
SPACE CHARGE MODULES FOR PyHEADTAIL
A. Oeftiger∗, CERN, Meyrin, Switzerland; S. Hegglin, ETH Zürich, Zürich, Switzerland

Abstract
PyHEADTAIL is a 6D tracking tool developed at CERN

to simulate collective effects. We present recent develop-
ments of the direct space charge suite, which is available for
both the CPU and GPU. A new 3D particle-in-cell solver
with open boundary conditions has been implemented. For
the transverse plane, there is a semi-analytical Bassetti-
Erskine model as well as 2D self-consistent particle-in-cell
solvers with both open and closed boundary conditions. For
the longitudinal plane, PyHEADTAIL offers line density
derivative models. Simulations with these models are bench-
marked with experiments at the injection plateau of CERN’s
Super Proton Synchrotron.

INTRODUCTION
The self-fields of particle beams superpose the electro-

magnetic fields applied by magnets and radio frequency (RF)
cavities in synchrotrons. The corresponding space charge
effects lead to defocusing in the transverse plane and fo-
cusing (defocusing) in the longitudinal plane for operation
above (below) transition energy. For non-linear beam dis-
tributions, space charge results in a tune spread which is an
important factor e.g. when investigating betatron resonances
or the influence of Landau damping during instabilities. We
present the implemented space charge models of the collect-
ive effects simulation software PyHEADTAIL [1] which is
developed in Python. PyHEADTAIL models beam dynam-
ics by transversely tracking macro-particles linearly between
interaction points around the circular accelerator. Longit-
udinal particle motion is modelled either by linear tracking
or non-linear (sinusoidal) drift-kick integration. The forces
from collective effect sources such as electron clouds, wake
fields from impedances or space charge are integrated over
the respective distance and applied as a momentum kick at
the following interaction point [2]. Recently, large parts of
PyHEADTAIL have been parallelised for NVIDIA graphics
processing units (GPU) architectures [3]. Our particle-in-
cell library PyPIC used for the self-consistent space charge
models in PyHEADTAIL especially benefited from these
efforts – the corresponding speed-ups are reported here.
This paper is structured as follows: we first address the

implemented space charge models, which is followed by our
GPU parallelisation strategies and achieved improvements,
and, finally, we compare simulation results with measure-
ments at CERN’s Super Proton Synchrotron (SPS). Our
developed software and libraries are available online [4].

SPACE CHARGE MODELS
A PyHEADTAIL macro-particle beam of intensity N ,

particle charge q and particle mass mp is described by the
∗ adrian.oeftiger@cern.ch, also at EPFL, Lausanne, Switzerland

6D set of coordinates (x, x ′, y, y′, z, δ), where x denotes the
horizontal offset from the reference orbit, y the vertical offset,
x ′ = px/p0 and y′ = py/p0 the corresponding transverse
normalised momenta for p0 = γmp βc the total beam mo-
mentum, z denotes the longitudinal offset from the synchron-
ous particle in the laboratory frame and δ = (pz − p0)/p0
the relative momentum deviation. Most of the space charge
models are based on “beam slices” which represent lon-
gitudinally binned subsets of the beam distribution. The
density per slice is determined by nearest grid point (NGP)
interpolation (i.e. lowest order).

Longitudinal Space Charge
For an emittance-dominated bunched beam, which is usu-

ally the case in a circular accelerator, the longitudinal elec-
tric field depends on the local line density λ(z). Beams
in CERN’s circular accelerators typically have a very long
bunch length in comparison to the vacuum tube diameter.
Therefore, the non-linear image fields suppressing the lon-
gitudinal electric field have to be taken into account for
the longitudinal space charge model. In PyHEADTAIL we
provide such a so-called λ ′(z) model following the extens-
ive analysis in [5, chapter 5]. The space charge forces are
computed assuming a linear equivalent field

Eequiv
z (z) = −

g

4πε0γ2
dλ(z)

dz
, (1)

where g denotes the geometry factor and ε0 the vacuum
permittivity. Conceptually, the real longitudinal profile is
treated like a parabolic line density

