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Abstract

Nanoprobes are known to be high precision systems,
which require preliminary modeling for thorough analysis
of optimal working modes. One of most crucial character-
istics of the special class of such beam lines is the so-called
load curves (or surfaces). This paper investigates one of
the types of intrinsic effects, i.e. fringe fields and their in-
fluence on load curves and surfaces, which make it possi-
ble to construct the purposeful search of optimal working
regimes for nanoprobes. A number of different models for
fringe field presentation are discussed in the paper. Analyt-
ical and numerical methods and tools are used for analysis
and selection of optimal parameters for fringe field models.

INTRODUCTION

Methodology of construction nanoprobes which ensures
desired beam characteristics are given in [1, 2]. These pa-
pers deals with ideal piecewise continuous presentation of
magnet fields, in another words in similar cases fringe field
effects are often neglected. On the first steps, described in
[1, 2] Sometimes this is a quite good approximation. But,
it is well known that the piecewise model for field distri-
bution dots not satisfy Maxwell’s equations. That is why
in this paper we consider influence of the fringe field ef-
fects. In many papers the problem of fringe field effects is
studied in nonlinear approximation (see, for example, [4]).
Unfortunately it is not possible to study influence of the
fringe fields based only on experimental data. That is why
we have to use some model approximations for the fringe
fields. The corresponding functions should allow to ap-
proximate the experimental data for corresponding types
of lenses. In this paper we consider several models of the
fringe fields description in order to approach to real magnet
fields in practice. A few optimal variants of a nanoprobe
are considered in [1, 2] are used for investigation of fringe
field effects. Here we use parameters of nanoprobe sys-
tems, which can be obtained in according to a methodol-
ogy, described in [1, 2].

MATHEMATICAL MODELS OF FRINGE
FIELDS

This paper deals with investigation of relative fringe
fields length and form influence on so-called “load curves”
and on some beam characteristics. This influence is
demonstrated using Kiev’s nanoprobe parameters [3]. The
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selection of model functions is determined either experi-
mental data for real lenses or fringe field forms, which have
minimal effects.

Solution of Motion Equations

In linear approximation one can write particle motion
equations for quadrupole [1] in the form of

{
x′′ + k(s)x = 0, x′ = dx/ds,
y′′ − k(s)y = 0, y′ = dy/ds.

(1)

These scalar equations can be rewritten in the vector form

dX(s)
ds

= P(s)X(s), (2)

with X0 = X(s0) as an initial data. The solution of (1) can
be written using matrizant [1]

X(s) = R(s|s0)X0. (3)

Full matrizant for the nanoprobe R(sN |s0) could be pre-
sented using group property as the multiplication of partial
matrizants corresponding to individual pieces of the whole
system

R(sN |s0) =
N∏

k=1

R(sk|sk−1) (4)

where s0 and sN — initial and final values of variable s,
which is measured along some trajectory. Equation (4) is
known as exact presentation for anyN and does not depend
on fragmentation way and satisfied Cauchy task.

Load Curves Construction

Following [1] the full matrizant of the system R(sN |s0)
could be written as R(sN |s0) = RgMRa, where the full
beam line consists of “pre-distance” with the length a, fo-
cusing component — “objective” and “working distance”
with the length g. As the additional condition we append
“from point to point” term, which means r12 = 0, where
r12 — element of the full matrizant R(sN |s0). Using this
condition it is possible to evaluate g. Load curve is the
curve which satisfied the equationm11 = m22, where mij

— elements of partial matrizant for the objective. As an ex-
ample in this paper we consider the Kiev’s nanoprobe sys-
tem [3]. On Fig. 1 the load curve is presented as the dashed
black line on Fig. 1, blue and red lines on it present curves
correspond with 100 and 1000 times demagnification ac-
cordingly. Optimal solutions should belong to the load
curve. On the Fig. 1 the best parameters could be found
on the load curve and in exterior of set which is defined by
blue or red line (against the demagnification).
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Figure 1: Example of load curve.

A Description of Fringe Fields Functions

In this paper for necessary evaluations of the matrizant
we use a piecewise approximation of a fringe field (see
Fig. 2). This approach allows to use analytical formulae
for matrizant for any model of the fringe field. Usually in

Figure 2: Piecewise continuous approximation of a fringe
field.

practice Leff is used instead of the actual magnet length.
This effective length could is introduced as

Leff =
1
kmax

∫ s3

s0

k(s)ds = γLiron,

where kmax — maximum focusing strength of the field, and
Liron — real (“in iron”) corresponding length of a magnet
element.

Fringe fields are intrinsic effects in any type of beam
forming and focusing systems. Usually every kind of beam
lines has a lot of control elements, so it is necessary to take
into account superposition of fringe fields for nearby mag-
nets. This paper deals with ordinary sum of fringe fields
functions without investigation of induced fields in nearby
elements. We consider symmetrical fringe fields relatively
the center sc = (s2 − s1)/2 of each element in account
of experimental data (see Fig. 2). Also Leff is supposed to
be constant. Assuming fringe field as a piecewise function
which can write

f(s) = kmax

⎧
⎨
⎩

fl(s), s ∈ [s0, s1),
1, s ∈ [s1, s2],
fr(s), s ∈ (s2, s3],

(5)

where fl(s) and fr(s) — left (input) and right (output) part
of fringe field modeling function. In order to make f(s)

smooth in joints it is necessary to demand several addi-
tional conditions

fl(s0) = fr(s3) = 0, fl(s1) = fr(s2) = f0,
dfl(s0)

ds
=

dfl(s1)
ds

=
dfr(s2)

ds
=

dfr(s3)
ds

= 0.
(6)

