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Abstract

Characteristic Eq. of coupled-bunch motion of beam governed
by a feedback (FB) is given to find FB's stabilizing effect
against coherent instabilities or, say, injection error damping
rates. Quite a general FB's schematics is involved: (i) it has
two paths, the in-phase and quadrature (or amplitude and phase
in a small-signal approach), with unequal gains; (ii) may employ
distinct RF-bands to pick-up beam data and feed correction back
to the beam. To account for cross-talk between various field and
beam current harmonics inflicted by frequency down- and up-
mixing, an impedance matrix (with, at most, three non-trivial
elements per row) is introduced as a natural concept to gain in-
sight into `FB & beam' dynamics. The important class of FBs
to counteract heavy beam loading ofaccelerating cavities is in-
cluded into analysis as a particular case.

I. INTRODUCTION
Let # = � � !0t be azimuth in a co-rotating frame, where

� is azimuth around the ring in the laboratory frame,!0 is the
angular velocity of a reference particle,t is time. The beam cur-
rent J(#; t) and longitudinal electric fieldE(#; t) are decom-
posed into

P
k
J;Ek(
)e

ik# � i
t with
 being the frequency
of Fourier transform w.r.t. the co-rotating frame. In the labora-
tory frame
 is seen as! = k!0 + 
.

Interacting with passive components inside the vacuum cham-
ber, the beam drivesE-field with amplitude

Ek(
) = �L
�1Zkk(!) Jk(
); ! = k!0 + 
; (1)

whereL is the orbit length,Zkk(!), ReZkk(!) � 0 is the stan-
dard longitudinal impedance. Its main-diagonal element is cut
from the entire matrixZkk0(!) (it describes the lumped nature
of the beam environment) due to a narrow-band response appro-
priate to, as a matter of fact, slowly perturbed bunched beams,

Jk0((k � k0)!0 + 
) ' Jk(
) �kk0 ; j
j � !0; (2)

with �kk0 being the Kronecker's delta-symbol.

II. FEEDBACK
A. Circuitry with PU 6= AD

To simplify the matters, let a Pick-Up unit and an Acting De-
vice of the FB in question be cavity-like resonant objects which
excite longitudinalE-field

E(a)(�; t) = L�1G(a)(�)ua(t); a = PU;AD; (3)

whereua(t) is voltage across the gap,G(a)(�) specifies the field
localization and is normalized as

R 2�
0
jG(a)(�)jd� = 2�. Its

decomposition into
P

k
G
(a)
k
eik� providesG(a)

k
, the complex

transit-time factors at! = k!0 with jG(a)
k
j � 1 andargG(a)

k
be-

ing proportional to�(a), the object's coordinate along the ring.
Quite a general coupled-bunch FB circuit employing filter

methods is shown in the above Fig., Ref.[1]. The circuitry ex-
tracts beam data as a band-pass signal at! ' �h!0, processes
it at IF ! = 0 after frequency down-mixing, and then feeds an
up-mixed band-pass correction back to the beam at! ' �h0!0.
Hereh; h0 are integers, and, generally,h 6= h0; h; h0 6= h where
h is the main RF harmonic number. The FB has the in-phase
(c) and quadrature(s) paths with unequal gains. Treated in a
small-signal approach near the FB's set-point, the former one
controls an amplitude, while the latter — a phase, of the ac-
celerating voltage seen by the beam. Either of the paths may
be switched off altogether, say,H(c) = 0 for an injection error
damping system, or in case of a dedicated phase control loop.

On neglecting the PU's (small) impact on the beam, the net
voltage imposed by the FB can be put down as

u
(tot)
AD (t) = u

(b)
AD(t)� u

(ind)
AD (t) (4)

where(b) and(ind) denote beam-excited and FB-induced volt-
ages, correspondingly;u(ind)AD (t) is a linear functional ofu(b)PU(t

0)
taken att0 � t due to casualty.

