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Abstract

The CERN PS utilises a Multi-Turn Extraction (MTE)

scheme to stretch the beam pulse length to optimise the fill-

ing process of the SPS. MTE is a novel technique to split a

beam in transverse phase space into nonlinear stable islands.

The recent experimental results indicate that the positions

of the islands depend on the total beam intensity. Particle

simulations have been performed to understand the detailed

mechanism of the intensity dependence. The analysis car-

ried out so far suggests space charge effects through image

charges and image currents on the vacuum chamber and the

magnets iron cores dominate the observed behaviour. In this

talk, the latest analysis with realistic modelling of the beam

environment is discussed and it is shown how this further

improves the understanding of intensity effects in MTE.

INTRODUCTION

The Multi-Turn Extraction (MTE) scheme at cERN was

conceived as method of beam transfer from the PS to the

SPS to minimise beam loss [1]. It has been demonstrated ex-

perimentally several times [2] and is now in daily operation.

It has also been suggested that an inverse process could be

utilised for Multi-Turn Injection (MTI).

The mechanism of beam splitting and preservation of the

separated beamlets can be identified as a nonlinear resonant

driving term (octupole in this study) and amplitude depen-

dent tune shift. In other words, the essential ingredients are

the non-zero harmonic component of the multipole potential

and zero-th component of the multipole potential (this can

be the same multipole as the other). It is, however, not clear

how the beam intensity affects the dynamics.

Experimental observation shows that the beamlets move

outward as the beam intensity increases [3]. We have in-

cluded a simple model of space charge effects in the MTE

simulation that starts after the process of beam splitting to

see how the beam intensity changes the beamlets’ position

in the phase space.

MODEL

Generally speaking, when space charge effects are in-

cluded in particle tracking simulation, the charge distribution

of each beamlet as well as its position in the transverse phase

space should be updated self-consistently. The distributions

are no longer determined only by the lattice elements. On

the other hand, the beamlets are reasonably separated in the
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configuration space. Therefore we assume that only the posi-

tion of each beamlet is modified by the interaction between

the charge centres of the beamlets and is insensitive to the

details of the charge distribution. This justifies the introduc-

tion of a frozen space charge model. The charge distribution

is fixed at the start of the simulation and not updated after

each integration step. However, one significant difference

from the ordinary frozen model for a single beam is that

the beamlet positions are calculated iteratively. When there

is only a single beam, it always sits at the centre of phase

space, which may be slightly shifted by closed orbit distor-

tion. When there are multiple beamlets, contributions to the

space charge potential from other beamlets produce dipole

kicks which we take into account to solve for the beamlet

positions self-consistently.

Figure 1: Position of the stable fixed points around the ring.

They are all connected to make a closed orbit returning to

the initial point after 4 turns.

In practice, to include space charge effects among the

beamlets, the position of stable fixed points without space

charge is first calculated everywhere in the ring, along an

orbit that returns to the initial phase space point after 4 turns.

This closed orbit is in addition to the normal orbit around the

centre which comes back to the initial point on every turn.

The position around the ring is shown in Fig. 1. Different

colours indicate the evolution of each fixed point, but they

are all connected making one single closed orbit. Once the

fixed point positions are identified, space charge effects can

be included by centring the space charge potential at that

position. With a small time step, typically 10 ns, a particle

is tracked taking into account the external magnetic lattice

as well as the space charge potential.

Obviously, the closed orbit coming back after 4 turns un-

der space charge is different from the orbit without space

charge. That means that the position of the beamlets has to

be adjusted to the new position and then the closed orbit has

to be calculated again. This iteration repeats until the closed

orbit found by the particle tracking agrees with the position
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of the beamlets identified before the tracking. About 10 iter-

ations are enough to obtain adequate convergence provided

such a closed orbit exists. In some cases, for example with

extremely strong space charge, there is no fixed point and

no convergence after many iterations.