λ(z) =
3Nq
4zm

(
1 −

z2

z2m

)
(2)

with parabolic bunch half length zm . In particular, this model
identifies themean value of the real electric field 〈zEreal

z (z)〉z
(which includes the non-linear image effects) with the corres-
ponding analytical expression for the parabolic distribution
with the generalised geometry factor g, which then absorbs
the image field contributions. Our implemented model is
valid for bunches satisfying zm > 3rp where 2rp denotes
the diameter of a perfectly conducting cylindrical vacuum
tube. In this case, the geometry factor g becomes independ-
ent of the bunch length and can be averaged over the whole
distribution yielding [5, Eq. (5.365b)]

g = 0.67 + 2 ln
(

rp
rb

)
(3)

where rb denotes the radial half width of a transversely
round ellipsoidal beam with uniform charge distribution. As
a further remark, [5, chapter 6] also discusses the case of two
parallel conducting plates with distance 2rp , for which the

MOPR025 Proceedings of HB2016, Malmö, Sweden

ISBN 978-3-95450-178-6

124C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Dynamics in Rings

image term 2 ln(rp/rb) becomes 2 ln(4rp/(πrb)). Figure 1
compares the longitudinal kicks for a round vacuum tube and
the above model (for which g = 5.25, compare to g0 = 6.36
in free space) with the real electric field kicks computed in
free space by the particle-in-cell (PIC) algorithm described
in subsection . Indeed, the λ ′(z) yields a lower Ez due to the
image effects. The beam has been divided into only 32 slices
which is few for the NGP interpolation, correspondingly the
λ ′(z) model kicks appear step-like (the PIC algorithm in
contrast uses one order higher interpolation).

0.6 0.4 0.2 0.0 0.2 0.4 0.6
longitudinal position z [m]

3

2

1

0

1

2

3

ki
ck

 δ
a
ft
er
−
δ b
ef
or
e
 [

10
−

10
]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lin
e
 d

e
n
si

ty
 λ

(z
)

[1
0
−

9
 C

/m
]

(a) λ ′(z) model (incl. an rp = 5 cm round vacuum tube boundary).

0.6 0.4 0.2 0.0 0.2 0.4 0.6
longitudinal position z [m]

3

2

1

0

1

2

3

ki
ck

 δ
a
ft
er
−
δ b
ef
or
e
 [

10
−

10
]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lin
e
 d

e
n
si

ty
 λ

(z
)

[1
0
−

9
 C

/m
]

(b) 3D PIC model (free space).

Figure 1: Longitudinal kicks vs. position for 32 slices.

Transverse Gaussian Space Charge
A frequently employed 2D space charge model for the

transverse plane has been established by M. Bassetti and
G.A. Erskine in 1980 [6]. They derived a computationally
optimised analytical expression (the “Bassetti-Erskine” or
B.E. formula) for the electric field of a two-dimensional
Gaussian charge density function

ρ(x, y) =
Nq

2πσxσy
exp *

,
− *
,

x2

2σ2
x

+
y2

2σ2
y

+
-
+
-

(4)

which generates the electric fields [7]

Eu =
Q

4πε0
u

∞∫
0

dt
exp

(
− x2

2σ2
x+t
−

y2

2σ2
y+t

)
(σ2

u + t)
√

(σ2
x + t)(σ2

y + t)
(5)

for u = x, y. For σx > σy , the B.E. formula reads

Ey + i Ex =
Nq

2ε0
√
2π(σ2

x − σ
2
y)

w
*..
,

x + iy√
2(σ2

x − σ
2
y)

+//
-
− exp *

,
−

x2

2σ2
x

−
y2

2σ2
y

+
-
w
*..
,

x σy

σx
+ iyσx

σy√
2(σ2

x − σ
2
y)

+//
-

(6)

involving the complex-valued Faddeeva function w(x + iy).
It belongs to the family of error functions and can be evalu-
ated much faster than numerically solving the full integral
(5) [8].