Let �! be a frequency deviation withj�!j � (h; h0)!0.
WheneverH(c;s)(�2h!0 + �!) = 0, the state of the system
is given by 2-D column-vectors

~uPU(�!) =
�
u(h!0 + �!); u(�h!0 + �!)

�T
PU

; (5)

~uAD(�!) = (u(h0!0 + �!); u(�h0!0 + �!))
T

AD : (6)

The in-out gain through the linear FB is

~u
(ind)
AD (�!) = b�(�!) ~u(b)PU(�!) (7)
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whereb�(�!) is a2� 2 FB's `susceptibility' matrix,

�11(�!) = 0:25 TK(h0!0 + �!)S(h!0 + �!) � (8)

�

�
H(c)(�!) +H(s)(�!)

�
ei(�

0
� �);

�12(�!) = 0:25 TK(h0!0 + �!)S(�h!0 + �!) � (9)

�

�
H(c)(�!) �H(s)(�!)

�
ei(�

0 + �);

�21(�!) = �12(��!
�)�; �22(�!) = �11(��!

�)�:

Carrier phases�, �0 of to beam and accelerating voltage so as
to comply with the FB's particular purpose and its layout along
the ring.

The beam-excited voltages at the PU and AD are

u(b)a
(!) = �

�
W 0(!)
T 0(!)

�X1

k=�1
G
(a)

�k
Jk(! � k!0) (10)

whereW 0; T 0(!) are the gap-voltage responses to the beam cur-
rent of PU and AD, respectively. Generally, the response of AD
to external RF-driveT (!) 6= T 0(!).

Insert Eqs.10 into Eqs.7,4 and extract synchronous-to-beam
E-field harmonics from Eq.3. Use Eq.2 to truncate

P
k
. Then,

to generalize the commonly used impedance concept introduced
by Eq.1, the FB can be treated as imposing theE-field harmon-
ics

E
(fb)
k

(
) = �L�1
�
Zkk(!) Jk(
) + (11)

+Z
(fb)

k;k�h0+h
(!) J

k�h0+h(
) + Z
(fb)

k;k�h0�h
(!) J

k�h0�h
(
)

�

through coupling impedances

Zkk(!) = T 0(!)jG
(AD)
k

j
2; (12)

Z
(fb)

k;k�h0+h
(!) = ��11(! � h

0!0)� (13)

� W 0(! � h0!0 + h!0) G
(AD)
k

G
(PU)

�k+h0�h
;

Z
(fb)

k;k�h0�h
(!) = ��12(! � h

0!0)� (14)

� W 0(! � h0!0 � h!0) G
(AD)
k

G
(PU)

�k+h0+h
:

Here! = k!0 + 
, k � h0 > 0, j
j � !0. The negative-
frequency domain ofk � �h0 < 0 is arrived at with the reflec-
tion propertyZ�k;�k0(�!�)� = Zkk0(!).

Eq.12 yields the coupling impedance of AD itself treated as a
passive device in line with Eq.1. Eqs.13,14 represent an active
response of the FB and account for cross-talk between harmon-
ics Ek, Jk0 with k 6= k0 caused by down- and up-mixing of
frequencies. ImpedancesZ(fb)

kk0 (!) are no longer subject to re-

strictionReZ(fb)
kk0 (!) � 0, which is to introduce damping into

the beam motion. The balanceH(c)(�!) = H(s)(�!) of the
FB's path gains results in matrixb� becoming diagonal, and in
Z
(fb)

kk0 (!) with jk � k0j = h0 + h vanishing. In injection error

damping systems, the FB's path gains and, hence,Z
(fb)
kk0 (!) may

be scaled reciprocally to, say, the average beam currentJ0.