So far only direct space charge potential has been con-

sidered. There are also image charges (electric) and image

currents (magnetic) on the vacuum chamber and magnet

pole faces, respectively. As we assume horizontal parallel

plates for both the electric and magnetic boundary, there

is an infinite number of image charges and current layers.

In simulation, a sufficient number of layers of the image

charges and currents is determined by looking at the conver-

gence of the fixed point position as a function of the layers.

The deviation of the fixed point position is within 1% when

more than 10 layers (for image changes and image currents

separately) are included.

In the case of parallel boundary conditions, we can con-

struct an analytical model on the direct as well as image

charge and image current contributions. For purposes of

illustration, we first discuss the model with one beamlet at

the centre and two beamlets at a distance from the centre.

The outer two beamlets oscillate around the central beam-

lets in phase space. This model is not expected to lose the

generality of the full multi beamlets situation as far as space

charge interaction is concerned.

Let us first consider the contributions from the direct

space charge and current for completeness. A repulsive

electric force between particles with charges of the same

sign weakens the restoring force so the betatron tune shift is

negative. This is true for particles in the outer beamlets as

well. As in a single beam, moving charges create a magnetic

field that produces a force in the opposite direction to the

electric repulsive force with a factor of -β2, where β is the

speed of particles normalised with the speed of light c. We

consider only the horizontal direction.

Fdirect, elec+magn = (1 − β2)
3eλ

4πε0

1

x
,

where e is the electric charge, λ is the line density, ε0 is the

permittivity of free space. The sum of electric and magnetic

forces with a factor of (1-β2) is still repulsive, but it becomes

less when the beam momentum is high, e.g. at the extraction

energy.

When there is a metallic boundary made up of parallel

plates with half height h, image charges appear on the other

side of the plates. Individual particles feel an attractive

force, which strengthens the restoring force in the horizontal

direction and weakens the restoring force in the vertical

direction.

Fimage, elec, s1 = −
eλ

πε0

x

(2h)2
+ x2
.

We can extend this model to the multiple beamlets case.

Having the image charge of other beamlets on the other

side of vacuum chamber plates, the restoring force of the

Figure 2: In addition to the force between the beamlet on the

mid plane and its image, there is another force between the

beamlet and the image charge of other beamlets indicated as

two arrows pointing left. There should be force between the

beamlets and the images below the vacuum chamber plate

as well. As a result, restoring force to the outer beamlets

with respect to the centre increases.

outer beamlets with respect to the oscillation centre becomes

stronger as you can see in Fig. 2.

Fimage, elec, m1 = −
eλ

πε0

[

x

(2h)2
+ x2

+

2x

(2h)2
+ (2x)2

]

.

Of course, there is infinite layer of image charges with

alternating signs. The image charge in the second layer

acts to cancel the force of the first one, but not completely

because the distance of the interaction is greater.

Fimage, elec, ms = −
eλ

πε0

[ x

(2h)2
+ x2

+

2x

(2h)2
+ (2x)2

−

x

(4h)2
+ x2

−

2x

(4h)2
+ (2x)2

+ . . .
]

.

Notice that there is no image current at the same place

of the image charge. Although the orbit of the beamlets

oscillates around the ring, it does not move in time. Only

a DC component of magnetic field is created, which can

penetrate the metallic vacuum chamber wall. On the other

hand, the DC component of the magnetic fields makes an

image current on the magnet pole face. Let us assume the

half gap of the magnet pole face is g.

Fimage, magn, ms = β
2 eλ

πε0

[ x

(2g)2
+ x2

+

2x

(2g)2
+ (2x)2

−

x

(4g)2
+ x2

−

2x

(4g)2
+ (2x)2

+ . . .
]

.

This simple analytical model helps us understand how the

direct and image space charge forces act, at least whether

the overall effect is repulsive or attractive.

RESULTS

Two octupoles in the straight sections 39 and 55 (IOCT39

and IOCT55) and two sextupoles next to the octupoles in

the same straight sections IXCT39 and IXCT55 are excited.
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The pole face winding has a set current close to the machine

operation condition. The magnet packing factor, defined as

the fraction of the total magnet length over the circumference,

is 0.8. The tunes without space charge are (6.255, 6.230).