PyHEADTAIL applies this semi-analytic model slice
by slice to the respective transverse distribution along the
beam. If the actual distribution deviates from a Gaussian,
the “Bassetti-Erskine” formula (6) only represents an ap-
proximation. This needs to be kept in mind especially in the
presence of dispersion, when a non-Gaussian momentum
distribution contributes to the transverse profile. Figure 2
depicts an N = 2 × 1011 SPS bunch with a very large longit-
udinal r.m.s. emittance of ε z = 0.42 eV s (at an RF bucket
acceptance of 0.68 eV s) where the RF bucket non-linearities
deform the matched momentum distribution. This reflects
in the evidently non-Gaussian horizontal beam profile given
a dispersion of Dx = 7.96m and a horizontal normalised
emittance of ε x = 0.84mmmrad.

60 40 20 0 20 40 60
horizontal position x= xβ +Dxδ [mm]

0

5

10

15

20

25

30

35

40

n
o
rm

.
h
o
ri

zo
n
ta

l
b
e
a
m

 p
ro

fi
le

macro-particle distribution
r.m.s. equivalent Gauss

(a) Beam profile and Gaussian r.m.s. equivalent for central beam
slice.

60 40 20 0 20 40 60
horizontal position x= xβ +Dxδ [mm]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

h
o
ri

zo
n
ta

l
e
-f

ie
ld

 E
x
 [

kV
/m

] 2.5D PIC
3D PIC
Bassetti-Erskine

(b) Corresponding horizontal electric field from PIC and (Gaussian)
Bassetti-Erskine models.

Figure 2: Large ε z entail non-Gaussian momentum distribu-
tions which affect the horizontal distribution via dispersion.

Particle-in-cell Model
PIC algorithms model space charge self-consistently [9].

In order to compute the kicks, the macro-particle distribution
is first interpolated to nodes of a regular mesh (particle-
to-mesh or “P2M” step), then the charge distribution on
the mesh is solved for the potential and consequently the
force (solve step), and finally the force is interpolated back to

Proceedings of HB2016, Malmö, Sweden MOPR025

Beam Dynamics in Rings

ISBN 978-3-95450-178-6

125 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

the particles (mesh-to-particles or “M2P” step). A separate
library has been developed named PyPIC to encapsulate the
PIC algorithm.
In synchrotrons, the relative momenta between the

particles are usually much smaller than p0. This can be
exploited when solving the Maxwell equations by Lorentz
boosting to the beam rest frame, where we neglect the re-
lative particle motion and correspondingly only have to
deal with an electrostatic problem. Before the P2M step,
we Lorentz boost from the co-moving laboratory frame
(x, y, z)lab to the beam rest frame

(x̃, ỹ, z̃)beam = (x, y, γz)lab . (7)

Correspondingly, the bunch becomes much longer, the mesh
is then constructed in the beam frame. In PyPIC we have im-
plemented a linear spatial Cloud-In-Cell (CIC) interpolation,
i.e. the shape function of the macro-particles is a constant
Heaviside step function over the diameter of a cell. With the
resulting mesh charge density ρ, we are ready to solve the
discrete version of the 2D or 3D Poisson equation,

∆φ = −
ρ

ε0
, (8)

on the mesh for the mesh potential φ.
To this end, we implemented several Poisson solvers in

both 2.5D (i.e. slice-by-slice 2D transverse solving) and
full 3D variants. The solvers cover finite difference (FD)
approaches with direct matrix solving via QR or LU decom-
position (with Dirichlet or arbitrary boundary conditions)
and Green’s function methods (free space or rectangular
boundary conditions) exploiting the Fast Fourier Transform
(FFT) algorithm.

The FD implementations construct a sparse Poisson mat-
rix A with a first-order nearest-neighbour stencil. In case of
the LU decomposition A = LU , the sparse lower and upper
triangle matrices L,U are then precomputed at set-up. At
each solve step, the linear matrix equation LUφ = −ρ/ε0
is solved given the respective vector ρ containing the mesh
charge density of all nodes. This approach is extremely effi-
cient on the CPU in conjunctionwith theKLU algorithm [10]
if the Poisson matrix remains constant over many solve
steps [11]. Therefore, e.g. matrix element indices for the
boundary conditions should not change due to a differently
shaped boundary, otherwise the LU decomposition needs
to be recomputed which is computationally expensive. The
QR decomposition is slower than the LU decomposition (cf.
e.g. [12]) but numerically more stable than the LU decom-
position, hence it serves as a reference. Finite difference
equations always require boundary conditions which can
be advantageous if indirect space charge effects from the
vacuum tube need to be taken into account. If the transverse
beam sizes are rather small compared to the vacuum tube,
the mesh can become prohibitively large though. In this
case, the following method may be more appropriate.

