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Abstract

We address the problem of multimodal spatial
understanding by decoding a set of language-
expressed spatial relations to a set of 2D spa-
tial arrangements in a multi-object and multi-
relationship setting. We frame the task as ar-
ranging a scene of clip-arts given a textual
description. We propose a simple and effec-
tive model architecture SPATIAL-REASONING
BERT (SR-BERT), trained to decode text to 2D
spatial arrangements in a non-autoregressive
manner. SR-BERT can decode both explicit
and implicit language to 2D spatial arrange-
ments, generalizes to out-of-sample data to a
reasonable extent and can generate complete
abstract scenes if paired with a clip-arts pre-
dictor. Finally, we qualitatively evaluate our
method with a user study, validating that our
generated spatial arrangements align with hu-
man expectation.

1 Introduction

Spatial understanding is a problem of paramount
importance to both the vision and the language
community. For a machine learning model to be
able to reason about the spatial domain w.r.t. an-
other modality (language, vision, etc.), it should in-
corporate common-sense spatial knowledge, which
is often obvious to humans, yet hard to grasp by
machines. If the spatial relations are expressed in
language, such common sense knowledge can be
hidden within, e.g., “mike and jenny see a duck”
(Figure 1) – meaning that both “Mike” and “Jenny”
should be facing the “duck”. The complexity of
the problem increases tremendously when there is
no limit on the number/type of objects and rela-
tionships – the de-facto setting in computer graph-
ics, video games, 3D modelling, etc. Communi-
cating spatial relations via language is intuitive
for humans, while arranging objects in a multi-
dimensional space is tedious. Therefore, building

jenn\ haV a hambXUgeU.
mike iV VWanding XndeU a helicoSWeU.

mike and jenn\ aUe haSS\.
mike and jenn\ aUe VWanding ne[W Wo Whe Wable.

WheUe iV a helicoSWeU.
jenn\ iV holding a hambXUgeU .

GroXnd
WrXWh

GeneraWed

a dXck iV ZeaUing a helm.
mike iV laXghing aW Whe dXck.

mike and jenn\ aUe haSS\ Wo Vee a dXck.
Whe dXck iV ZeaUing aW haW.

a dXck VWandV beWZeen mike and jenn\.
jenn\ iV VWanding XndeU Whe WUee.

Figure 1: Given a set of clip-arts and a textual descrip-
tion of a scene, including both implicit as well as ex-
plicit language, our method automatically generates a
reasonable spatial arrangement.

models that exhibit spatial understanding is a key
step towards automation – aiding humans in the
repetitive time-consuming tasks.

To date, multiple methods that explicitly investi-
gate spatial reasoning in a multidimensional space
have been proposed. However, the main limita-
tions are: (i) scene environments with strong priors
on (relative) object placements (e.g., indoor home
environments); (Chang et al., 2017; Fisher et al.,
2012; Choi et al., 2013; Xu et al., 2013; Jiang et al.,
2012; Chang et al., 2014; Kermani et al., 2016);
(ii) modelling only pairwise relationships (i.e., two
objects and a single relationship) (Dan et al., 2020a;
Collell et al., 2018); (iii) not using natural language
descriptions of scenes, but only structured language
(Collell et al., 2018; Dan et al., 2020b).

In this paper we address the three limitations
above by introducing a model that analyzes all
available textual and visual data jointly. We for-
mally frame our research problem as: “Given a
set of discretely encoded clip-arts (people, objects,
etc.), and a textual description of a scene, what
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is the best positioning of the clip-arts that corre-
sponds to the spatial relations implied by the text?”.
Our approach is based on a large pre-trained lan-
guage model – BERT (Devlin et al., 2018), adapted
to jointly process multi-modal data with distinct
positional encoding. We introduce SR-BERT, a
model that explicitly focuses on the spatial rela-
tions – decoding the language cues to 2D spatial ar-
rangements, achieved by masking the information
related to the spatial arrangements during train-
ing. We build on the methods of Ghazvininejad
et al. (2019a); Kasai et al. (2020); Wang and Cho
(2019); Lee et al. (2018), initially proposed for non-
autoregressive text decoding, in our case specifi-
cally adapted to iteratively mask-out and predict
the spatial arrangements of the objects of interest.
Inspired by Lawrence et al. (2019) we develop dis-
tinct ways of imposing a decoding order, tailored
for generating spatial arrangements from language.

We perform ad-hoc experiments to gain insights
in three main research questions: (RQ 1) Can we
decode a set of language spatial relations to the 2D
space without imposing constraints on the number
and type of objects and relationships? (RQ 2) Does
the model merely exploit dataset bias to generate
arrangements or does it acquire understanding of
the language and the spatial domain? (RQ 3) Is
the model able to interpret only explicit spatial
relationships (e.g., on, above) or can it cope with
implicit ones as well (e.g., wearing, eating, etc.)?
We release the code, data and trained models1.