B. Circuitry with PU= AD

Takeh0; h = h, W 0(!) = T 0(!) with PU and AD being
merged into a single device AC, an Accelerating Cavity. This

particular case represents an RF FB around the final power
amplifier which is responsible for the reduction of periodic
beam-loading transients and coupled-bunch instability damping,
Ref.[2]. Now, Eq.4 is kept intact while the PU detects both, the
beam-imposed and correction signals. Therefore, Eq.7 have to
undergo an essential modification:

~u
(ind)
AC (�!) = b�(�!) ~u(tot)AC (�!) (15)

due to which the coupling impedances to enter Eq.11 acquire
the form other than that given by Eqs.12–14,

Zkk(!) + Z
(fb)
kk

(!) = "�111 (! � h!0)� (16)

� T 0(!) jG
(AC)
k

j
2;

Z
(fb)
k;k�2h(!) = "�112 (! � h!0)� (17)

� T 0(! � 2h!0) G
(AC)
k

G
(AC)
�k+2h

where! = k!0 + 
, k � h > 0, j
j � !0 and

b"(�!) = bI + b�(�!); (18)

b"�1(�!) = 1

Det b"(�!)
�

1 + �22(�!) ��12(�!)
��21(�!) 1 + �11(�!)

�
:

(19)
HerebI , b"(�!) andb"�1(�!) are2� 2 matrix unit, FB's `perme-
ability' matrix and its inverse, correspondingly.

This FB may turn self-excited, which is avoided technically
by putting zeros ofDet b"(�!) into the lower half-planeIm�! <

0 through a proper tailoring ofH(c;s)(�!).
It is evident hereof that by substituting Eqs.16–17 for Eqs.12–

14 the formulae to follow can be extended to treat the important
case ofh0; h = h; PU, AD= AC as well.

III. CHARACTERISTIC EQUATION
A. General Case

The totalE-field at the orbit is a sum of two terms

E
(tot)
k

(
) = E
(ext)
k

(
) +E
(fb)
k

(
): (20)

The former one,(ext) is imposed from the outside, say, by
an external RF drive. The latter,(fb) is the induced response
of the environment to the coherent motion of the beam: its
perturbed current harmonicsJk(
) drive the FBs, both unin-
tentional (Eq.1) and issued (Eq.11 with its negative-frequency
counterpart), to yield

E
(fb)
k

(
) = �L�1
X1

k0=�1
zkk0(k!0 + 
) Jk0(
); (21)

zkk0(!) having, at most, three non-trivial elements per row:

zkk0(!) = Zkk0(!) �k0k + (22)

+ Z
(fb)
kk0 (!)

�
�
k0;k�(h0�h)k=jkj

+ �
k0;k�(h0+h)k=jkj

�
:

The first member in r.h.s. of Eq.22 incorporates effect of all the
passive devices available.

From now on, one enters a standard route of instability anal-
ysis, and via the Vlasov's linearized Eq. finds

Jk(
) = L
X1

k0=�1
ykk0(
)E

(tot)
k0 (
): (23)
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Hereykk0(
) is the beam `admittance' matrix which, say, for
the beam of average currentJ0 in M � h (h=M is an integer)
identical and equispaced bunches is equal to

ykk0(
) = CJ0 (Ykk0(
)=k0)
X1

l=�1
�k�k0;lM ; (24)

Ykk0(
) = �i
X1

m=�1

Z
1

0

m


�m
s(J )
� (25)

�
@F0(J )

@J
Imk(J ) I

�

mk0(J ) dJ :

Here ( ;J ) are the longitudinal angle-action variables intro-
duced in the phase-plane(#; #0 � d#=dt) with the origin# = 0
being put on the reference particle of a bunch;
s(J ) = d =dt

is the non-linear synchrotron frequency;F0 is unperturbed
bunch distribution normalized to unit; functionsI�

mk
(J ) are the

coefficients of series which expand a plane waveeik#(J ;  )

into sum over multipoles:
P

m
I�
mk

(J )eim . The leftmost fac-
torC in Eq.24 is

C = 
20= (hV0 sin's) ; (26)

where
0 is the small-amplitude synchrotron frequency (circu-
lar), V0 is the nominal amplitude of accelerating voltage,'s
is the stable phase angle ('s > 0 below transition, the syn-
chronous energy gain beingeV0 cos's).