Another approach to solve Eq. (8) is to use the free space
D=2 (for x = (x̃, ỹ)beam) resp. D=3 (for x = (x̃, ỹ, z̃)beam)

Green’s functions G,

φ(x) =
1

2D−1πε0

∫
dD x̂ G

(̂
x − x

)
ρ
(̂
x
)

. (9)

We apply Hockney’s trick where the domain of the Green’s
function is doubled by cyclical expansion in each dimen-
sion [9]. The potential in this expanded region will be in-
correct and discarded but the periodicity allows to make use
of the computationally very effective FFT algorithm for the
convolution. In principle, the Green’s function needs to be
evaluated on a square (cuboid) mesh with equal distances
in all directions. In the transverse plane, aspect ratios may
be large due to the betatron function ratio and additional
dispersion effects. At least in the 3D case, the aspect ratio
of the transverse with respect to the longitudinal plane will
certainly be large and will thus require many mesh points
to cover the whole distribution which may become compu-
tationally heavy. Therefore, we make use of the integrated
Green’s functions (IGF) Ĝ ([13, Eq. (56),(57)] for the 2D
case and [14, Eq. (2)] for 3D), which conceptually include
the aspect ratio into the discrete Green’s function by integrat-
ing over each cell assuming ρ to be constant across the cell.
This approximation has to be kept in mind when choosing
the mesh size. The Fourier transform of the IGF is computed
at set-up and stored until the mesh is changed. At each solve
step, it is multiplied by the Fourier transformed mesh charge
density ρ and the result inversely Fourier transformed to
yield the potential,

φ = F −1
[
(F Ĝ) · (F ρ)

]
. (10)

The FFT convolution approach is much more efficient at a
complexity of O(n log n) than computing the convolution
integral in real space with O(n2), where n the total number
of mesh nodes. Using this method with the FFTW [15]
implementation on the CPU is found to take less than twice
as long as the KLU direct solving approachmentioned before
[11].
After the potential on the mesh φ has been determined,

the electric mesh fields Ẽ in the beam frame are calculated
as

Ẽ = −∇φ (11)

via a numerical first-order finite difference gradient imple-
mentation. Finally, the electric fields are interpolated back
to the macro-particles (M2P) and Lorentz boosted back to
the laboratory frame,

(Ex ,Ey ,Ez)lab =
(
γẼx , γẼy , Ẽz

)
beam

. (12)

The Lorentz forces for each macro-particle include the mag-
netic fields arising when transforming to the laboratory
frame,

(Bx ,By ,Bz)lab =
(
−βEy/c, βEx/c,0

)
lab

(13)

=⇒ (Fx ,Fy ,Fz)lab = q
(

Ẽx

γ
,

Ẽy

γ
, Ẽz

)
beam

. (14)

MOPR025 Proceedings of HB2016, Malmö, Sweden

ISBN 978-3-95450-178-6

126C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Dynamics in Rings

To conserve the total charge, the interpolation functions and
order at both the P2M as well as the M2P step necessarily
need to match [9]. As a side note, the usual straight-forward
interpolation functions can be the source of noise and grid
heating effects in the traditional PIC approach. Recently,
symplectic algorithms have been derived to solve these is-
sues [16], which can be interesting for long-term simulations
over many turns since the symplectic nature implies a finite
bound on the energy error.