2 Dataset

We use the Abstract Scenes dataset (Zitnick and
Parikh, 2013) which consists of 10.020 scenes
of clip-arts, together with ⇠6 sentences for each
scene, describing the scene content and spatial re-
lations between them. The clip-arts belong to 7
distinct groups, namely objects in the sky, large
elements, people, animals, clothing, food and toys.
The scenes are organized in 1002 semantically dif-
ferent sets, where scenes within a particular set are
generated from the same core-scene description.
After removing empty scenes, from each of the
1002 sets we allocate one scene for testing, one for
model selection and we keep the rest for training.2

That leaves us with 1002 scenes in the test and
1https://github.com/gorjanradevski/

sr-bert
2We do the data-split to retain as much information as

possible within the train-validation-test splits. We also include
an experiment with a random split in appendix D.

validation set respectively, and 7989 scenes in the
training set. The maximum number of clip-arts in
a scene is 17 while the minimum and median are 6.
The total number of unique clip-arts in the dataset
is 126.

3 Methods

The main building block for all our models is BERT
(Devlin et al., 2018). In particular, we present
SR-BERT, a BERT variant based on a pre-trained
BERTBASE. Compared with existing BERT architec-
tures (Sun et al., 2019; Tan and Bansal, 2019; Chen
et al., 2019; Su et al., 2019; Lu et al., 2019; Li et al.,
2019b), with SR-BERT our contributions are two-
fold: (i) We alter the input-embedding module to
process two discrete modalities with a different po-
sitional encoding — sequential and spatial. (ii) We
design a novel training method – Masked Position
Modelling, where we iteratively mask and predict
the positional encoding of the input tokens.

3.1 BERT revisited
In BERT, the input sequence is tokenized using
WordPiece tokenization (Wu et al., 2016) and en-
coded in token indices {w1, ..., wN} with a [CLS]
token index prepended at the start and a [SEP]
token index appended at the end. Then, a token em-
bedding vector, a token index and a token type em-
bedding vector for each word are summed, and sub-
sequently layer-normalization (Ba et al., 2016) and
dropout (Srivastava et al., 2014) are applied. The
rest of the architecture resembles the Transformer
model of Vaswani et al. (2017). The essence of
BERT’s bi-directionality is the pre-training method
- Masked Language Modelling (MLM) which we
explain in section 3.3. For a detailed description
we refer to Devlin et al. (2018).

3.2 SR-BERT

In order to enable BERT to handle two modalities
with different positional encoding, we keep the
language embedding module as described in sec-
tion 3.1 before the addition of the 3 embeddings
and append the output of a specialized spatial em-
bedding module. Here, each clip-art is encoded
with a unique index ci and the spatial encoding is a
[cx, cy] coordinate pair and a binary indicator co of
the clip-art orientation (left or right). Therefore, the
spatial embedding module consists of 4 separate
trainable layers: CEmbed – for obtaining a clip-art
embedding ce, XEmbed, YEmbed – for obtaining

https://github.com/gorjanradevski/sr-bert
https://github.com/gorjanradevski/sr-bert
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Figure 2: The SR-BERT backbone architecture with the text position embedding module as per BERT – Left
(Yellow), clip-art spatial embedding module, which is novel in SR-BERT – Right (Blue). The blue [MASK]
elements are the masked spatial positions, which the model learns to predict during training. During inference, all
blue elements (the spatial encoding of the clip-arts) are masked, and the model non-autoregressively decodes them.

a spatial embedding [xe, ye] for the x and y axis re-
spectively, and OEmbed – for obtaining the spatial
embedding oe of the orientation co. These are com-
bined in the final spatial embedding se. Finally, we
obtain a token type embedding tce. Consequently,
for a single element ci we compute:

ce = CEmbed(ci), xe = XEmbed(cx)

ye = YEmbed(cy), oe = OEmbed(co)

se = Drop(LayerNorm(�(xe + ye + oe)))

tce = TokenTypeEmbed(ci)

(1)

where � is a scaling factor. Finally, we concatenate
the word embeddings we with the clip-art embed-
dings ce, the word positional embeddings pe with
the spatial embeddings se, the token type embed-
dings for the language twe and spatial parts tce, and
apply layer-normalization and dropout:

wc = Concat(we, ce)

ps = Concat(pe, se)

tt = Concat(twe , t
c
e)

e = Drop(LayerNorm(wc+ ps+ tt))

