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Abstract
E-commerce sites include advertising slogans along with information regarding items. Slogans
can attract viewers’ attention to increase sales or visits by emphasizing advantages of items. The
aim of this study is to generate a slogan from a description of an item. To generate a slogan,
we apply an encoder–decoder model which has shown effectiveness in many kinds of natural
language generation tasks, such as abstractive summarization. However, slogan generation task
has three characteristics that distinguish it from other natural language generation tasks: distinc-
tiveness, topic emphasis, and style difference. To handle these three characteristics, we propose a
compressed representation–based reconstruction model with refer–attention and conversion lay-
ers. The results of experiments with automatic and human evaluations indicate that our method
achieves higher performance than conventional methods.

1 Introduction

Advertisements, e-commerce sites, and flyers include advertising slogans along with item information,
such as descriptions, prices, features, and pictures. Although the purpose of item information is to tell
accurate and detailed information, the aim of slogans is to attract viewers’ attention to increase sales or
visits. Therefore, a slogan often emphasizes a part of advantages that an item holds, and it often contains
peculiar words or expression to draw viewers’ attention.

Creating slogans is cumbersome and costly. We propose a method to generate a slogan from a de-
scription of a target item to support the writers of slogans. Figure 1 shows an example of a description
and a slogan for a job matching. A slogan is similar to an abstractive summary to some extent; a target
sentence is shorter than a description and includes words not presented in the description. However, to
attract viewers, slogans should have three unique characteristics. Distinctiveness: A slogan should be
distinctive towards the target item. When a slogan is generic and suitable also for any other items, it
does not increase the viewer’s motivation to select the target item. Therefore, a slogan should describe
the detail of a target-item. For example, “Don’t go with the flow, but make a new flow by developing
business social media” is better than “Why don’t you apply to our company? We need you right now!”
because the former provides more information regarding the job. Topic Emphasis: A slogan should
examine a specific topic in the description because it is difficult to contain all aspects within a short tip.
In fact, the example slogan in Figure 1 does not include phrases such as “business social media,” which is
one of the main topics in the description. Style Difference: A slogan should be written in an impressive
writing style to attract viewers’ interests. Therefore, a slogan differs from a description in terms of style
and vocabulary. For instance, the first sentence of the example slogan is not just an explanation but an
interrogative sentence.

To generate a slogan, we apply an encoder–decoder model (Bahdanau et al., 2014) since encoder–
decoder models have shown effectiveness in abstractive summarization, and slogan generation shares
some characteristics with abstractive summarization. However, slogan generation has three characteris-
tics that differentiate it from abstractive summarization: distinctiveness, topic emphasis, and style differ-
ence. In particular, summarization models lose distinctiveness because their outputs tend to be generic
(Gimpel et al., 2013).
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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【Slogan】 How many times will you turn? We want marketers who will turn a PDCA-cycle at very high rate.

【Description】
We want to recruit marketing staffs for Wantedly. There are various products associated with the largest 
business social media, “Wantedly”. Till date, we have registered with approximately 20,000 companies. 
We have developed a service that leads to “excitement at work” with the vision “We will be the infrastructure of 
all businesspeople in 2020!”. To achieve that vision, we must operate a larger business at a higher speed than it 
currently is.  We have many tasks for developing services. Will you join us to enhance the workplace for the 
future?  Through work, you will turn a PDCA-cycle in a short period and maximize its effects! You cannot 
proceed if you don’t try anything. Try “Code Wins Arguments,” and scale new heights with Wantedly!

Business contents: KPI  design and management. / Making hypotheses and plans based on analysis data. / 
Planning and implementation of promotion. / Advertisement operation. / Writing of recruitment. / Nurturing 
and lead generation by MA tools. / Improving services based on hearing to customers.

Graduates, people with programming experienced, and marketers who like new things are welcome. I would 
be glad to speak with you. Why not try new challenges with your colleagues and make a serious attempt at 
accomplishing something?