One can use asymptotic conditions instead of (6) in order
to consider broader class of modeling functions for fringe
fields

lim
s→+s0

fl(s) = 0, lim
s→−s1

fl(s) = f0,

lim
s→+s0

dfl(s)
ds

= 0, lim
s→−s1

dfl(s)
ds

= 0,

lim
s→+s2

fr(s) = 0, lim
s→−s3

fr(s) = f0,

lim
s→+s2

dfr(s)
ds

= 0, lim
s→−s3

dfr(s)
ds

= 0.

(7)

Using the experimental data and requirements (6) functions
we can approximate left part (right part could be found after
mirroring left part relative to sc) of real fringe fields for
example with some approximation functions below:

– fl(s) = A sin(νs+ ψ) +B — trigonometric one,
– fl(s) = As3 +Bs2 + Cs+D — polynomial one.
We also consider more complex approximation functions
satisfied (7)
– fl(s) = 1/ [1 + exp (1/P5(s))], where P5(s) is a five
degree polynomialAs5 +Bs4 +Cs3 +Ds2 +Es+ F .

Efficiency of function approximation could be estimated
using two equivalent norms (see Fig. 2):

I. ‖ f − g ‖C= sups∈[s0,s3] | f(s)− g(s) |,
II. ‖ f − g ‖L2=

s3∫
s0

(
f(s)− g(s)

)2

ds.

Fringe Fields “Sewing” and Superposition

Using conditions (6) or (7) we can construct smooth ap-
proximation of a quadrupole gradient distribution along the
optical axis. This approach (see Fig. 3) is used in a special
software for fringe field modeling.

Figure 3: Example of fringe field superposition.

LOAD CURVES WITH FRINGE FIELDS

The fringe field presentation and the corresponding
beam line segmentation are presented on Fig. 2. The load
curves should be be evaluated taking into account fringe
fields. For this purpose the beam line have been separated
on several parts. Each quadrupole could be splitted like on
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Fig. 2. Using (4) full matrizant can be presented as a pro-
duction of all partial matrizants. In this paper we exploit
well-known matrizant presentation for a piece-wise model.
“Height” of each rectangle step is defined by value of mod-
eling fringe field function in the middle of correspondent
interval.

COMPUTER MODELING

A number of appropriate parameters of nanoprobe were
received in [1, 2]. Using referred above methodology we
could construct load curves for rectangle model in neigh-
borhood of optimal parameters and with an allowance for
fringe field effects. We can compare load curves behavior
with and without fringe fields for parameters from [3].

A Load Curves Construction Algorithm

1) Construct the load curve using ideal piecewise model.
2) Retrieve a few tens of points belong to load curve.
3) Split the real magnet field of each quadrupole lens on

the left, center and right parts (see Fig. 2).
4) Approximate the left and right units with appropriate

functions.
5) Divide the left and right parts into tens of intervals.
6) Compute partial matrizants for the left and right units

using splitting like on Fig. 2 and the matrizant group prop-
erty (4).

7) Calculate the full matrizant for objective using (4).
The center part matrizant for each lens could be found ex-
ploiting well-known analytic matrizant for ideal piecewise
model.

8) Construct the load curve for obtained objective ma-
trizant point by point varying magnet excitations k1 and k2

(see Fig. 1) in neighborhood of retrieved points from the
step 2.

In this paper we consider equal left and right parts of
fringe field for each lenses as part ofLeff. We examined 1

32 ,
1
16 , 1

8 , 1
4 and 1

2 parts of Leff for right and left fringe fields. It
is not necessary to use the step 1 point of algorithm during
fringe field growthing and it is required to retrieve points
from previous step in step 2 to avoid redundant time and
computational costs.

The oad urves istortion

As an example we investigated parameters for Kiev
nanoprobe [3]. On Fig. 4 we can see load curve change
when increasing fringe field part of Leff from zero to 1

8 .
Dashed line is corresponding load curve when left and right
parts of fringe field are equal zero. Blue line conforms to
1
32 part of Leff for left and right parts, red line — to 1

16 . On
Fig. 5 dashed line is again conforms to load curve with zero
fringe field parts, green line — to 1

8 part of Leff for left and
right fringe fields, blue line — to 1

4 and red line to 1
2 .

In the beginning of load curve almost there is no impact
of fringe fields (when k1 ≤ 0.5 and k2 ≤ 0.5), but while
increasing k2 one can see that load curves are deform to

Figure 4: The load curves distortion for fringe field parts
are equal 1

32 and 1
16 .

right when fringe field part is growing from 0 to 1
2 . Top

part of load curves is turning down while fringe field parts
is growing.

Figure 5: Load curves distortion with fringe field parts are
equal 1

8 , 1
4 and 1

2 .

CONCLUSION

As we can see using plots, fringe field effects could
significantly change load curves. Optimal systems which
parameters received without taking into account of fringe
fields effects should be reviewed because of fringe field im-
pact. Fringe field are the intrinsic effects so they have to be
include in estimation of optimal nanoprobe parameters.
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