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IMPEDANCE MATRIX — AN UNIFIED APPROACH
TO LONGITUDINAL COUPLED-BUNCH FEEDBACKS
IN A SYNCHROTRON

S. lvanoy, Institute for High Energy Physics, Protvino, Moscow Region, 142284, Russia

Abstract

Characteristic Eq. of coupled-bunch motion of beam govern
by a feedback (FB) is given to find FB's stabilizing effec
against coherent instabilities or, say, injection error dampit
rates. Quite a general FB's schematics is involved: (i) it h
two paths, the in-phase and quadrature (or amplitude and ph
in a small-signal approach), with unequal gains; (i) may emplc
distinct RF-bands to pick-up beam data and feed correction bz
to the beam. To account for cross-talk between various field &
beam current harmonics inflicted by frequency down- and u
mixing, an impedance matrix (with, at most, three non-trivig
elements per row) is introduced as a natural concept to gain
sight into "FB & beam' dynamics. The important class of FE

to counteract heavy beam loadingaafcelerating cavities is in-
cluded into analysis as a particular case.

|. INTRODUCTION

Letdy = © — wyt be azimuth in a co-rotating frame, wher
© is azimuth around the ring in the laboratory frame,is the
angular velocity of a reference partictas time. The beam cur-
rent J(¥,¢) and longitudinal electric field&'(?,t) are decom-

posed intoy ", J, Ek(Q)eiW — 12 \ith being the frequency

of Fourier transform w.r.t. the co-rotating frame. In the |ab0r%

tory frame(2 is seen asy = kwqg + .
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decomposition intd™, G\ek® providesG\®, the complex

at = kwowith |GL”| < 1 andarg G\*) be-

ing proportional ta®(%), the object's coordinate along the ring.
Quite a general coupled-bunch FB circuit employing filter

methods is shown in the above Fig., Ref.[1]. The circuitry ex-

tracts beam data as a band-pass signal at-+hw,, processes

it at IFw = 0 after frequency down-mixing, and then feeds an

Ip-mixed band-pass correction back to the beam-atd-h'wy.

Hereh, h' are integers, and, generally# h’; h, ' # h where

Interacting with passive components inside the vacuum chanee 1o main RE harmonic number. The EB has the in-phase

ber, the beam driveB-field with amplitude

Ek(Q) —L‘lek (w) Jk(Q), w = kwo + €, (1)

wherel is the orbit lengthZ;.; (w), Re Zx (w) > 0 is the stan-

(¢) and quadraturés) paths with unequal gains. Treated in a

small-signal approach near the FB's set-point, the former one
controls an amplitude, while the latter — a phase, of the ac-
celerating voltage seen by the beam. Either of the paths may

dard longitudinal impedance. Its main-diagonal element is def Switched off altogether, sai,(*) = 0 for an injection error
from the entire matrixZy. (w) (it describes the lumped naturedamping system, or in case of a dedicated phase control loop.
of the beam environment) due to a narrow-band response apprdn neglecting the PU's (small) impact on the beam, the net
priate to, as a matter of fact, slowly perturbed bunched beamyoltage imposed by the FB can be put down as

Ter((k = Kwo + Q) = Ji(Q) Gkrr, Q] <wo, (2

with d,;: being the Kronecker's delta-symbol.

Il. FEEDBACK
A. Circuitry with PU# AD

(b)

_ (ind)
= UAD

W (1) (t) — ulp? () (4)

where(b) and(ind) denote beam-excited and FB-induced volt-

ages, correspondinglyxgd) (t) is alinear functional oa;b[} ()

taken at’ < ¢ due to casualty. _
Let dw be a frequency deviation withiw| < (h, h')wp.

WheneverH (¢#)(+2hw, 4 dw) = 0, the state of the system

To simplify the matters, let a Pick-Up unit and an Acting Deis given by 2-D column-vectors

vice of the FB in question be cavity-like resonant objects which

excite longitudinal'-field

EW©,1) = LG (O) u.(t); a=PUAD, (3)

whereu, (t) is voltage across the gaf{*) (©) specifies the field
localization and is normalized g§™ |G(*)(©)|d® = 2r. Its

dpy(dw) = (u(ﬁwo + 6w); u(—hwo + 5w))§U , (5
ap(dw) = (u(h'wo + dw); u(—h'wo + (5(.0))1]) . (6)