Figure 3 shows the PIC computed electric field of a coast-
ing beam with a Kapchinsky-Vladimirsky (KV) distribution
in the transverse plane for the SPS. For λ = 5.1C/m and
beam edges at rx = 2.5mm and ry = 1.6mm, the maximal
electric field at the beam edge analytically gives

Ex =
λ

πε0

1
rx + ry

= 15.2 kV/m , (15)

which matches the result from the PIC algorithm.

Figure 3: Horizontal electric field of a KV beam in the SPS.

GPU HIGH-PERFORMANCE
COMPUTING

PyHEADTAIL has been made available for graphics pro-
cessor unit (GPU) high-performance computing. The library
PyCUDA [17] provides an interface for GPU memory stored
arrays that adopts the API of the standard Python library
for scientific computing, NumPy, hence making large por-
tions of the code easily applicable to both NumPy arrays
and GPUArrays. To make the GPU usage in PyHEADTAIL
as transparent and flexible as possible for new GPU users,
a context management system to switch between GPU and
CPU contexts has been developed [18]. Algorithms for the
GPU need to make use of the pronounced parallel hard-
ware structures and therefore often differ from serial CPU
algorithms. The context managers switch between imple-
mented algorithms e.g. for the bunch distribution statistics.
For the GPU implementations it is therefore of crucial im-
portance to have access to the underlying CUDA [3] API
from Python which is fully provided by PyCUDA. Imple-
menting and calling custom CUDA kernels is flexible and

straight forward from the Python top layer. Besides the
NumPy array API and the CUDA access, the third important
ingredient to PyHEADTAIL on the GPU is the incorporation
of powerful GPU computing libraries such as cuFFT [19], cu-
SOLVER [20], cuSPARSE [21] and Thrust [22]. We achieve
this partly via the Python binding library scikit-cuda [23]
and partly via self-implemented interfaces using ctypes.
For the PyHEADTAIL space charge suite we have de-

veloped a GPU version of PyPIC. The performance bot-
tlenecks appear very differently during the aforementioned
three particle-in-cell steps P2M, solve and M2P when com-
paring runtime profiles between the CPU and GPU versions.
Figure 4 shows the fraction of time spent on both architec-
tures during each step for quadratically increasing transverse
mesh sizes given a fixed number of macro-particles. Compar-
ing the cuFFT 3D Fourier transform performance to FFTW
on a mesh of size (16,32,64) gives a speed-up of up to
S = 35.8, comparing to the standard NumPy FFT extension
even reaches S = 65.5. This explains why the solve step with
the free space FFT-based Green’s function Poisson solver
does not have such a significant impact on the overall timing
during the particle-in-cell algorithm on the GPU, while it
essentially marks the bottleneck on the CPU.

Effectively, the particle deposition on the mesh is the most
performance critical part in the GPU PIC algorithm. We
have implemented an atomic deposition algorithm, in which
a CUDA thread for each particle is launched which locks the
memory location of the respective mesh node charge from
access by other threads, reads the memory value, adds to it
and then stores the updated value. With this approach, we ob-
served a rather slow performance as memory bank conflicts
and thread stalls can happen for both the software-emulated
64-bit and the hardware-accelerated 32-bit atomicAdd vari-
ants. This finding is especially pronounced in the 3D case
where each particle updates eight surrounding mesh nodes
(instead of four in the 2D case). The problem decreased
when using less macro-particles for a given mesh size – how-
ever, to achieve a good resolution for the electric fields, at
least 10 macro-particles per cell are required [9].
To address this issue, we implemented a sorted depos-

ition particle-in-cell algorithm described in [24]. In this
approach, the macro-particle coordinate arrays are first sor-
ted by their cell IDs, for which we used the Thrust library
with its sort_by_key functions. Subsequently, a thread
is launched for each cell which loops through the particles
within this cell to construct guard cell charge densities. In
a third step, a kernel merges the four (2D) resp. eight (3D)
guard meshes to the final mesh charge density ρ array. We
achieved a speed-up of S = 3.5 for the mesh size (64,64,32)
and 1 × 106 macro-particles when comparing the sorted de-
position to the double precision atomicAdd deposition. In
addition, the M2P step profits from the sorted arrays since
global GPU memory is accessed in a coalesced manner: the
kernel call on unsorted arrays takes 25% longer than on sor-
ted arrays. Further approaches to address the memory bank
conflicts (such as using L1 caching) have been investigated
e.g. for SYNERGIA in [25] and for ELEGANT in [26, 27].