Figure 1: Example of a description and a slogan for a job-matching. Japanese–English translation.

To enhance distinctiveness, we define a reconstruction loss by introducing a reconstruction model that
estimates the corresponding description from a slogan. The loss encourages the generation model to
generate a distinctive slogan to help the estimation of the description. Here, slogan generation is a novel
task in which information of a slogan is not equivalent to that of the description because of topic emphasis
and style difference. Therefore, our reconstruction model generates a compressed representation of a
description instead of the entire description. To ensure topic emphasis, we include a refer-attention layer
that focuses on the partial description emphasized by a generated slogan into our model. To address
style difference, we introduce a conversion layer that absorbs the style and vocabulary gaps between
descriptions and slogans. We refer to this reconstruction model as a compressed representation–based
reconstruction model (CRR).

The main contributions of our study can be summarized as follows.
• Propose a method that includes a compressed representation–based reconstruction model to gener-

ate distinctive slogans.

• Introduce the refer–attention and conversion layers for CRR to address topic emphasis and style
difference, respectively.

• Evaluate the method using automatic and human evaluations.

• Compare the performance of non-neural and neural methods.

2 Related Work

Slogan Generation: Slogan generation has been addressed through non–neural approaches. One ap-
proach is to extract and revise a sentence from a corpus (Indrakanti et al., 2018; Iwama and Kano, 2018).
Another approach is to construct skeletons of slogans and fill arbitrary words into the skeletons (Özbal
et al., 2013; Alnajjar and Toivonen, 2020). In one study, suggestions for rephrasing written slogans were
provided to assist slogan writers (Clark et al., 2018). Some approaches use a description of a target item
(Z̆nidars̆ic̆ et al., 2015; Chandler and Neupane, 2018), similarly to our method. These approaches con-
sist from three steps: selecting slogans from a corpus as candidates, rephrasing candidate slogans, and
sorting these slogans. However, the generated slogans are not creative because these methods essentially
rephrase existing slogans. In contrast, our method is a neural–based generation model that generates
slogans that are different from those in a corpus. The comparison of creativity between our method and
a non-neural method is described in Section 5.3, in addition to the generation performance.
Abstractive Summarization: Summarization has been tackled by extractive and rule-based approaches
(Vanderwende et al., 2007; Nenkova and McKeown, 2011; Nallapati et al., 2016a). However, neural
based abstractive approaches have become very common and achieved high performance because of
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Figure 2: Outline of our method.

emerging large-scale datasets (Hermann et al., 2015) and powerful methods (Rush et al., 2015; Nallapati
et al., 2016b; See et al., 2017) which are mainly based on an encoder–decoder model (Bahdanau et al.,
2014). Because abstractive summarization is similar to slogan generation, neural abstractive methods
will likely to improve the performance of slogan generation. On the other hand, these methods do not
guarantee distinctiveness, topic emphasis, and style difference of generated texts which are required in
slogans to improve sales or visits.
Reconstruction Model: Methods that include a reconstruction process have been proposed for text gen-
eration tasks. These methods combine a reconstruction model that generates a source sentence from
information regarding a generated sentence, such as decoder’s hidden states. Reconstruction models are
used to improve the performance for low-resource data (Cheng et al., 2016) or application to monolin-
gual data (Edunov et al., 2018) or multi-modal data (Delbrouck and Dupont, 2019). Some studies have
introduced gumbel softmax (Niu et al., 2019) or reinforcement learning (Wang and Lee, 2018) to sample
a generated sentence similar to our method. In addition, there is an approach to reconstruct the decoder’s
hidden states in video captioning (Wang et al., 2018). These methods reconstruct entire input sequences.
However, this approach is inappropriate for slogan generation because of topic emphasis and style dif-
ferences, thereby making a model difficult to reconstruct the entire description from a generated slogan.
Our reconstruction model only generates a compressed representation, not a sentence or sequence, and
the model includes mechanisms to ensure certain slogan characteristics.