(2)

where e is the final input embedding. We keep the
rest of the model identical to (Devlin et al., 2018),
and re-use the pre-trained BERTBASE modules. Fig-
ure 2 illustrates our model’s backbone. On top,
we append modelling heads that consist of two lin-
ear layers, with a GELU (Hendrycks and Gimpel,
2016) and a layer-normalization between them:

h = Linear(LayerNorm(�(Linear(x)))) (3)

where x is the hidden representation of a single
element. We create a continuous and a discrete
model3 variant where both output a probability for

3Named according to the [x, y] value they predict.

the object orientation o:

oout = softmax(ho) (4)

and minimize a cross-entropy loss Lo during train-
ing. Then, the continuous model generates an [x, y]
pair for the clip-art position within the [0, 500] and
[0, 400] range respectively, by applying sigmoid
on top of two modelling heads hx and hy, subse-
quently multiplied by xmax and ymax:

xout = �(hx) ⇤ xmax

yout = �(hy) ⇤ ymax
(5)

and performs a direct optimization of the similar-
ity measures during training by minimizing a sum
of all individual losses: L = Labs + Lrel + Lo

4

(explained in section 4.1). When regressing a mul-
timodal function, there is the risk of the model
converging to the mean in between modes. To over-
come this, we develop a discrete model that outputs
a probability distribution over the quantized x and
y axis (explained in section 3.3) by applying soft-
max on top of two modelling heads hx and hy:

xout = softmax(hx)

yout = softmax(hy)
(6)

and train the model by minimizing the sum of
the individual per-axis cross-entropy losses Lx,
Ly together with the orientation loss Lo: L =

Lx + Ly + Lo. With the discrete model, we use
the arguments of the maxima over the x and y axis
during inference to get a clip-art scene location.

3.3 Masked Position Modelling (MPM)
Originally, BERT is trained by reconstructing the
ground truth sentence given a corrupted one as in-
put, where 15% of the tokens are replaced with a

4We remove the Gaussian kernel to make the similarity
measures into distance functions that can be minimized.
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[MASK] token 80% of the time, a random token
10% of the time, or unchanged 10% of the time.
Then, BERT outputs a probability distribution for
each token, while the loss is computed over the
masked tokens. To conceptually preserve BERT’s
input-embedding module and explicitly encode a
masked clip-art position, we encode the spatial po-
sition with a discrete set of values. In our use-case,
the ranges are [0, 500] for x, [0, 400] for y and [0, 1]
for o. Due to the data size (⇠8000 scenes for train-
ing with a median of 6 clip-arts per scene), having
500⇥ 400⇥ 2 spatial combinations is unfeasible
to learn. To overcome that, we quantize the values
of x and y in intervals of 20, yielding a range of
[0, 25] unique values for x and [0, 20] for y.

In SR-BERT, we adjust the masking objective
to decode spatial representations, i.e., instead of

masking the clip-art tokens, we mask the spatial en-

coding tokens. Namely, given a set of sentences and
set of clip-arts with their spatial position [x, y, o],
we train the model such that when the scene ele-
ments’ position is corrupted, the model learns to
rely on the relations from the sentences to recon-
struct the original layout. Thus, as per Devlin et al.
(2018) we mask 15% of the scene elements’ spa-
tial positions during training. Then, 80% of the
time the [x, y, o] spatial encoding is replaced with
[[MASK],[MASK],[MASK]] tokens, 10% of
the time with a random [x, y] position and random
o orientation, and 10% of the time we keep them
the same.

During training, we employ data augmentation
techniques (see appendix B), specifically adapted
to fit within the training objective we propose.

3.4 Non-autoregressive decoding of spatial
arrangements

Despite the non-sequential nature of the 2D space,
we hypothesise that decoding spatial arrangements
without following any particular order or in a single-
step manner is undesirable. In contrast with the
left-to-right sequential order in written English, de-
coding a set of spatial relationships does not have
a pre-defined order and one must consider all pair-
wise relative locations of the objects. Consequently,
the model either has to learn the decoding order
itself, or the decoding order has to be injected man-
ually. Here, we adopt non-autoregressive decod-
ing based on mask-predict (Ghazvininejad et al.,
2019b) to convert language spatial relations into
2D spatial arrangements. By using a transformer

architecture with mask-predict, we can easily de-
rive decoding strategies where the model considers
all relations between the objects and learns the de-
coding order. Specifically, we assess five decoding
strategies inspired by Lawrence et al. (2019):

(i) Single-step (SS): The spatial arrangements
for all objects in the scene are generated in a single
step. (ii) Random-order (RO): Following no par-
ticular order, we generate the spatial arrangements
one by one. (iii) Human-order (HO): We inject
domain knowledge in the generation process, and
generate spatial arrangements following an intu-
itive order: objects in the sky, large elements, peo-
ple, animals, clothing, food and toys. (iv) Highest-
confidence (HC) - discrete: We maintain a fixed
beam of 3 hypotheses for the scene elements that
exhibit the highest joint probability for x, y and
o. We repeat this process until all scene elements
are spatially arranged and select the hypothesis
with the highest joint probability. (v) Lowest-
entropy (LE) - discrete: Similarly, we perform
beam search using the lowest entropy of the joint
probability distribution for x, y and o.

