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I. INTRODUCTION

The 1 GeV Duke FEL storage ring is dedicated to
drive UV and VUV free electron laser devices.  Specifics of
this ring include the use of combined function magnets:
quadrupole-sextupole and dipole-sextupole.  The use of
combined function magnets is necessitated by the close
spacing of magnetic elements.  A discussion on the
measurement procedures of these magnets is included in this
paper, as well as the data analysis used to create a viable
control system for the combined function magnets.

The design of the Duke storage ring was driven by
the requirement to use existing hardware manufactured for the
original ring design at Stanford.  The original design called for
the use of “nose” and “dimple” endpieces attached to the
dipoles as the main fixed strength sextupole source.  In
addition, adjustable sextupole magnets were placed in an 18
cm gap between dipoles and arc quadrupoles.  In that design
the distance between magnetic poles of dipoles, quadrupoles,
and sextupoles was less than 2 cm.  It was no surprise that this
design uncovered major asymmetric saturation of dipoles and
sextupoles.  Saturation would cause intolerable orbit distortion
and high order nonlinearities in the magnetic field.

To solve these problems we decided to:
a) replace odd asymmetric endpieces with smooth and 

symmetric ones;
b) remove discrete sextupoles which were saturated anyway;
c) create necessary sextupole moments in the quadrupoles 

using asymmetric excitation;
d) place fixed strength sextupole shims in the center of the 

dipoles.

II.  MEASUREMENT PROCEDURES

Magnetic measurements of all magnets were
performed prior to installation on the storage ring.  In order to
facilitate fast data acquisition of large data sets of magnetic
fields accurately we made use of a Hall probe array.  Details
of the array and its electronics can be found in a previous
paper [1].

The high resolution of the array and its electronics
yield a magnetic measurement accuracy of better than one part
in 10,000 and we can make a two dimensional map with only
one pull through each magnet.  A set of tracks are used for the
precise positioning of the array in each magnet.  Since the
magnet lattice includes closely spaced elements it is important
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that all measurements be taken in a real environment.  The
magnet test bed at Duke has room to place neighboring
magnets around the magnet under test as would
be the case when the magnet is eventually placed into the
storage ring.  In this manner we can better understand the
fringe field effects and cross-talk of closely spaced elements.

Each dipole magnet is measured with one current
ramp using small current increments, and four field maps.
Each arc quadrupole is measured with three asymmetric
current ramps and five field maps.  We use the maps to
evaluate magnetic length dependence on current.  Then we use
interpolated values of magnetic length in combination with the
ramping data for precise characterization of magnetic
moments.

The normalization curves used to standardize each
magnet before measurement are now also used prior to
operating the storage ring.  This is so that the magnets
resemble as closely as possible the same condition they were
in when they were measured on the test bed.

To insure consistency with magnetic measurements
we calibrated all power supplies and current sensors (shunts,
DCCT) using sets of equipment used for magnetic
measurements.  Controls use individual second order
polynomial fits for all power supplies.

III.  COMBINED FUNCTION QUADRUPOLES

The arc combined function quadrupoles are wired so
that we can independently control the quadrupole and
sextupole moments.  Quadrupole coils are fed by an
individually controlled power supply.  An individually
controlled shunt regulator is connected to the pair of coils on
the inner side of the ring.  With no current in the shunt
regulator all coils have the same excitation and there is a pure
quadrupole moment.  By shunting the inner coils we excite
dipole and sextupole moments in the magnet.  The dipole
moment offsets the magnetic center of the quadrupole-
sextupole.  We have therefore designed the ring so that the
electron orbit will pass through this new magnetic center, 2
mm for the design value of the sextupoles.

We have taken large data sets of all of the quadrupole
magnets in field mappings and current rampings and created a
computer routine to fit the multipole moments using spline
interpolation in multi-dimensional space.  These data are used
in the control system, described below, to achieve the desired
strengths in the quadrupole.  Graphs showing current settings
and field distributions can be found in [1].

The pole tips of the arc quadrupoles (inner radius = 2
cm)  have shape corrections to compensate for fringe effects
and finite size of the poles.  These corrections work as well for
combined function quadrupoles.  Figure 4 of Reference 1
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shows a plot of the integrated moments above sextupole for
both the central part of the magnet and the fringe fields: one
curve is the integral of the fields inside the magnet steel
without edges, the other for the fringe field.  The two very
nearly cancel out overall higher order moments.  Thus,
combined function quadrupoles with asymmetric excitation
are nearly perfect; the lowest moment in the integrated field is
dodecapole.

IV. COMBINED FUNCTION DIPOLES

We replaced the odd shaped nose and dimple dipole
end pieces with new parallel edge smooth symmetric end
pieces required to extend dipole magnetic length.  This allows
us to reach a symmetric magnetic field of 20.5 kGs with
excellent quality (15.9 kGs is required for 1 GeV operation).
We have devised a way to make the dipole magnets combined
function while maintaining a higher level  of symmetry by
introducing thin steel shim stock in the center of the magnet.
These fixed strength sextupoles are not a necessity for the
Duke ring.  We decided to introduce them in order to simplify
quadrupole alignment by maintaining a magnetic center offset
of 2 mm in both focusing and defocusing arc quadrupoles.
This extra "bump" creates a defocusing sextupole field of the
desired strength as shown in Figure 1.  In this figure, the peak
is 60 Gauss above the baseline field of 3.96 kGs.  The steel
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Figure 1.  Field map of dipole thin shim stock.

shims themselves are mounted on aluminum strips, so the
whole unit is easily replaced if desired.  The 0.005 inch thick
steel shim stock measures only 6.4 cm long by 2.5 cm wide in
a 33 cm long magnet.  The measured sextupole moment as a
function of longitudinal distance is shown in [1].