The in-out gain through the linear FB is
iy (0w) = T(0w) iip} () @)
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wherex(dw) is a2 x 2 FB's “susceptibility' matrix, particular case represents an RF FB around the final power
amplifier which is responsible for the reduction of periodic

xu(dw) = 02TK (hl“’o + ‘5“’) S(hwo + 0w) * (8) beam-loading transients and coupled-bunch instability damping,
( ) (6w) + HE (8 w)) RIS ¢>); Ref.[2]. Now, Eq.4 is kept intact while the PU detects both, the
/ beam-imposed and correction signals. Therefore, Eq.7 have to
x12(dw) = 0.25TK (h’wo + &u) S(—hwg+dw) x (9) undergo an essential modification:
. / -
( ow) — H) (s w)) i +9); D (w) = Y (6w) T (5w) (15)
X21(dw) = xa2(=0w)T xa2(0w) = xar(=dwT)" due to which the coupling impedances to enter Eq.11 acquire

Carrier phases, ¢ of to beam and accelerating voltage so 45€ form other than that given by Egs.12-14,

to comply with the FB's particular purpose and its layout along (7b) 1y
the ring. Zee(w) + Zyy (W) = ey (W (h[:‘;())); (16)
The beam-excited voltages at the PU and AD are x T'(w) |G )7,
(fb) -1
/ o 7 (W) = e (w—hwy) X a7)
P (w) = - ( W) ) S G = k) (10) o ' ) ac)
(w) k=—00 x  T'(w— 2hwo) Gy, Gy lon

wherelV”’, T'(w) are the gap-voltage responses to the beam Cyfnerew = kuwy + Q, k ~ h > 0, |Q| < wo and
rent of PU and AD, respectively. Generally, the response of AD

to external RF-drivE (w) # T"(w). 2(6w) = T + X(6w), (18)
Insert Eqs.10 into Eqgs.7,4 and extract synchronous-to-beam

E-field harmonics from Eq.3. Use Eq.2 to truncafe. Then,  z=1(4u) = _ ( L+ x22(dw)  —x12(dw) ) .

to generalize the commonly used impedance concept introduced Det £(dw) —x21(6w) 1+ x11(0w)

by Eq.1, the FB can be treated as imposing/iheld harmon- ~ (19)

ies Herel, (6w) ande—!(éw) are2 x 2 matrix unit, FB's “perme-

ability' matrix and its inverse, correspondingly.
E,ifb)(Q) = —L7Y(Znp(w) T (Q) + (11) This FB may turn self-excited, which is avoided technically
(/) B (/) B by putting zeros oDet £(dw) into the lower half-planém dw <
+Zk,k—h'+ﬁ(“) Jeowym () + Zk,k—hf—ﬁ(w) ) 0 through a proper tailoring aff (*) (6w).
Itis evident hereof that by substituting Eqs.16-17 for Eqs.12—

through coupling impedances .
g pingimp 14 the formulae to follow can be extended to treat the important

Ze(w) = T'(w)|GAD)), (12) caseofi’,h = h; PU, AD= AC as well.
200w = —xanw — R x (13) IIl. CHARACTERISTIC EQUATION
X W' (w — h'wo + hw) G(AD)G(—Pin)hI_E’ A. General Case
Z;i{:)—hf_ﬁ(“) —  xia(w — Kwo) X (14) The tOtaIE-f(iiI: at the or(l:ixtt;s asum ((;Z;two terms
X W' (w = Ky — o) GAD) G(—Pk[i)hq—ﬁ' E,7(Q) = Ey(Q) + By (). (20)

The former one,(ext) is imposed from the outside, say, by
Herew = kwo + Q, k ~ b’ > 0, [Q] < wo. The negative- an external RF drive. The latteffb) is the induced response
frequency domain of ~ —h' < 0 is arrived at with the reflec- of the environment to the coherent motion of the beam: its
tion propertyZ_y _ g/ (—w*)* = Zgp: (w). perturbed current harmonics, (Q2) drive the FBs, both unin-

Eq.12yields the coupling impedance of AD itself treated as@ntional (Eq.1) and issued (Eq.11 with its negative-frequency
passive device in line with Eq.1. Egs.13,14 represent an actdéunterpart), to yield

response of the FB and account for cross-talk between harmon-

ics Ex, Ji» with & # k' caused by down- and up-mixing of E(fb = -1 Z . zkkz (kwo + Q) Jp (), (21)
frequencies. Impedanc%éf, ) are no longer subject to re- _ "= o

strictionRe Z;(W)( ) >0, Wh'ch is to introduce damping into 2k (w) having, at most, three non-trivial elements per row:
the beam motion. The balandé!) (6w) = H')(dw) of the ., () = Zuw(w) S + (22)
FB's path gains results in matrixbecoming diagonal, and in (£b)