4 Evaluation

4.1 Quantitative evaluation
We propose two measures to evaluate success in
decoding 2D spatial arrangements from language.
Both are similarity measures applied on normalized
coordinates, hence the higher the better.

Absolute position similarity (abs. sim.) repre-
sents the average Euclidean distance between the
ground truth and predicted position over all N clip-
arts in the scene, defined as Gaussian function:

Sabs =
1

N

NX

i=1

exp(�
p

(xti � xpi )
2 + (yti � ypi )

2

2�
)

(7)

where [xti, y
t
i ] and [xpi , y

p
i ] represent the ground

truth and predicted position respectively, and � is
set to 0.2 as per Tan et al. (2018). We compute the
similarity for both the original ground truth posi-
tions and the ground truth positions mirrored across
the y axis, and subsequently take the maximum as
the absolute similarity for that scene.

Relative position similarity (rel. sim.) focuses
on the relative positioning of the objects with re-
spect to each other. We compute two separate
square matrices for the ground truth and predicted
positions, M t and Mp respectively, where the Mi,j
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element is the Euclidean distance between the i-th
and j-th object. Then, the similarity is the mean
absolute difference between M t and Mp, defined
as a Gaussian function:

Srel =
1

(N � 1)2

NX

i=1

NX

j=1

exp(�

���M t
i,j �Mp

i,j

���
2�

)

(8)

where � is again fixed to 0.2. Due to ambiguity
(some object groups are vertically symmetrical) we
evaluate the orientation o accuracy only within the
scene completion setup. We further test the statis-
tical significance between the average similarities
of two methods with Welch’s t-test (p < 0.01)
(Welch, 1947) on the per scene similarities.

Baselines - we create two recurrent neural net-
works with attention baselines (Bahdanau et al.,
2014). The first baseline (ATTN) uses an atten-
tion decoder, while the second propagates con-
textual information regarding the spatial positions
(ATTN+RNN) (see appendix A). In both baselines,
the clip-arts are ordered according to HO.

We measure the model’s performance in terms
of the similarity metrics in five different scenarios.

Full test set - we measure the performance of the
discrete and continuous model on the full test set of
1002 semantically unique scenes. Table 1 reports
results for all decoding strategies, when the model
is and is not conditioned on the language (no-lang).
For the no-lang model, we remove the language
and use the concatenated [CLS] and [SEP] token
indices to indicate that the language is excluded.

For all metrics, we see that the models which
use a fine-grained decoding (HC, LE and HO) out-
perform the raw ones (SS, RO). We conclude that
decoding order matters, and an orderless decoding
(RO) is undesirable. Regardless of the decoding
strategy, we observe significant gains when the
model is conditioned on the language. This implies
that our model is not trivially relying on dataset bias
(e.g., mike usually wears a blue cap) when decod-
ing the spatial arrangements (RQ 2). Furthermore,
we observe a significant increase in both abs. sim.
and rel. sim. with SR-BERT with HO decoding
compared to its RNN counterpart – ATTN+RNN,
in both the discrete and continuous model. This in-
dicates the superiority of jointly attending on both
the “future” and the “past” clip-arts, especially no-
table in the discrete model. Moreover, the contin-
uous model outperforms the discrete model and
is less sensitive to the decoding strategy – which

we claim is due to the continuous model directly
optimizing the evaluation metrics.

Scene completion (SC) - we formulate an in-
ference scenario where we decode spatial arrange-
ments for each group (explained in section 2) of
clip-arts separately, conditioned on both the lan-
guage and the remaining clip-arts. This is inter-
preted as a scene completion setting, e.g., what is
the position and orientation of Mike and Jenny in
the 2D space w.r.t. the other clip-arts if: “mike is
holding a football”, “mike wants to play football
with jenny” and “jenny fell off the swing”.

In Table 2 we see the highest abs. sim. and rel.
sim. when we generate the arrangements for the
“clothing” category conditioned on the other groups.
On the contrary the lowest reported abs. sim and
rel. sim are for the “animals” category. Finally, we
see almost random o accuracy for the symmetrical
object categories, with a major improvement for the
object categories where their orientation matters.