V.  OTHER MAGNETS

We use standard quadrupoles (inner radius = 3 cm) in
the ring straight sections, linac, and linac-to-ring transport
channel.  These magnets also pass through standard ramping
and magnetic measurements.  Data analysis for these magnets
is much simpler than for the combined function quadrupoles.

The Lambertson type septum magnet used on the
Duke ring was measured in a similar manner employing a
specially designed curved track to follow the expected orbit of
the electron beam.  Integrated strengths were calculated from
the resulting field ramps and maps.

The data of the measured strengths of all steering
dipoles, trim coils, and other small magnets are also used for
computer control.

VI.  ANALYSIS AND CONTROL

Dipoles:
We have used a special program to track the particles

through five 2-D field maps to calculate dipole magnetic
lengths as a function of current.  Combined with measured
ramping curves, the data provides us with individual
integrated characteristics of the dipole and sextupole
moments:

Di = f i I( )
Si = gi I( )

(1)

Spline fits interpolate these functions between measured
points.

All bending magnets and injection chicanes are
powered by one 560 kW PEI power supply.  For control we
use the total dipole moment dependence

Da I( ) = Di I( )
i

∑ (2)

This gives us the particle momentum as a function of the PEI
current:

pc MeV( ) = 0.29979
2π

Di I( )
i

∑ kGs ⋅ cm[ ] (3)

The settings of other magnets are based on the ring energy and
design lattice.

To insure that each of the 40 dipoles turns the beam
9˚ we use individual dipole trim currents:

∆Di Itrim( ) = Da I( )
40

− Di I( ) (4)

Individual dipole trims are also used for closed orbit
correction and are calibrated in milliradians as are all steering
and quadrupole trim magnets.
Standard Quadrupoles:

For the standard quadrupoles we analyzed the
integrated quadrupole dependence as a function of coil
current:

Qi = Ai I( ). (5)

We used the ramping data taken in the center of the magnet
along with five field maps to calculate the quadrupole moment
versus current curves.  Then we use individual cubic spline fits
to interpolate between measurement points.
Combined Function Quadrupoles:

Analysis of the combined function quadrupoles
assumed that the pole tips are non-saturated and that the filed
is a superposition of quadrupole and dipole-sextupole fields.
Computer models and data analysis showed that the fields
could be fit by the following forms:

Qg = A I( ) + B I( ) ∆I( )2

S = Sg = C I( ) ∆I( )
Dg = αS

(6)

where Qg, Sg, and Dg are the respective quadrupole,
sextupole, and dipole moments in the geometric center of the
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magnet; Q, S, and D are the respective moments at the
magnetic center; A, B, and C are functions of the average
current I  = (I1 + I2 ) / 2 through the two halves of the
quadrupole, and the current separation is ∆I = (I1 - I2) / 2.  The
dipole and sextupole moments are both odd multipole
moments and hence may be closely related.  This simple
relation is indicated by the coefficient α  on the dipole
moment.  This is due to the fact that the pole tips are not
saturated.  Saturation occurs farther up the neck of the yoke.

Substitution for ∆I from the equation for Sg into the
equation for Qg shows that the quadrupole moment is

proportional to Sg2.  In figure 2 we plot the quadrupole versus
sextupole moments where each data point represents a
different separation current, but the average current is the
same.

The graph shown in figure 2 is repeated for every
average current setting used in the measurements. The DC and
second order terms of the parabolic fit coefficients are saved
as a function of average current.  These two functions, then,
are A( I ) and B( I ) and are shown graphically in figure 3.
The central values for Q and S calculated from the curves in
figure 3 are related to the integrated moments simply by
multiplying the central value by the effective length of the
magnet.  The effective length is calculated from the two
dimensional field maps and is very nearly a linear function of
average current, which is natural for quadrupoles with no
chamfers.
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Figure 2. Plot and parabolic fit of quadrupole versus 
sextupole moments for given average 
current.
A curve is similarly generated for the sextupole

moment coefficient C( I ) using a linear fit to the sextupole
moment versus current separation.  The dipole proportionality
constant α  is also determined from the mapping data.  These
assumptions are confirmed by detailed analysis of magnetic
measurement data and computer simulations.
         The shift of magnetic center, defined as x0, is found by a
simple change of coordinate system.  By definition the dipole
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Figure 3.  Coefficient curves with spline fits.

moment at magnetic center  is zero, and the geometric and
magnetic center values of quadrupole moment are related by 

Qg = Q − Sx0 = Q2 − 2αS2 (7)

Substitution back into the first of equation 6 gives

A I( ) +
B I( )

C I( )2 S2 − Q2 − 2αS2 = 0  (8)

Using this formula it is straightforward to invert the functions
of the graph of Figure 3 to find

I = f Q,S( )

∆I = S

C f Q,S( )( )
(9)

VII. CONCLUSIONS

The effort spent on magnetic measurements and
applications which use the magnetic measurement data for
control paid off in the end.  The commissioning of the Duke
storage ring was a great success.  We did not experience any
problems storing electrons on the first try, or ramping the
energy from 230 MeV to 1.1 GeV.  All measured parameters
of the ring, such as tunes and chromaticity, are very close to
the design values [2].

Implementation of magnetic measurements for
controls was provided by a set of programs using the EPICS
control system and the Tcl-Tk scripting language[3].  Work is
in progress to implement these controls at a lower level for
greater speed.
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