3 Distinctive Slogan Generation with Reconstruction

A slogan should reflect a distinctive and important part of an item description. The more distinctive
a slogan is, the easier the reconstruction of the corresponding description from the slogan is. This is
because such slogans facilitate the estimation of the description. For example, the estimation of the
corresponding description from the slogan “We need new staffs!” is difficult because it can fit to any
other job. To enhance the distinctiveness of generated slogans, we define and minimize a reconstruction
loss as an indicator of distinctiveness by introducing a compressed representation–based reconstruction
model. To encourage topic emphasis and style difference, refer–attention and conversion layers are used,
respectively. Figure 2 shows the outline of our method.

3.1 Generation Model
As a base generation model, any type of text generation models with an encoder–decoder model
(Sutskever et al., 2014) can be applied. In our experiments, we employed two major approaches; an
attentional encoder–decoder model (Bahdanau et al., 2014) and that with a copying mechanism (See et
al., 2017). As training data, the base model requires pairs of a description and a correct slogan, and it is
trained to generate the correct slogan from an input description.
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Attentional Encoder-Decoder Model: Firstly, it divides a description into words. Secondly, it gets the
embeddings of the description words. Here, we randomly initialize the embeddings and update these
during training, however the embeddings can be pretrained. Thirdly, the embeddings are fed one-by-one
into an encoder to calculate the context vector of the description. The encoder consists of a Recurrent
Neural Network based model; specifically, a Gated Recurrent Unit (GRU) (Cho et al., 2014) is used.

Then, a decoder, which also consists of a Recurrent Neural Network based model, generates words
from the context vector. It generates a word one-by-one with considering the previously generated word
and the hidden representation of the decoder. The output probability of t-th word in a slogan, P (ŵt), is
calculable by equation 1.

P (ŵt) = softmax(WG[h
G
t , Ct] + bG) (1)

hGt = gru(E(ŵt−1), h
G
t−1) (2)

hG0 = tanh(W0ctxI + b0) (3)

Ct =
I∑

i=1

ati · ctxi (4)

ati = softmax(v · tanh(Watt1ctxi +Watt2h
G
t + batt)) (5)

where W∗, b∗, and v are trainable parameters, [·, ·] signifies the concatenation operation, ŵt represents
the t-th word of the predicted slogan, ctxi denotes the context vector of the i-th word of the description,
I is the length of the description, and E(·) signifies the embedding layer. In addition, softmax, tanh,
and gru is a softmax, tangent hyperbolic, GRU function, respectively. The GRU function calculates the
hidden states hG∗ from the previous hidden state of GRU and the previous word. During training, it uses
the correct slogan word for ŵt−1 in equation 2. During inference, it uses beam search to find the best
sentence.
Copying Mechanism: The decoder of an attentional encoder-decoder model is able to only generate
words that exist in a predefined word vocabulary. To generate out-of-vocabulary words, this mechanism
copies a word in an input description. Specifically, the probability of copying the words in a description
follows the attention distribution in equation 5. That is, the word output probability is calculated from
not only equation 1 but also from the attention distribution in equation 5. In addition, to balance these
probabilities, it applies a parameter pgen. Equations 6 and 7 show the calculation of the output probability
of the t-th word in a slogan, Pcopy(ŵt).

Pcopy(ŵt = w) = ptgenP (ŵt = w) + (1− ptgen)
∑

i:xi=w

ati (6)

ptgen = σ(Wpt1ctx∗ +Wpt2ht +Wpt3E(ŵt−1) + bpt) (7)

where σ represents the sigmoid function, and xi denotes the i-th word of a description.