Explicit vs. implicit relationships - we
split the test set in 4 different subsets, where
each contains scenes with [0%, 25%], (25%, 50%],
(50%, 75%] and (75%, 100%] ratio of sentences
that consist of explicit relations exclusively.

Figure 3 shows results with the discrete model
with HC decoding and the continuous model using
HO decoding. We observe that both the continuous
and discrete model obtain steadily similar absolute
and relative similarities as the ratio of explicit rela-
tions increases. This shows the robustness of our
method in successfully coping with both explicit
and implicit spatial language (RQ 3).

Figure 3: Reported metrics on test set splits according
to the ratio of explicit relations.

Compositional generalization - to gain insight
on the generalization ability, we split the test set
by considering scenes that contain at least 2 sen-
tences with a subject-relationship-object (S-R-O)
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Discrete Continuous

Method Abs. sim. Rel. sim. Abs. sim. Rel. sim.

SS 0.565 ± 0.002 0.769 ± 0.003 0.589 ± 0.002 0.814 ± 0.003
SS; no-lang 0.499 ± 0.002 0.695 ± 0.003 0.530 ± 0.002 0.779 ± 0.002

RO 0.585 ± 0.003 0.818 ± 0.003 0.603 ± 0.003 0.838 ± 0.003
RO; no-lang 0.523 ± 0.003 0.746 ± 0.003 0.546 ± 0.003 0.792 ± 0.002

HO 0.594 ± 0.003 0.823 ± 0.003 0.611 ± 0.003 0.846 ± 0.003
HO; no-lang 0.539 ± 0.003 0.745 ± 0.003 0.562 ± 0.003 0.794 ± 0.003

HC 0.598 ± 0.003 0.826 ± 0.003 — —
HC; no-lang 0.534 ± 0.003 0.750 ± 0.003 — —

LE 0.592 ± 0.003 0.825 ± 0.003 — —
LE; no-lang 0.536 ± 0.003 0.751 ± 0.003 — —

ATTN 0.565 ± 0.002 0.746 ± 0.002 0.579 ± 0.002 0.812 ± 0.002
ATTN+RNN 0.567 ± 0.002 0.746 ± 0.003 0.581 ± 0.002 0.813 ± 0.002

Table 1: Results of our models and the RNN baselines on the full test set.

Obj. group Abs. sim. Rel. sim. o accuracy

Sky 0.655 ± 0.011 0.782 ± 0.010 48.4 ± 1.54
Large 0.671 ± 0.011 0.781 ± 0.012 57.8 ± 1.60
People 0.796 ± 0.006 0.857 ± 0.005 86.7 ± 0.97

Animals 0.661 ± 0.016 0.783 ± 0.017 70.5 ± 2.02
Clothing 0.853 ± 0.021 0.900 ± 0.021 71.2 ± 2.13

Food 0.772 ± 0.021 0.852 ± 0.023 46.9 ± 1.92
Toys 0.664 ± 0.015 0.786 ± 0.017 51.0 ± 1.80

Table 2: Per-object group results in the scene comple-
tion setup using the discrete model.

combination5 that the model has not encountered
during training. This yields 354 scenes from which
we create 5 subsets:

(i) The raw scenes in their original form, which
contain sentences with (S-R-O) combinations that
the model has encountered, and at least two com-
binations that it has not encountered during train-
ing. (ii) From each of the raw scenes, we discard
sentences consisting of (S-R-O) combinations that
the model has encountered during training, while
preserving the unseen ones. Hence, we are left
with at least 2 sentences per scene, which are out-
of-sample (oo-spl). (iii) In-sample (in-spl) is the
complementary of oo-spl and contains exclusively
sentences consisting of (S-R-O) combinations en-
countered at training time while leaving out the
out-of-sample sentences. (iv) The scenes without
the language relations – no-lang. (v) We train a
new model on a filtered training set where we leave
out all sentences that have (S-R-O) combinations
that appear in the raw scenes.

In Table 3 we observe that despite the effective

5For each sentence there is a S-R-O triplet in the dataset.

Method Abs. sim. Rel. sim.