Z;i{f)( ) with |k — &’| = k' + h vanishing. In injection error + Zyger’ (@) (9 e (b =Ty k) T Ok k_(hf+ﬁ)k/|k|)~

damping systems, the FB's path gains and, héi‘;&éé )ymay The first member in r.h.s. of Eq.22 incorporates effect of all the
be scaled reciprocally to, say, the average beam current passive devices available.
o ) From now on, one enters a standard route of instability anal-
B. Circuitry with PU= AD ysis, and via the Vlasov's linearized Eq. finds
Takeh',h = h, W'(w) = T'(w) with PU and AD being (tot)
merged into a single device AC, an Accelerating Cavity. This =L Zk, Yk () By (). (23)
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Hereyxi () is the beam “admittance' matrix which, say, fo2 x 2 caseDet ¢(£2) can be found, which results in characteristic
the beam of average currefif in M < h (h/M is an integer) Eq. to follow,

identical and equispaced bunches is equal to
Lot X () + X () + (32)

(Q) = CJo Ve /)Y e_winr, (24
vk () o (i D/E) 2y demweanns @8 () 00 () — g () s ()] = 0.
Ve (Q) = —iy L 25
() = Zm:—oo o Q=mQ(J) < (25) L.h.s. of Eq.32 involves dispersion integrals,: whose sub-
OFo(T) scripts arek = &1 », ki - andk’ = &} 2 GivenAwAdg/wy <
2.7 Lo (T) Lt (T) AT 7. whereA, is bunch half-widthY, .. become slow functions

of k, ', which allow substitutions’ 2~ ~ 41, & o~ +h be
Here (¢, J) are the longitudinal angle-action variables mtroperformed in subscripts of all the essential, that enter the
duced in the phase-plaiié, ¥/ = dv/dt) with the origind = 0  characteristic Eq.32.
being put on the reference particle of a bur@h(.7) = dv/dt Usually, atQ ~ m€q + 10 a single resonant termjé’?) dom-
is the non-linear synchrotron frequency;, is unperturbed inates in}" =~ of Eq.25. Hereof, one arrives at the reflection
bunch distribution normalized to unit; functiofi§, (/) are the properties ofj,,, ~ Yk(lr;)'

coefficients of series which expand a plane walf (I
into sum over multipolesy,, /7, (7 )e MY Theleftmostfac-  Y—kk' X Yi—k 2 (=1)"Yipr,  Yop g > Vi, (33)

torC'inEq.24 is . L
Up to these two assumptions, expression in square brackets

C= Q% (hWysing,), (26) of Eq.32 vanishes, while the characteristic Eq. itself reduces to
much a simpler form
wheref), is the small-amplitude synchrotron frequency (circu-
lar), V4 is the nominal amplitude of accelerating voltage, 14+ ClJy (CH(Q) Vi () + ¢ () Yﬁh,(Q)) ~0, (34)
is the stable phase angle,( > 0 below transition, the syn-

chronous energy gain beirg; cos ¢;). being put down in terms of the effective, or instability driving,
Insert Eq.23 into Eq.21 and use Eq.20 to get impedances at side-bands~ m{2, of coupled-bunch mode,
E}gext)(Q) _ Z:_ e () E,(:/Ot)(Q)’ (27) () ~ Zkzlkzl(kllwo + QK+ ... kK — kY, (35)
=—00 b
con(Q) = S+ (), (28) (W@ = 27, (ke +Q)/K + (36)
/ _ R b
Xew (§2) = Zk,,z_w ki (kwo + ) g (€2).(29) + (=)™ Z;{k), _r(kiwo + Q) /K +
Here x.,.(Q), exx () are “susceptibility' and “permeability’ + .. K=k, K= —h h— -k
matrices of "beand: FB' medium. Zeros of the characteristic , . . L
Eq. Items with(—1)™, if any, are responsible for the intrinsic asym-
Det €(Q2) = 0 (30) metry in damping of within-bunch multipole modeswith op-

posite parity inherent in FBs with the unbalanced path gains,
are the eigen-frequencies of beam coherent oscillations whigt) # H(s)
must be located in the lower half-plafe 2 < —1/7. < 0.
Here r. is the sought-for damping time of beam coherent os- References

cillations which, as well, determines duration of beam mpcﬂig% F. Pedersen, CERN PS/90-49(AR), CERN, Geneva, 1990.

;r_anslien_tjs ugde(;@thg Ii%showing themselves up, mainly, at D. Boussard, CAS Proceed., CERINA03, Vol. 2, Geneva,
pole side-bands = =<0 1987, pp. 626-646.

B. Narrow-Band Case

Label the normal coupled-bunch modes
byn =0,1,..., M — 1, phase shift between adjacent bunches
being27n/M. Supposeh’'/M andh/M be integers, due to
which the FB would not couple beam modes wha'se* n. Let
band-width of the FB be\w < Mwy. Hence, there would be
only four resonant harmonics; (£2) of beam current perturba-
tion which belong to the given mode and cross-talk through
the FB. Their subscripts are

Klo=n+l,M~=xh, kia=n+lM~xh (31)

with 1’172,7172 the integers. The essentidl-field harmonics
Ex(£2) to occur withinAw are the two withk = & ,. In this
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