3.2 Reconstruction Model with Refer-Attention and Conversion Layer
The reconstruction model is used to estimate the description from a generated slogan. To handle informa-
tion inequivalence between descriptions and slogans, the model compresses a description and a generated
slogan into representations, respectively. The reconstruction loss is calculated as the difference between
the representation of a generated slogan (Dslogan) and that of a description (Ddesc).
Generated Slogan Representation (Dslogan): The representation of a generated slogan can be obtained
with word embeddings, but the standard generation process, such as beam search, is not differentiable.
Therefore, we apply a gumbel–softmax layer (Jang et al., 2017) for which the input is the output from
the generation model decoder (e.g. the output from equation 1). Equation 8 represents the process of
sampling a slogan.

sst = gumbel(dt) (8)

where sst represents the t-th word of a sampled slogan, dt signifies the decoder output of the t-th word,
and gumbel denotes the gumbel–softmax layer.
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Then, the generated slogan representation is calculated from a weighted average of the word embed-
dings of the generated slogan which is sampled in equation 8. Here, slogans often contain words aiming
at attracting notice and having no specific meaning, and these words are unnecessary for a reconstruction.
Therefore, the words in slogans are weighted through the self–attention layer αself

t inspired by the pre-
vious work (Vaswani et al., 2017) to ignore unnecessary words. The weighted representation Repslogan
is calculated by equation 9.

Repslogan =
T∑
t=1

αself
t E(sst) (9)

αself
t =

exp(atttbase)∑T
j=1 exp(att

j
base)

(10)

atttbase =Wa1(tanh(Wa2{E(sst) + ba2}) + ba1 (11)

where T signifies the length of a generated slogan.
There is style difference between slogans and descriptions, such as word usage or writing style. To

learn and adjust style difference, a conversion layer is applied. Equation 12 shows the representation of
a generated slogan with this conversion layer.

Dslogan =Wc(Repslogan) + bc (12)

Description Representation (Ddesc): The representation of a description is defined by a weighted aver-
age of the word embeddings of the words in a description. Here, a slogan pays attention to a specific part
of the description because of topic emphasis. Therefore, we introduce the refer–attention layer αrefer

i to
examine specific description words that a generated slogan emphasizes. The description representation
Ddesc is calculable by equation 13.

Ddesc =
I∑

i=1

αrefer
i × E(xi) (13)

Since the refer–attention layer should be able to find parts which a generated slogan focused on, αrefer
i

should be calculated by considering both the slogan representationDsource and a word in the description.
Equation 14 presents the calculation of the refer attention for the i-th word of a description.

αrefer
i =

exp(vrui)∑I
j=1 exp(vruj)

(14)

ui = tanh(Wr1Dslogan +Wr2E(xi) + br) (15)

where vr signifies the trainable parameter.

3.3 Objective Function
To optimize the generation and reconstruction models, we define generation and reconstruction losses,
respectively. When training the both models, we optimize the total loss that is combined loss of the
generation and reconstruction losses. When combining, it multiplies λ by the reconstruction loss to
balances these losses. Equation 16 shows the total loss L.

L = L1 + λ× L2 (16)

Generation Loss: The generation loss is defined as the cross-entropy loss between generated and correct
slogans. Equation 17 shows the generation loss L1.

L1 = −
K∑
k=1

log ĉk (17)
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Train Dev. Test
# pairs of a description

and a slogan
58,461 6,290 7,573

avg. slogan length 15.59 15.38 15.57
avg. description length 347.14 314.75 362.67

Table 1: Data specifications

Dataset uni-gram tri-gram
Abstractive

Summary
68.4% 17.3%

Slogan 63.0% 8.7%

Table 2: The average rate of a target sen-
tence uni- and tri-grams that exist in the cor-
responding source sentence

where K signifies the length of a correct slogan and ĉk represents the generation probability of the k-th
word of the correct slogan.
Reconstruction Loss: The reconstruction loss should become lower when Ddesc and Dslogan are sim-
ilar. In our experiment, the reconstruction loss is defined by using the cosine similarity between the
representations of generated and correct slogans. Equation 18 shows the reconstruction loss L2.

