng
%F liu-etal-2020-scmhl5
%X This paper presents a system developed during our participation (team name: scmhl5) in the TRAC-2 Shared Task on aggression identification. In particular, we participated in English Sub-task A on three-class classification (‘Overtly Aggressive’, ‘Covertly Aggressive’ and ‘Non-aggressive’) and English Sub-task B on binary classification for Misogynistic Aggression (‘gendered’ or ‘non-gendered’). For both sub-tasks, our method involves using the pre-trained Bert model for extracting the text of each instance into a 768-dimensional vector of embeddings, and then training an ensemble of classifiers on the embedding features. Our method obtained accuracy of 0.703 and weighted F-measure of 0.664 for Sub-task A, whereas for Sub-task B the accuracy was 0.869 and weighted F-measure was 0.851. In terms of the rankings, the weighted F-measure obtained using our method for Sub-task A is ranked in the 10th out of 16 teams, whereas for Sub-task B the weighted F-measure is ranked in the 8th out of 15 teams.
%U https://aclanthology.org/2020.trac-1.10/
%P 62-68
Markdown (Informal)
[Scmhl5 at TRAC-2 Shared Task on Aggression Identification: Bert Based Ensemble Learning Approach](https://aclanthology.org/2020.trac-1.10/) (Liu et al., TRAC 2020)
ACL