Proceedings of HB2016, Malmö, Sweden MOPR025

Beam Dynamics in Rings

ISBN 978-3-95450-178-6

127 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

(a) CPU implementation. (b) GPU implementation.

Figure 4: Timing proportions between the P2M, solve and M2P step for
the FFT-based Poisson solver vs. number of mesh nodes per transverse
side. The number of macro-particles is fixed to 5 × 105.

Figure 5: Overall 2.5D PIC speed-up achieved
vs. number of mesh nodes per transverse side
comparing a NVIDIA K40m GPU to a single
2.3GHz Intel Xeon E5-2630 (v1) CPU core.For the 2.5D case, the transverse Poisson equations can be

solved for all slices in parallel. Since the cuFFT calls for each
slice work with small arrays compared to the GPU memory
size, the cuFFT batch solving works very effectively. All in
all, we achieved overall PIC speed-ups of up to S = 13.2
compared to the CPU. Figure 5 shows how the GPU usage
becomes increasingly beneficial for larger mesh sizes at a
fixed number of 5 × 105 macro-particles. Also increasing
the number of macro-particles scales less than linearly for
the relevant parameter range as opposed to the CPU. These
results allow the GPU accelerated space charge simulations
to access much higher resolutions and increase the validity
of simulations (also over longer time scales).

SPS BENCHMARK
Since strong space charge leads to transverse detuning,

the resonance condition especially in the centre of a Gaus-
sian bunch is shifted to higher tunes. Large-scale static tune
scans with high-brightness single bunch beams at the injec-
tion plateau of the SPS revealed a significant influence of
the 4Qx = 81 octupolar resonance [28]. Here, we deliber-
ately drive this resonance with a single extraction octupole
(LOE.10402) at k3 = 25m−4 acting as a localised octupolar
field error. The N = (2.05 ± 0.1) × 1011 single bunches
arrive from the upstream Proton Synchrotron with norm-
alised transverse emittances ε x = (0.84± 0.05) mmmrad
and ε y = (1.06± 0.04) mmmrad at an r.m.s. bunch length
of στ = (0.93± 0.01) ns. The incoherent space charge
tune spread of these bunches amounts to

(
∆QSC

x ,∆QSC
y

)
=

(−0.09,−0.16). While fixing the coherent vertical tune
Qy = 20.31, we measure the transverse averaged emittance
growth for horizontal tunes between 20.16 ≤ Qx ≤ 20.30
over a time span of 3 s in a set-up equivalent to [28]. For
each working point, three consecutive shots per transverse
plane are wire scanned to obtain the beam profiles and ex-
tract the respective normalised emittance via a Gaussian fit
(subtracting the dispersion contribution in the horizontal
plane). The orange curve in figure 6 shows the dependence
of the averaged transverse emittance blow-up on Qx . The
4Qx = 81 resonance causes a shifted significant emittance
growth peak with its maximum at Qx = 20.28.

20.14 20.16 20.18 20.20 20.22 20.24 20.26 20.28 20.30 20.32
Qx

10

5

0

5

10

15

20

25

30

tr
a
n
sv

e
rs

e
 b

lo
w

-u
p
 [

%
]

4
Q
x
=

8
1

0

2

4

6

8

10

12

14

16

re
la

ti
v
e
 b

e
a
m

 l
o
ss

 [
%

]blow-up (simulation)

blow-up (measurement)

loss (measurement)

Figure 6: Transverse emittance growth vs. coherent hori-
zontal tune for Bassetti-Erskine space charge simulations
over 10 × 103 turns and measurements over 130 × 103 turns.