D; HC; raw 0.599 ± 0.005 0.817 ± 0.005
D; HC; oo-spl 0.575 ± 0.005 0.799 ± 0.005
D; HC; in-spl 0.586 ± 0.005 0.807 ± 0.005

D; HC; no-lang 0.505 ± 0.005 0.724 ± 0.004
D; HC; filtered 0.581 ± 0.005 0.803 ± 0.005

C; HO; raw 0.608 ± 0.005 0.844 ± 0.004
C; HO; oo-spl 0.582 ± 0.005 0.817 ± 0.004
C; HO; in-spl 0.593 ± 0.005 0.828 ± 0.004

C; HO; no-lang 0.563 ± 0.004 0.795 ± 0.004
C; HO; filtered 0.586 ± 0.005 0.813 ± 0.004

Table 3: Results of the discrete (D) and continuous (C)
model on the 5 distinct subsets defined for the compo-
sitional generalization experiments.

similarity between the no-lang and oo-spl setting
(in both the model is exposed to unfamiliar / no
language), the difference in performance in favor
of oo-spl is relatively big – especially with the dis-
crete model. We also observe that the performance
in the oo-spl setting degrades only moderately com-
pared to the raw setting, and the oo-spl differs non-
significantly from the in-spl setting. When compar-
ing the raw and oo-spl, we must take into account
that the model uses only partial scene descriptions
in the oo-spl setting due to the held out sentences,
which explains the moderate drop in performance.
Finally, we observe that the filtered setting fares
remarkably close to the raw setting, even though
the model encounters all relations as out-of-sample.
This observation suggests potentially great value in
real-life scenarios where one is frequently exposed
to unfamiliar spatial relations (RQ 2).

Complete scene generation pipeline - we ex-
tend our method to generate complete scenes, i.e.,
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predicting the clip-arts and their spatial arrange-
ments. We adopt a two-step approach where (1) we
fine-tune BERTBASE as a backbone clip-art predic-
tor, such that, given a language description of the
scene x, the model outputs a vector of probabili-
ties for each clip-art ŷ: ŷ = �(Linear(BERT(x))),
and (2) we use SR-BERT to arrange the predicted
clip-arts w.r.t. the language spatial relations. The
linear layer in the clip-art predictor projects the
text embedding from BERT’s hidden space to 126
(number of unique clip-arts), and � is the sigmoid
non-linearity, thresholded at 0.35 during inference.
We compute the per-object precision (Prec) and re-
call (Rec), classification accuracies for poses (Pose)
and expressions (Expr), and abs. sim. for the ob-
ject positions6. When generating the scene arrange-
ments, we first provide the predicted clip-arts to
SR-BERT and then arrange them on the scene. We
then find the common clip-arts between the predic-
tions and the ground truths and measure abs. sim.,
as per Tan et al. (2018)7. We train a new discrete
SR-BERT model on Tan et al. (2018)’s data splits
and perform inference using HC decoding.

Method Prec Rec Pose Expr Abs. sim.

(Zitnick et al., 2013) 72.2 65.5 40.7 30.0 0.449
(Tan et al., 2018) 76.0 69.8 41.8 37.5 0.409

ClipPredict + SR-BERT 82.7 72.5 40.4 38.0 0.512

Table 4: Per-object precision and recall, pose and ex-
pression classification accuracies, and abs. sim. using
the test split provided by Tan et al. (2018).

In Table 4 we observe that our pipeline outper-
forms the concurrent methods of Tan et al. (2018);
Zitnick et al. (2013) in terms of precision, recall
and expression accuracy, while it falls slightly short
in terms of pose accuracy. Moreover, SR-BERT
outperforms the concurrent methods according to
abs. sim. by a large margin, which measures spatial
reasoning. We want to stress however, that because
of the simplicity of SR-BERT, it can be trivially
plugged in within a more powerful abstract scene
generation from a language pipeline.

4.2 Qualitative evaluation

In Figure 4 we compare the spatial arrangements
between the scene elements with or without the lan-

6The U-obj coord metric of (Tan et al., 2018) is equiva-
lent to our absolute position similarity.

7Contrary to the other experiments, here we measure abs.
sim. only w.r.t. the default ground truth positions and not the
mirrored ones for a pessimistic comparison.

jeQQ\ fell Rf Whe VZiQg.
Pike iV hRldiQg a fRRWball.

Pike ZaQWV WR Sla\ fRRWball ZiWh jeQQ\.
jeQQ\ fell Rff Whe VZiQg.

Pike iV hRldiQg Whe fRRWball.
Whe hRW - aiU ballRRQ iV ÁRaWiQg RYeUhead.

WiWh
OaQgXage

WiWhRXW
OaQgXage

Pike iV afUaid Rf Whe RZl.
Pike aQd jeQQ\ VWaQd iQ Whe VaQd ##bR[.

jeQQ\ likeV Sla\iQg iQ Whe VaQd ##bR[.
Pike iV WU\iQg WR Sla\ ZiWh Whe RZl.

Whe WeQQiV ball iV Qe[W WR Pike.
jeQQ\ iV Sla\iQg ZiWh heU bXckeW.