Insert Eq.23 into Eq.21 and use Eq.20 to get

E
(ext)
k

(
) =
X1

k0=�1
�kk0(
) E

(tot)
k0 (
); (27)

�kk0(
) = �kk0 + �0
kk0(
); (28)

�0kk0(
) =
X1

k00=�1
zkk00(k!0 + 
) yk00k0(
):(29)

Here�0
kk0(
), �kk0(
) are `susceptibility' and `permeability'

matrices of `beam& FB' medium. Zeros of the characteristic
Eq.

Det b�(
) = 0 (30)

are the eigen-frequencies of beam coherent oscillations which
must be located in the lower half-planeIm
 � �1=�� < 0.
Here �� is the sought-for damping time of beam coherent os-
cillations which, as well, determines duration of beam injection
transients under the FB showing themselves up, mainly, at the
dipole side-bands
 ' �
0.

B. Narrow-Band Case

Label the normal coupled-bunch modes
by n = 0; 1; : : : ;M � 1, phase shift between adjacent bunches
being2�n=M . Supposeh0=M andh=M be integers, due to
which the FB would not couple beam modes whosen0 6= n. Let
band-width of the FB be�!�M!0. Hence, there would be
only four resonant harmonicsJk(
) of beam current perturba-
tion which belong to the given moden and cross-talk through
the FB. Their subscripts are

k01;2 = n+ l01;2M ' �h0; k1;2 = n+ l1;2M ' �h (31)

with l01;2; l1;2 the integers. The essentialE-field harmonics
Ek(
) to occur within�! are the two withk = k01;2. In this

2�2 caseDetb�(
) can be found, which results in characteristic
Eq. to follow,

1 + �0
k

0

1
k

0

1

(
) + �0
k

0

2
k

0

2

(
) + (32)

+
h
�0
k

0

1
k

0

1

(
)�0
k

0

2
k

0

2

(
)� �0
k

0

1
k

0

2

(
)�0
k

0

2
k

0

1

(
)
i
' 0:

L.h.s. of Eq.32 involves dispersion integralsYkk0 whose sub-
scripts arek = k01;2; k1;2 andk0 = k01;2. Given�!�#0=!0 �
�, where�#0 is bunch half-width,Ykk0 become slow functions
of k; k0, which allow substitutionsk01;2 ' �h0, k1;2 ' �h be
performed in subscripts of all the essentialYkk0 that enter the
characteristic Eq.32.

Usually, at
 ' m
0 + i0 a single resonant termY (m)
kk0 dom-

inates in
P

m
of Eq.25. Hereof, one arrives at the reflection

properties ofYkk0 ' Y
(m)
kk0 ,

Y�k;k0 ' Yk;�k0 ' (�1)mYkk0; Y�k;�k0 ' Ykk0: (33)

Up to these two assumptions, expression in square brackets
of Eq.32 vanishes, while the characteristic Eq. itself reduces to
much a simpler form

1 +CJ0

�
�n(
)Yh0h0(
) + �(fb)

n
(
)Y

hh0
(
)

�
' 0; (34)

being put down in terms of the effective, or instability driving,
impedances at side-bands
 ' m
0 of coupled-bunch moden,

�n(
) ' Zk0

1
k0

1

(k01!0 + 
)=k01 + : : : k01 ! k02; (35)

�(fb)
n (
) ' Z

(fb)

k0

1
;k0

1
�h0+h

(k01!0 +
)=k01 + (36)

+ (�1)mZ
(fb)

k0

1
;k0

1
�h0�h

(k01!0 +
)=k01 +

+ : : : k01 ! k02; h0 !�h0; h!�h:

Items with(�1)m, if any, are responsible for the intrinsic asym-
metry in damping of within-bunch multipole modesm with op-
posite parity inherent in FBs with the unbalanced path gains,
H(c) 6= H(s).
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