L2 = 1− cos(Ddesc, Dslogan) (18)

where cos(Ddesc, Dslogan) represents the cosine similarity between Ddesc and Dslogan.

4 Experimental Settings

4.1 Dataset
We used a dataset collected from Wantedly1, a Japanese job matching website. The data includes many
pairs of slogans and descriptions, which is a requirement of this study. The descriptions include job
details and requirements.

Each job has the corresponding company, and each company has 10.2 jobs on average. Slogans of the
same company tend to become similar to each other. Therefore, data were split into three sets with the
ratio of 8 : 1: 1, provided that the data of the same company belong to the same set. Table 1 presents the
data specifications.

We compared this slogan dataset with a Japanese newspaper corpus of abstractive summary 2. Table
2 represents the rate of a target sentence (e.g. slogan) uni-gram and tri-gram that appear in the source
sentence (e.g. description). By comparing abstractive summaries and slogans, slogans contain more
words that do not appear in the source sentence. Furthermore, tri-grams of slogans are more unseen in the
source sentence than that of summaries. These results indicate that the writing style of slogans is different
from that of descriptions, thus making slogan generation more difficult than abstractive summarization.

4.2 Comparison Methods
Non-neural Method: As a non–neural method, we developed Case–based slogan production (Z̆nidars̆ic̆
et al., 2015) (Case–Base). It retrieves a relevant case from training data and rewrites some words by
considering part of speech tags.
Neural Baseline Methods: As neural baselines, we prepared an attentional encoder–decoder (EncDec)
model and that with a copying mechanism (Copy).
Conventional Method of Reconstruction: To compare our method with the method of reconstructing
an entire sentence, we developed a method in which the reconstruction model generates a full description
from a slogan by introducing an EncDec model (Niu et al., 2019) (EncDec+RecText).
Proposed Methods: We prepared our methods with the generation model of EncDec (EncDec+CRR)
and Copy (Copy+CRR).
Other Configurations of Proposed Method: To investigate the effect of the attention layer in CRR,
we replaced the refer–attention layer with an average pooling layer (EncDec+CRR-woAtt). To examine
the effect of the conversion layer, we developed a CRR without the conversion layer (EncDec+CRR-
woConv).

1https://www.wantedly.com
2https://mainichi.jp/contents/edu/03.html
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ROUGE-L
Case-Base (Z̆nidars̆ic̆ et al., 2015) 13.41
EncDec (Bahdanau et al., 2014) 16.77
EncDec+RecText (Niu et al., 2019) 17.14
EncDec+CRR-woAtt 17.61
EncDec+CRR-woConv 17.89
EncDec+CRR 18.10
Copy (See et al., 2017) 18.50
Copy+CRR 19.38

Table 3: Automatic evaluation results. Bold in-
dicates the best score for each baseline.

Distinc. Adeq. Flu.
Copy 47.5 49.8 50.0
Copy+CRR 52.5 50.2 50.0

Table 4: Human evaluation results. Bold indi-
cates the best score for each measure.

4.3 Configurations

Data Preprocess: We used NEologd (Sato et al., 2017) for word segmentation. We removed non-
frequent words which was over 50,000 words in frequent order.
Hyperparameters: We run five experiments for each parameter and selected λ and p which achieved the
best ROUGE-L performance for the development data. λ was selected from {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}.
The value of λ was set to 4.0 with the performance of EncDec+CRR. The value of p was set to 0.6 from
{0.1, 0.2, 0.3, · · · , 0.8, 0.9, 1.0}. The other parameters were decided by the performance of EncDec. The
dimensions of embeddings and GRU were 200. In addition, Adam optimizer with the default parameter
of pytorch was used for optimization, and the beam size of inference was 5.

