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Abstract 

The method described by Lobb for calculating 
beam envelopes using selected initial ray vectors may 
be extended by applying the formalism of Norman ‘and 
Moore to include a generalized description of the 
entire phase space ellipse (or ellipsoid) using two 
(or three) initial rays, All relevant information 
describing the ellipse is contained in a simple matrix 
and is accessible anywhere in the course of calcula- 
tion, Existing computer codes as well as other linear 
ray tracing methods which do not presently exploit the 
power and conciseness of phase space ellipse transport 
may easily be adapted to this technique. 

Introduction 

Lobbl has shown that three rays which represent 
the ends of the semi-axes of an upright phase space 
ellipsoid contain correlated information which can be 
used to obtain maximum projections of the ellipsoid 
after a linear transformation has taken place, This 
permits determination of the spatial projection or 
“beam envelope” using only two rays to represent a 
phase space ellipse or three for the ellipsoid. Other 
very practical applications exist for these particular 
rays which actually contain complete information about 
the phase space ellipsoid. 

An explicit description for phase space 
ellipses using parametric equations and matrix repre- 
sentation has been developed recently by Norman and 
Moore ,* This method is an improveTent over the CT- 
matrix approach by Brown and Howry because it conveys 
the same information without recourse to a congruence 
transformat ion. The ellipse matrices of Norman and 
Moore transform with the simplicity of individual ray 
vet tors , Rays specified as starting conditions by 
Lobb describe an upright ellipsoid in the matrix 
representat ion. 

The purpose of this paper is to draw attention 
to these important developments and further expand on 
them, Using two ray vectors to represent a phase 
space ellipse the author has been able to: calculate 
separately conditions for beam waists, beam diameters 
and beam minima; 
beam enve lope ; 

plot outlines of the ellipse and 
approximate the acceptance of apertures 

distributed throughout a problem; and determine time 
dispersion in the beam. Thes 

e 
procedures are incor- 

porated in a computer program which performs the 
operations automatically; however, special computer 
programs are not necessary, Every linear beam trans- 
port or ray tracing technique can perform phase space 
ellipse transport, 

The Ellipse Matrix 

An arbitrary phase space ellipsoid is described 
completely by the parametric equations 

x = ell COST cosrp +el2sin0 coscp +e13siny tdl, (1) 

x’= e21 cos0 coscp te22sinB cosv +e23sincp +d2, (2) 

U/P = e31 case coscp te 
32 

sine coscp te33sinrp +d3, (3) 

* 
Work supported by the U. S. Atomic Energy Commission. 

where the eij 
. _ 

are constants of the ellipsoid, the di 
are displacements of the center of the ellipsoid along 
the coordinate axes, x is the projection on the 
spatial axis, x’ is the projection on the divergence 
axis, lip/p is the projection on the momentum axis and 
8 and ‘p are dummy variables which generate the ellip- 
soid as they vary between 0 and 2n. Unfortunately, 
the general equations are somewhat cumbersome for 
purposes of illustration; moreover, most practitioners 
probably are more familiar with phase space ellipses. 
Examples which follow will concentrate on a simple 
phase space ellipse. Extens ion to other conf igura- 
tions should be reasonably apparent. 

Consider a phase space ellipse centered on 
(but not necessarily aligned with) the coordinate 
axes; then, 

x = ell 
cos 0 + e 12 

sin @, (4) 

x’= e 21 
cos 0 + e22 sin 0. (5) 

The nature of these equations becomes apparent when 
they are restructured in the following way: 

2 
x = (ellte~2)4c0s(0 t cu), cy = tan-l{-e12/ell), (6) 

x’= (e 
2 
21 i,)!‘sin(Q + S), B = tan-‘(te21/e22). Se (7) 

The phase shifts CY and B were chosen to simplify the 
circular functions. The maximum spatial projection is 

2 f obviously (e:l + el2) ; this represents the beam 

envelope. The maximum angular divergence is 

(e 
2 h 
21 + ei2) * The locus of points (x,x’) whose pro- 

jections perform simple harmonic motion on their 
respective axes as Q varies between 0 and 2n is an 
ellipse. 