Corresponding simulations spanning 0.23 s cycle time
with the PyHEADTAIL space charge models (including the
non-linear model of the SPS [29]) have been set-up resolv-
ing the TWISS parameters and corresponding beam sizes
around the SPS ring. The results plotted in blue also show
the maximum blow-up at Qx = 20.28. However, around
Qx = 20.25 itself we find emittance growth predicted by
the simulations which is not observed in the measurements.
Simulations for longer cycle times with a good loss model
might recover this: the measurements show strong losses
around Qx = 20.25 as the beam halo is excited to large
transverse amplitudes where the weaker beam self-fields
lead to a resonance condition much closer to Qx = 20.25.
So far our simulations did not include the SPS impedance
model which leads to significant vertical coherent detuning
of ∆Qimped.

y = −0.03 at N = 2 × 1011 [30].

CONCLUSION
We have described the space charge models implemented

in PyHEADTAIL. The GPU parallelisation strategies and
achieved speed-ups of up to S = 13.2 for our self-consistent
particle-in-cell space charge algorithms have been reported.
These will play a major role in the on-going developments
of the SPS model for high-brightness beams, for which a
first benchmark has been presented in the last section.

MOPR025 Proceedings of HB2016, Malmö, Sweden

ISBN 978-3-95450-178-6

128C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Dynamics in Rings

REFERENCES
[1] E. Metral et al., “Beam Instabilities in Hadron Synchrotrons”,

in IEEE Transactions on Nuclear Science, vol. 63, no. 2, Apr.
2016, pp. 1001-1050.

[2] K.S.B. Li et al., “Code development for Collective Effects”, in
ICFA Advanced Beam Dynamics Workshop on High-Intensity
and High-Brightness Hadron Beams (HB2016), Malmö,
Sweden, July 2016, paper WEAM3X01, this conference.

[3] J. Nickolls, I. Buck, M. Garland and K. Skadron, “Scalable
parallel programming with CUDA.”, in Queue, vol. 6, no. 2,
2008, pp. 40-53.

[4] PyCOMPLETE, Python Collective Effects Library, Acceler-
ator Beam Physics Group, CERN, Switzerland, 2016, http:
//github.com/PyCOMPLETE/.

[5] M. Reiser, “Theory and Design of Charged Particle Beams”,
John Wiley & Sons, Jun. 2008.

[6] M. Bassetti and G.A. Erskine, “Closed Expression for the
Electrical Field of a Two-dimensional Gaussian Charge”, in
CERN-ISR-TH-80-06, CERN, Switzerland, 1980.

[7] H. Wiedemann, “Statistical and Collective Effects”, in
Particle Accelerator Physics, 3rd ed. New York: Springer,
2015, p. 644.

[8] A. Oeftiger et al., “Review of CPU and GPU Faddeeva Im-
plementations”, in Proc. 7th Int. Particle Accelerator Conf.
(IPAC’16), Busan, Korea, May 2016, paper WEPOY044, pp.
3090-3093.

[9] R.W. Hockney and J.W. Eastwood, “Computer Simulation
Using Particles”, CRC Press, 1989.

[10] T.A. Davis and E. Palamadai Natarajan, “Algorithm 907:
KLU, A Direct Sparse Solver for Circuit Simulation Prob-
lems”, in ACM Transactions on Mathematical Software, vol.
37, no. 6, 2010, pp. 36:1-36:17.

[11] G. Iadarola, A. Axford, H. Bartosik, K. Li and G. Ru-
molo, “PyECLOUD for PyHEADTAIL: development work”,
presentation in Electron Cloud Meeting, May 14, 2015,
http://indico.cern.ch/event/394530/.

[12] G.A. Geist and C.H. Romine, “LU Factorization Algorithms
on Distributed-memory Multiprocessor Architectures”, in
Siam. J. Scl. Stat. Comput., vol. 9, no. 4, 1988, pp. 639-649.

[13] J. Qiang, M.A. Furman and R.D. Ryne, “A Parallel Particle-
in-cell Model for Beam–beam Interaction in High Energy
Ring Colliders”, in Journal of Comp. Phys., vol. 198, no. 1,
2004, pp. 278-294.

[14] J. Qiang, S. Lidia, R.D. Ryne and C. Limborg-Deprey, “Er-
ratum: Three-dimensional Quasistatic Model for High Bright-
ness Beam Dynamics Simulation”, in Phys. Rev. ST Accel.
Beams, vol. 10, no. 12, Dec. 2007, p. 129901.