4.4 Evaluation Metrics

Automatic Evaluation: We run 10 experiments and used the average of ROUGE-L (Lin, 2004) which is
a popular metric of language generation tasks. ROUGE-L is the longest common sequence-based statics.
We calculated ROUGE score using the public python script of rouge 3 (version 0.3.0).
Human Evaluation: We conducted a pairwise comparison of Copy and Copy+CRR via crowdsourcing.
Both methods generated slogans for 250 randomly sampled descriptions from the test data. Each worker
judges the generated slogans in terms of distinctiveness (Distinc.), adequacy (Adeq.), and fluency (Flu.)
by looking at a description of a target job and slogans generated by Copy and Copy+CRR. We took the
majority vote of evaluations of 10 workers. Distinctiveness is a measure of how specialized a slogan is
to the corresponding description. Adequacy is that of how faithful a slogan is to the description. Fluency
refers to how natural a slogan is.

5 Results and Discussion

5.1 Automatic Evaluation Result

Table 3 presents the automatic evaluation results. Note that slogans are creative, therefore the ROUGE-L
performance itself is relatively lower than other tasks.
Non-neural method vs Neural methods: The results indicate that all of the neural methods outperform
Case-Base which is the non–neural conventional method. Moreover, the performance gap between non-
neural and neural methods was quite large.
Baseline method vs Proposed method: When comparing EncDec with EncDec+CRR and Copy with
Copy+CRR, the methods with CRR outperformed its baseline method. This result indicates that our
reconstruction model improves the performance of slogan generation.
RecText vs CRR: EncDec+RecText also achieved higher performance than EncDec; however, its per-
formance was worse than that of EncDec+CRR. This result suggests that reconstructing the entire de-
scription is inappropriate for slogan generation. Here, we observed that the descriptions reconstructed

3https://github.com/pltrdy/rouge
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Methods Slogan

Correct
How many times will you turn?
We want a marketer who will turn a PDCA-cycle at very high rate.

Copy We want a person who will be in charge of marketing of the future!
Copy+CRR We want a marketer who will make a new service at the speed of light!

Table 5: Example outputs. The description is presented in Figure 1.

Methods Creativity
Case-Base 59.67
Copy+CRR 69.81

Table 6: Creativity comparison between non-
neural and neural methods

Methods Distinctiveness
Copy 75.34
Copy+CRR 71.27

Table 7: Distinctiveness comparison between
baseline and our methods

by RecText were quite poor. We have concluded that the reconstruction loss in RecText tends to focus
on generating a fluent description than enhancing the distinctiveness of a slogan.
Effect of Each Component of CRR: Both the refer–attention and conversion layers also had positive
effects when comparing CRR, CRR-woAtt, and CRR-woConv. In particular, the effect of the refer–
attention layer was greater than that of the conversion layer. One reason for this may be that style
difference is absorbed by not only the conversion layer but also the self–attention layer.

5.2 Human Evaluation Result
Table 4 presents the results of the human evaluation. Our method performed better in terms of dis-
tinctiveness; this illustrates that CRR is effective in reflecting distinctive information of a description.
Adequacy of Copy+CRR was slight better than that of Copy; it represents that our method can capture
correct information of the target job even though generic slogans (i.e. less distinctiveness) have less risk
of containing wrong information. In terms of Fluency, the two methods were equal. It indicates that
CRR does not adversely affect the language modeling of the generation model.