Elimination of the parameter 8 reduces eqs. (4) 
and (5) to the quadratic form 

C C a.. x. x. = 1, 
ij ‘3 1 J 

(8) 

which may he compared directly with eq. (3) of Lobb. 
1 

Relationships between the Ui* (elements of the o- 
matrix), e., and a., are as i ollows: 

11 iJ 

2 2 
Cell + e12) = 

2 
o11 = D a22, 

2 2 2 
“22 = (e 21 -+ e22 1 = D all, (10) 

= a21 = (elle21 + e12e22 
2 2 

?2 
)=-D a12=-D a21, (11) 

D = “11e22 - e12e210 (12) 

The inverse transformation from CT . (or a .) to e.. 
iJ is not unique because the ea. inc ude a p i&e rel:J- 

tionship which specifies whkse 8 = 0 on the ellipse. 
This phase is of no particular relevance for beam 
transport ; consequently , an arbitrary condition such 
as e21 = 0 may be made for convenience in such 
instances , 
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Equations (4) and (5) may also be expressed in 

matrix notation: 

x, =(I), =(I;: :;;)(:n, 1); Eo(yYr, i)* (13) 
The matrix E represents a phase space ellipse. For 
each value 0. 0, 3, corresponds to a ray vector which, ? 
when operated on by any linear transformation T, 
transforms into a new vector 

it= Tizo’ (14) 

Substitution of eq. (14) into eq. (13) reveals tha 

?=E 

As expected, the original ellipse transforms linearly, 
point by point, into a new ellipse, More significant- 
ly , however, 

E = T x Eo, (16) 

that is, the matrix Eo, representing the original 
ellipse, evolves under linear transformation into a 
new ellipse E which is equivalent to continuous 
mapping by individual ray vectors. 

The general ellipsoid is described by a matrix 
having the following characteristic format: 

Row entries 

x - horizontal distance 

x’ - divergence “angle” (17) 

AP/P - momemtum fraction 

Programs which combine x- and y-transport in a single 
matrix will require additional rows for y, y: and 
(bdd,. The number and ordering of rows will depend 
on the particular program being used, 

Displacements of the ellipsoid from the center 
of coordinate:, corresponding to dl, d2 and d3 in eqs 
(l)-(3), can be formally introduced within the beam 
transport matr.ices.2 When this feature is available, 
a row containing a constant (ordinarily unity) is 
added to each vector; this can be done inside the 
program without perturbing the format of the input 
vectors. 

Spatial extremes of the general ellipsoid are 
obtained formally by taking partial derivatives of 
eq. (1) with respect to 0 and tp then setting these 
to zero, When substituted back into eq. (1) these 
give 

X max/min = dl i (elt + eli 2 $ 
+ e13) . (18) 

The result is anticipated from eq, (6). If the ellip- 
soid is centered, dl goes to zero and the result is 
identical to that obtained by Lobb.’ Maximum projec- 
tions on the other axes are obtained using analogous 
procedures. 

Ellipse Transport 

method involves matrix manipulation by digital 
computer but graphical and analog techniques also 
exist, All of these are equally capable, without 
modification, of solving eq. (16) to achieve phase 
space ellipse (or ellipsoid) transport, It is only 
necessary to interpret the individual columns of the 
matrices E and Eo as ray vectors for this purpose, 

Two vectors are required to describelthe 
ellipse; three describe an ellipsoid, Lobb found 
one of the diagonal representations for an upright 
ellipsoid to be 

Ray1 Ray2 Ray3 

Eo=(i !l ,) 0 I (19) 
0 

Here G, x: and npip represent the semi-axes of the 
ellipsoid in space, divergence and momentum, respec- 
tively. 

Probably the most convenient representation 
of the non-upright ellipse is obtained by operating 
on an upright ellipse with a drift length L such that 

E =(: ;)(; !!)=(; “;:). 
The resultant ellipse E is tangent to the line x = x’ 
at x = Lx’. Because the iour elements ell, e12, 
e21 and e22 describing any ellipse contain irrelevant 
phase information it is always possible, using the 
following expressions, to transform an ellipse matrix 
so that it appears like the right hand side of eq.(20): 

eil = 0, (21) 

ei2 = 2 2 -: (e21 + c2& > (22) 

eil = (e lle22 - e12fPl)/(e2: + e2il’, (23) 

ei2 = (e lle21 + e12e22 )i(e,: + e2f)‘:, (24) 

If the numerator in eq. (24) is zero, the ellipse 
is upright with semi-axes ell and e’22. If the ellipse 
is not upright, 

L = ei2/ei2 = (elle21 -t e12e22)/(e2: + e2i) (25) 

is the drift distance required to return it to the 
upright position. This distance is equivalen; to 
the “skew ratio” mentioned by Bassetti et al, 

References 

1. D, E. Lobb, Nucl. Instr. and Meth. 82, 331 (1970), 

2. B. A. Norman and W. H. Moore, Brookhaven Nat. Lab. 
Report, BNL 12138 (1967) 0 

3. K, L. Brown and S, K, Howry, Transport/360, 
Stanford Linear Accelerator Report, SJ,AC-91 (1970). 

4. Program OPTIC II, unpublished. 

5. M. Bassetti et al., Nucl. Instr, and Meth. 45 93 .-3 
(1966) e 

All linear beam transport calculations are 
based on some variation of eq. (14). The most popular 
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