Figure 3: Horizontal phase space with islands when no space

charge potential is included.

Figure 4: Phase space when the space charge from a total

beam intensity of 3.27 × 1013 is included. The beam inten-

sity of each beamlet is equal, namely 1/5 of the total beam

intensity.

Figures 3 and 4 show the horizontal phase space without

and with space charge effects from a total 3.27×1013 protons

(shared equally across 5 beamlets). Figure 5 is the close-up

view of the lower right island.

Figure 6 shows the intensity dependence of the fixed point

locations with different boundary conditions. When only

direct space charge is included, the islands move inwards

(blue), but the change is small at the high beam momentum

of 14 GeV/c. Image charges induce a large shift outwards

(green). Image currents cause inward displacement that

tends to cancel the image charge contributions.

In the simulation above, we assumed that all the five beam-

lets including at the centre have equal intensity. In order

to see how an imbalance in beam intensity changes the be-

haviour, an intensity imbalance factor f is introduced be-

Figure 5: Close view of the lower right island. Black dots

show the zero intensity case of Fig. 3 and red dots show the

effect of space charge from Fig. 4. Single dots of black and

red around the centre of each coloured ellipse indicate the

fixed points.

Figure 6: Location of the lower right island in Fig. 4 v. total

beam intensity. Direct space charge produces a slightly neg-

ative tune shift and the island moves inwards with intensity.

Image charge only gives a positive tune shift and the island

moves outwards. Image current partially cancels the tune

shift, and the slope of the line is less than the case with image

charge only. The beam momentum is 14 GeV/c, the vacuum

chamber half-height is h=35 mm, and the magnet pole face

half-height is g=50 mm. We assume parallel plates to model

the vacuum chamber and magnet pole faces. The packing

factor of the magnets is 0.8. The total beam intensity is five

times the beamlet intensity.

tween the core and the outer beamlets as follows,

Icore = (1 + 4 f ) × Ieq,

Iouter = (1 − f ) × Ieq

where Icore is the intensity in the core beamlet and Iouter is

the intensity in each outer beamlet. When f is zero, all five

beamlets have equal intensity Ieq. When f = −0.25, there

is no beam in the centre and the whole intensity is shared

by the outer beamlets equally. When f = 1.0, there are no
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outer beamlets and only the central beamlet exists. The total

beam intensity is kept constant.

Figure 7: Fixed point position as a function of the intensity

imbalance factor (see text).

Figure 7 shows how the fixed points move as a function

of the intensity imbalance factor. The total beam intensity

is fixed at 3.27 × 1013 and the horizontal tune used is the

nominal tune, 6.255. The fixed point at zero current is posi-

tioned at 28.143 mm. The shift due to an imbalance in the

beam intensity is rather small.

Figure 8: Fixed point position as a function of beam mo-

mentum.

Finally, the position of the fixed points as a function of

beam momentum is shown in Fig. 8. Although there are

some fine structures at momenta around 10 and 12 GeV/c

whose reason is unknown, at the lower momentum, direct

space charge effects are dominant. As the beam momentum

increases, the contribution from the image charge/current

becomes large and overcomes the direct space charge. As

the beam momentum becomes even higher, the image

charge/current space charge effects decrease due to the rela-

tivistic Lorentz factor.

COMPARISON WITH EXPERIMENT

So far, we have used parallel plates models for both the

electric boundary image charges and the magnetic boundary

image currents. However, more realistic boundary condi-

tions have to be implemented in order to compare results

from the simulation and experiment quantitatively. As a first

step, a rectangular boundary has been introduced to treat the

electric boundary.

We use the model in [4]. here Poisson’s equation is solved

by invoking a conformal Schwarz-Christoffel transforma-

tion.