5.3 Discussion
Example Outputs: Table 5 presents the correct slogan and outputs from Copy and Copy+CRR of which
descriptions are presented in Figure 1. The output from Copy includes “marketing” as a word related
to the description. The output from Copy+CRR includes “speed of light” in addition to “marketer”; it
indicates that our method can describe more distinctive information of a description. Moreover, “speed
of light” is a metaphor and does not naturally appear in a job description. Such expression in slogans
might draw attention of readers. In terms of drawing attention, the generated slogan of Copy+CRR seems
better than the expression “at very high rate” in the correct slogan. This might be because the generation
model prefers extreme words or phrases to make it easier to distinguish the target job from another job.
However, it is still difficult to generate the first sentence of the correct slogan.
Creativity of Neural Method: To confirm that neural methods can generate more creative slogans than
non-neural methods, we measured creativity of the slogans generated by Case-Base and Copy+CRR.
Here, we define creativity as the similarity of the generated slogans and the training data. We measured
ROUGE-L between a generated slogan and the slogan that is most similar to the generated slogan in the
training data. Table 6 represents the average score of Case-Base and Copy+CRR. The result indicates
that our neural method is more creative than the conventional non–neural method.
Distinctiveness of Outputs: To verify that our method can generate more distinctive slogans than a
conventional method, we calculated distinctiveness of the generated slogans. As an alternative measure
of distinctiveness, we assessed the similarity of the slogans generated for the target job and another job.
This is because the generated slogans become dissimilar when each slogan is distinctive towards the
target job, given that each job is different each other. We calculated the averaged ROUGE-L between
each generated slogan and the most similar generated slogan in the test data. Table 7 illustrates the score
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of Copy and Copy+CRR. The result suggests that the outputs from Copy+CRR are more dissimilar from
each other than the outputs from Copy. Therefore, CRR induces distinctiveness in the generated slogans.
Effect of Reconstruction Model: By updating the reconstruction model, the reconstruction loss could be
reduced. To check whether the generation model changes output tips to reduce the reconstruction loss,
we evaluated the reconstruction loss when the loss is backpropagate to only the reconstruction model
(OnlyR) and to the both reconstruction and generation models (Both). That is, OnlyR was trained to
estimate the description from the generated slogan which is an intact output from the generation model.
The reconstruction loss for Both was 0.006, however that for OnlyR was 0.112. This result indicates
that the reconstruction loss makes the generation model generate slogans which can be a clue to the
estimation of the description.

To authorize the assumption that the reconstruction is easy when generated slogans are distinctive,
we compared distinctiveness of generated slogans and the ease of the reconstruction of the description
from a slogan. As a measure of distinctiveness, workers in human evaluation evaluated 250 slogans
generated by Copy+CRR in terms of distinctiveness on a scale from 1 to 5. As a measure of the ease of
the reconstruction, we used cos(Ddesc, Dslogan) in the reconstruction loss when generating the slogan.
Figure 3 presents the relationship between the averaged distinctiveness scores and the cosine similarities.
This result suggests that the generated slogan becomes distinctive as it can estimate the description of the
target job accurately. That is, it supports our assumption that the difficulty of reconstruction is related to
the distinctiveness of generated slogans.
Effect of Hyperparameter λ: To analyze the effect of λ, we examined the relationship between the
performance and λ. Figure 4 shows the performance curve of different λ. The figure shows that the
best λ is 4.0. However, the variation in the performance for λ is relatively small. It indicates that the
parameter λ is not sensitive, and our method does not hurt the performance if choosing wrong λ.

Note that the best λ is over 1.0, therefore the method seems to emphasize L2 in equation 16. However,
the value of the reconstruction loss is very small, and the method mainly focuses on the generation loss
while referring to the reconstruction loss.

6 Conclusion

The aim of this study is to generate a slogan from the description of a target item. We firstly apply an en-
coder–decoder model to the slogan generation task. Then, we focus on the three characteristics of slogan
generation: distinctiveness, topic emphasis, style difference. To enhance the distinctiveness of generated
slogans, we define and minimize a reconstruction loss as an indicator of distinctiveness by introducing
a compressed representation–based reconstruction model. To encourage topic emphasis and style dif-
ference, refer–attention and conversion layers are used, respectively. Automatic and human evaluation
demonstrated that our method is superior to the conventional methods. In addition, we observed that
neural methods are superior to a non-neural method in terms of ROUGE-L performance and creativity.
In future work, we are planning to make a generation model which can directly enhance sales or visits by
optimizing more straightforward e-commerce signals. Moreover, we will like to conduct an experiment
with another dataset to ensure the generalizability of our method.
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