GURXQd
WUXWh

Figure 4: Ground truth (top), generated scenes (middle-
left, bottom-left) and heat-maps (middle-right, bottom-
right) with and without conditioning on the language.

guage relations. E.g., if we exclude the language,
both the middle-left and the bottom-left are plausi-
ble scenes. However, when the language is present,
“jenny”, the “football” and “mike” take upon cer-
tain positions / orientations to satisfy the imposed
language relations. Figure 4 (right) demonstrates
the scene completion feature of our method. We
see that the most probable location of the “owl”
is in the tree, which is intuitive. However, when
conditioning on the sentences “mike is afraid of the
owl” and “mike is trying to play with the owl”, the
distribution shifts to the “owl” being in the sandbox.
This indicates that the model gains understanding
of how implicit spatial relationships transfer in the
2D spatial domain (RQ 3).

We also qualitatively evaluate the complete
scene generation pipeline on the data split provided
by Tan et al. (2018). In Figure 5 we observe scenes
generated in a two step process by (1) predicting the
clip-arts, and (2) arranging them using SR-BERT.
In both scenarios we observe predicted clip-arts
which are relatively inline with scene descriptions.
Furthermore, despite providing predictions which
do not perfectly resemble the ground truths, the
scene arrangements generated with SR-BERT ob-
tain consistent quality w.r.t. the cases when the
ground truth clip-arts are provided as input.

4.3 User study
We conduct a user study to evaluate to what extent
the generated spatial arrangements align with hu-



4556

iW ZaV a beaXWifXl da\ iQ Whe SaUk aV mike aQd jeQQ\
kicked Whe VRcceU ball aURXQd.

be caUefXl mike! jeQQ\ cUied. \RX almRVW hiW Whe Si]]a!
a Si]]a iV RQ Whe Wable.

mike iV kickiQg a ball RYeU Whe Wable.
jeQQ\ iV VcaUed.

mike haV a hRW-dRg.
mike iV VWanding b\ a WenW.

Whe ÀUe Slace iV neaU Whe WenW.
mike iV hRlding a hRW dRg.

WheUe iV a ÀUe made b\ Whe WenW.
mike iV ZeaUing a cRlRUfXl caS.

GroXnd
WrXWh

GeneraWed

Figure 5: Ground truth (top) and generated scenes (bot-
tom) by (1) predicting the clip-arts and (2) using SR-
BERT to arrange them on the 2D canvas.

man judgement (RQ 1). We randomly select 100
samples (⇠10% of the full test set) and generate the
spatial arrangements using the continuous model
with RO and HO and the discrete model with RO
and HC decoding. The participants are presented
with a scene together with the corresponding sen-
tences that imply spatial relatedness between the
clip-arts8, and are asked to select the sentences
which are spatially true for the scene. We report
the macro-average per scene results for each model
plus the ground truth in Figure 6.

Figure 6: Per-scene macro-average of the accepted sen-
tences from the participants in the user study.

Irrespective of the model and decoding strategy,
all models perform well compared to the ground
truth, and users found that at least 64% of the sen-
tences are spatially true for the generated scenes
while the ground truth scenes are at the 88% mark,
with a fair agreement (k=0.29) between raters as
per Fleiss’ Kappa score (Fleiss and Cohen, 1973).

8To avoid an overly optimistic estimate, we remove sen-
tences which are always correct, i.e., sentences that do not
imply any spatial connection between the clip-arts e.g., “mike
is smiling”.

Despite the non-significant difference between the
RO and HO decoding with the continuous model
and RO and HC with the discrete model in Table
1, the continuous model with HO decoding and
discrete model with HC decoding outperform the
continuous and discrete model with RO decoding
respectively by a large margin. We see a less am-
plified difference of 4% between the HO and RO
decoding with the continuous model compared to
the discrete model which reports 10% difference
between the HC and RO decoding. This is due to
the continuous model being less sensitive to the de-
coding order. This strengthens our hypothesis that
the decoding order is important, which comes auto-
matically with the discrete model and HC decoding,
while it needs to be injected manually in the con-
tinuous model with HO decoding. Consequently,
the best performance is achieved with the discrete
model with HC decoding – above 74.6% accepted
spatial relations and the continuous model with HO
decoding – 71.3% accepted spatial relations.