[15] M. Frigo and S.G. Johnson, “The Design and Implementation
of FFTW3”, in Proceedings of the IEEE, vol. 93, no. 2, 2005,
pp. 216-231.

[16] H. Qin et al., “Canonical Symplectic Particle-in-cell Method
for Long-term Large-scale Simulations of the Vlasov-
Maxwell System”, arXiv:1503.08334v2 [physics.plasm-ph],
2015.

[17] A. Klöckner et al., “PyCUDA and PyOpenCL: A Scripting-
based Approach to GPU Run-time Code Generation”, in Par-
allel Computing, vol. 38, no. 3, Mar. 2012, pp. 157-174. See
also http://documen.tician.de/pycuda/.

[18] S. Hegglin, “Simulating Collective Effects on GPUs”,
MSc thesis, D-MATH/D-PHYS Dep., ETH Zürich, Zürich,
Switzerland, 2016.

[19] cuFFT, Fast Fourier Transform library, CUDA Toolkit,
NVIDIA, 2016, https://developer.nvidia.com/
cufft/.

[20] cuSOLVER, collection of dense and sparse direct solv-
ers, CUDA Toolkit, NVIDIA, 2016, https://developer.
nvidia.com/cusolver/.

[21] cuSPARSE, Sparse Matrix library, CUDA Toolkit, NVIDIA,
2016, https://developer.nvidia.com/cusparse/.

[22] N. Bell and J. Hoberock, “Thrust: A productivity-oriented
library for CUDA.”, in GPU computing gems Jade edition,
vol. 2, 2011, pp. 359-371.

[23] L. Givon, scikit-cuda, Python interface to CUDA device /
runtime, cuBLAS, cuFFT and cuSOLVER, 2015, http://
scikit-cuda.readthedocs.io/.

[24] K. Ahnert, D. Demidov and M. Mulansky, “Solving Ordinary
Differential Equations on GPUs”, inNumerical Computations
with GPUs, Springer International Publishing, 2014, pp. 125-
157.

[25] Q. Lu and J. Amundson, “Synergia CUDA: GPU-accelerated
Accelerator Modeling Package”, in Journal of Physics: Con-
ference Series, vol. 513, no. 5, 2014, p. 052021.

[26] I.V. Pogorelov, K. Amyx, P. Messmer, “Accelerating Beam
Dynamics Simulations with GPUs”, in Proc. Particle Accel-
erator Conf. (PAC 2011), New York, USA, May 2011, paper
WEP164, pp. 1800-1802.

[27] K. Amyx et al., “CUDA Kernel Design for GPU-based Beam
Dynamics Simulations”, in Proc. 3th Int. Particle Acceler-
ator Conf. (IPAC’12), New Orleans, USA, May 2012, paper
MOPPC089, pp. 343-345.

[28] H. Bartosik, A. Oeftiger, F. Schmidt and M. Titze, “Space
Charge Studies with High Intensity Single Bunch Beams in
the CERN SPS”, in Proc. 7th Int. Particle Accelerator Conf.
(IPAC’16), Busan, Korea, May 2016, paper MOPOR021, pp.
644-647.

[29] H. Bartosik, A. Oeftiger, M. Schenk, F. Schmidt and M. Titze,
“Improved Methods for the Measurement and Simulation of
the CERN SPS Non-linear Optics”, in Proc. 7th Int. Particle
Accelerator Conf. (IPAC’16), Busan, Korea, May 2016, paper
THPMR036, pp. 3464-3467.

[30] H. Bartosik et al.,“TMCI Thresholds for LHC Single Bunches
in the CERN-SPS and Comparison with Simulations”, in
Proc. 5th Int. Particle Accelerator Conf. (IPAC’14), Dresden,
Germany, May 2014, paper TUPME026, pp. 1407-1409.

Proceedings of HB2016, Malmö, Sweden MOPR025

Beam Dynamics in Rings

ISBN 978-3-95450-178-6

129 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