G (u,v,u0,v0) =
1

4π
ln

(u − u0)2
+ (v + v0)2

(u − u0)2
+ (v − v0)2

,

where G (u,v,u0,v0) is a Green’s function and (u,v) and

(u0,v0) are the transformed coordinates of the observation

and source points, respectively. The mapping relations be-

tween coordinates before transformation (x, y) and after

(u,v) are,

u =
sn (2K x/a, k) dn (2K y/a, k ′)

1 − dn2 (2K x/a, k) sn2 (2K y/a, k ′)
,

v = cn (2K x/a, k) dn (2K x/a, k)

×

sn (2K y/a, k ′) cn (2K y/a, k ′)

1 − dn2 (2K x/a, k) sn2 (2K y/a, k ′)
,

where K is the complete elliptic integral of the first kind

with module k and residual module k ′. sn, cn and dn are

the Jacobi elliptic functions. a and b are the horizontal and

vertical aperture, respectively.

The electric field is the derivative of the potential. In

order to calculate electric fields numerically, a circular cross-

section beam of 2 mm radius with a uniform charge distribu-

tion is assumed. With this assumption, the electric fields at

the beam edge are calculated numerically as

Ex = −

G (x + dx, y, x0, y0) − G (x − dx, y, x0, y0)

2dx
,

Ey = −

G (x, y + dy, x0, y0) − G (x, y − dy, x0, y0)

2dy
,

where dx and dy are set to 0.1 mm. Electric fields inside the

beam are a linear function of the coordinates (x, y) and zero

at the centre.

Ignoring image currents on the magnet pole face for the

moment, the force acting on the beam particles in the rest

frame has two components,

Ftotal =

(

1 − β2
)

Fdirect, elec + Fimage, elec.

The field obtained with the boundary conditions is the sum

of the direct electric field and the image charge electric field.

In order to calculate the direct magnetic field, we need the

direct electric field without boundary. This has been done

by assuming a vacuum chamber 100 times larger (the results

are almost the same with 10 times larger). Finally, the force
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is the combination of the following terms,

Ftotal =

(

1 − β2
)

Fdirect, elec + Fdirect+image, elec

− Fdirect, elec .

The second term on the right hand side is the field obtained

by solving for the potential with rectangular boundary con-

ditions.

Figure 9: Fixed point position as a function of horizontal

tune. The bare tunes are (6.255, 6.300). There is a slight

difference between the results from parallel plates and a

rectangular vacuum chamber.

We have compared the fixed point position as a function

of beamlet intensity with different boundary conditions. Fig-

ure 9 shows that the parallel plates model and the rectangular

vacuum chamber model give a slightly different intensity de-

pendence. In order to check the consistency of two models,

the results for a wider rectangular aperture are also shown in

each case as solid circles. It is confirmed that the rectangular

vacuum chamber gives similar results to those from parallel

plates.

Figure 10: Slope of the beamlet position as a function of total

beam intensity observed experimentally and by simulation.

the slope is defined as a function of the total beam intensity

of 1010 as in [3].

In reference [3] Fig. 13 and Table IV, the beamlet posi-

tion as a function of the total beam intensity is shown and

tabulated. These can now be compared with the correspond-

ing simulation results. Figure 10 shows the slope of each

beamlet. There are two simulation results: the first includes

everything: direct space charge, image charges on the vac-

uum chamber and image currents on magnets; the second

excludes image currents on magnets. Overall, experimental

and simulation results look similar but there are two obvious

discrepancies. First, the simulation results are equally dis-

tributed below and above zero whereas three experimental

results have a positive slope and one has a negative slope.

Secondly the difference between the maximum and the mini-

mum slopes seems slightly different between simulation and

experiment. We are investigating sources of the discrepan-

cies.

One of the experimental findings - that there is no dif-

ference between debunched and bunched beams in terms

of intensity dependence of beamlet position - can be under-

stood if the main space charge contribution is from image

charges and image currents. Each depends only on the total

intensity and not on the bunching factor. This excludes the

dependence of a longitudinal model in the simulation.
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