5 Related work

Spatial understanding in vision is mainly limited
to scenes that have strong priors on the relative ob-
ject’s locations, e.g., indoor home environments.
Choi et al. (2013)’s model reasons about object
interactions in 3D and performs object detection,
layout estimation and scene classification, limited
to images of indoor home environments. Xu et al.
(2013)’s method maps indoor scene sketches in 3D
space. Similar to our approach, they do not limit
the number of objects. Kermani et al. (2016) syn-
thesize 3D indoor home environments from RGB-
D. Fisher et al. (2012) also reason about spatial
arrangements using 3D indoor home environments
by building a probabilistic model and then sample
diverse 3D scenes. The work of Jiang et al. (2012)
explores human-object relationships in 3D indoor
scenes. Given a scene, Zhao et al. (2016) synthe-
size new scenes that preserve the nature of the orig-
inal spatial relations by replacing the objects. On
the other hand, our work is not limited in terms of
the relationships type, i.e., explores human-object,
object-object and human-human relationships in
clip-arts scenes.

Spatial understanding in language often suf-
fers from processing structured language or again,
using scenes that have strong priors on the relative
object’s locations. Chang et al. (2014) infer spatial
relationships not explicitly stated in natural lan-
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guage, and generate 3D indoor home environments.
Contrary to our work, the 3D indoor home envi-
ronments are limited in terms of implicit spatial
language (e.g., wearing, holding, etc.). Chang et al.
(2017) decode language spatial relations to 3D in-
door home environment layouts, by firstly selecting
the objects and then arranging them. We, however,
loosen the object selection part, and provide the
objects and the language spatial relations as input.
In contrast with our work, they also consider only
object-object explicit relations. Collell et al. (2018)
introduced the notion of implicit spatial relations,
expanding on prior research limited to explicit rela-
tions, yet they restrict to two objects and a single
relationship in a structured format. Although not
related to spatial understanding of scenes, Dan et al.
(2020b) create a spatial representation language to
describe spatial configurations, while Kordjamshidi
et al. (2010, 2011) tackle spatial role labeling with
a relational learning framework.

Multimodal spatial understanding mostly
consists of works that employ a spatial reasoning
module in their pipeline, yet proper spatial under-
standing is not their main goal but rather a sec-
ondary sub-problem, hence less emphasis is placed
on spatial correctness and evaluation. E.g., Johnson
et al. (2018); Herzig et al. (2019) generate images
from text descriptions with an intermediate scene
layout generation step. Moreover, Lee et al. (2019);
Li et al. (2019a,c); Hong et al. (2018) explicitly
focus on generating high quality multi-object and
multi-relationship 2D scene layouts from natural
language, without limiting the type or number of
relationships. However, their layout module does
not aim for a precise depiction of the scene arrange-
ments, but rather provides a rough outline for the
subsequently generated image. The closest works
to ours are Tan et al. (2018); Zitnick et al. (2013)
who use the same dataset of Zitnick and Parikh
(2013) and generate realistically-looking scenes,
given a language description of the scene’s spatial
arrangements. Despite showcasing that our method
is superior to theirs, it can also complete partial
scenes and is more extensively evaluated on the
Abstract Scenes dataset. Dan et al. (2020a) predict
the relationship word given the image, a bounding
box, and the subject and object words by using
a spatial model to filter the predictions of a fine-
tuned BERT model. Their model does not decode
language to 2D spatial arrangements while reason-
ing about their position. Finally, Ghanimifard and

Dobnik (2019) generate spatial image descriptions
to investigate what kind of spatial bottom-up knowl-
edge, benefits the top-down methods the most.

6 Conclusion

In this paper, we address the problem of spatial
understanding by predicting spatial arrangements
of scenes given their natural language descriptions.
This work advances towards general spatial un-
derstanding of visual scenes and language by ad-
dressing the limitations of prior work: (i) mod-
elling only pairwise relationships; (ii) using scene
environments with strong priors on (relative) ob-
ject placements (e.g., indoor home environments);
(iii) use of structured language (instead of natural
language). We proposed a novel architecture – SR-
BERT, for which we empirically demonstrate that
it is capable of reasoning about an arbitrary num-
ber of objects and the relationships between them
in the 2D space. SR-BERT’s spatial reasoning is
irrespective of the spatial language type employed
(explicit or implicit) and effectively generalizes to
out-of-sample instances – a frequently occurring
real-world situation where one encounters novel
(spatial) scene descriptions.

The first limitation of our approach is that it is
restricted to 2D spatial reasoning despite computer
graphics data being prevalently 3D. However, we
kept a simple setting for our first study of spatial
reasoning while our approach can trivially be ex-
tended to work with 3D data. Second, we assume a
fixed number of 126 clip-art categories and canvas
of 500x400, which is a rather idealized setting con-
sidering that actual 2D/3D modelling is performed
with: (1) larger number of categories, and (2) big-
ger canvases. Finally, scene layout generation is an
ill-posed problem, i.e., there are multiple valid lay-
outs conditioned on a scene description. Therefore,
an ideal approach should not generate a determin-
istic layout, but rather address the uncertainty in
both the model’s output and the evaluation.
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