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Abstract

A particular section of the electron beam transport line,
to be used in the e-cooling project [1] of the Relativistic
Heavy Ion Collider (RHIC), is constrained to displace the
trajectory with both horizontal and vertical offsets so that
the outgoing beamline is parallel to the incoming beam-
line. We also require that section be achromatic in both
planes. This mixed horizontal and vertical achromatic S-
bend is accomplished by rotating the two dipoles and the
quadrupoles of the line, about the longitudinal axis of the
incoming beam. However such a rotation of the magnetic
elements may couple the transported beam through the first
order beam transfer matrix (linear coupling). In this paper
we study a sufficient condition, that the first order transport
matrix (R-matrix) can satisfy, so that this section of beam
transfer line is both achromatic and linearly uncoupled. We
provide a complete solution for the beam optics which sat-
isfies both conditions.

TILTED S-BEND

A particular section of the electron beam transfer line
of the e-RHIC project employs an S-bend, aiming to make
a parallel displacement of the electron beam in both the
horizontal and vertical planes simultaneously. Such a line
which is shown in Fig. 1 can be made both, achromatic (see
subsection Achromatic Conditions) and linearly uncoupled
(see subsection Uncoupled Conditions).

Achromatic Conditions

The transport matrix of the first bend may be written in
the form of 2×2 blocks as

B1 =

⎛
⎝

Mx 0 D
0 My 0
−D̃ 0 G

⎞
⎠ , where (1)

Mx =
(

cosφ ρ sin φ
− 1

ρ sin φ cosφ

)
, My =

(
1 ρφ
0 1

)
, (2)

D =
(

0 ρ(1− cosφ)
0 sin φ

)
, G =

(
1 G
0 1

)
(3)

D̃ = σyDTσy =
(
− sinφ −ρ(1− cosφ)

0 0

)
, (4)

with the Pauli matrix σy =
(

0 −i
i 0

)
.
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Figure 1: Two equal but opposite sector dipoles provide a
parallel translation of the beam in a plane. The plane of the
beamline may be rotated about the dashed line by an angle
θ = 22.5◦ to allow for both horizontal and vertical shifts of
the beam by 1.56 and 0.64 m, respectively.

The reversed second bend has the matrix

B2 =

⎛
⎝

Mx 0 −D
0 My 0
D̃ 0 G

⎞
⎠ , (5)

with only the upper right and lower left 2× 2 blocks of
opposite sign from B1. Both bends have the same diagonal
blocks.

While the transport between the two dipoles might con-
tain quadrupoles of various rotations about the beamline, it
is perhaps conceptually simpler to start with a transversely
decoupled solution relative to the plane of the two bends.
We want to find a configuration of quadrupoles and drifts
which will zero the dispersion terms R16 and R26 of the
whole section of beamline.

R = B2NB1 =

⎛
⎝

Mx 0 −D
0 My 0
D̃ 0 G

⎞
⎠
⎛
⎝

Nx 0 0
0 Ny 0
0 0 I

⎞
⎠

×

⎛
⎝

Mx 0 D
0 My 0
−D̃ 0 G

⎞
⎠

=

⎛
⎝

MxNxMx 0 MxNxD−D
0 MyNyMy 0

D̃NxMx − D̃ 0 D̃NxD + G2

⎞
⎠ , (6)

since DD̃ = 0, DG = D, and GD̃ = D̃. In order to
cancel the dispersion, we must have MxNxD = D, i. e.,
the second column of D must be an eigenvector of MxNx

with eigenvalue of 1. Rearranging our achromatic condi-
tion gives the pair of equations:
(

a b
c d

)(
ρ(1 − cosφ)

sin φ

)
=
(
−ρ(1− cosφ)

sin φ

)
, (7)
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with explicit elements a, b, c, and d for Nx. These two
equations, together with requirement det(Nx) = 1, yield
three equations in four unknowns. Eliminating three of the
variables, we get

Nx =

(
a −(1 + a)ρ tan φ

2
1−a

ρ cot φ
2 a

)
(8)

which has identical values on the diagonal. Given values
of ρ and θ for the bends, then there is only one degree of
freedom left in Nx for R to be achromatic, with only 2×2
blocks along the diagonal of R and blocks of zeros away
from the diagonal.

Uncoupled Conditions

Pivoting the section of beamline about the incoming
beam (dashed line of Fig. 1) by an angle θ would tend to
produce xy-coupling when θ is not a multiple of 90◦:

R =
(

I cos θ I sin θ
−I sin θ I cos θ

)(
Rx 0
0 Ry

)(
I cos θ −I sin θ
I sin θ I cos θ

)

=
(
Rx cos2 θ + Ry sin2 θ 1

2 (Ry −Rx) sin(2θ)
1
2 (Ry −Rx) sin(2θ) Rx sin2 θ + Ry cos2 θ

)
,

(9)

unless we have Rx = Ry , in which case R is independent
of the rotation θ. This means that the transport between the
bends must have

Ny = M−1
y MxNxMxM−1

y . (10)

When both the achromaticity and uncoupled conditions are
satisfied the R transfer matrix is independent of the rotation
angle θ R(θ) = R(0o).

Mirror Symmetry

Given a beamline R = En · · ·E3E2E1, its mirror im-
age R̆ = E1E2E3 · · ·En with the order of the elements
reversed can be calculated [2] from R−1 as

R̆ = StR−1St, (11)

with the help of the time reversal operator

St =

⎛
⎝

σz 0 0
0 σz 0
0 0 −σz

⎞
⎠ with σz =

(
1 0
0 −1

)
, (12)

where the longitudinal 2×2-block has a minus sign since the
time-like coordinate z is the fifth component of the vector
rather than the sixth.

A palindromic beamline is formed when the second half
of the beamline contains the elements of the first half
placed in reversed order. Given half the beamline for N j

for the jth 2×2 block on the diagonal as

A =
(

r s
t u

)
(13)

and the mirror image for the other half, then

Nj = ĂA = σzA−1σzA

=
(

1 0
0 −1

)(
u −s
−t r

)(
1 0
0 −1

)(
r s
t u

)

=
(

ru + st −2su
2rt ru + st

)
. (14)

If we build N from a set of quadrupoles mirrored about the
midpoint between the dipoles, then we are guaranteed to
have N11 = N22 as in Eq. (8) and N33 = N44 and hence
R11 = R22 and R33 = R44.

DESCRIPTION OF THE BEAMLINE

This line uses two dipoles each bending the beam by 20◦

but in opposite directions, and 2 × 3 quadrupoles all sym-
metrically placed about the center of the line. The whole
S-bend is then rotated by an angle θ = 22.5◦ about the
beam axis.

In order to find the minimum number of quadrupoles
required to generate such an achromatic matrix which
also satisfies the condition Rx = Ry , we note that an
achromatic R-matrix which describes a horizontal S-bend
requires a minimum of two quadrupoles symmetrically
placed about the center of the line and excited at the same
strength. The strength and the location of the quadrupoles
is determined by the achromaticity condition (R16 = 0 and
R26 = 0), and the mirror symmetry of the beamline re-
quires that (R11 = R22) and R33 = R44). Any additional
quadrupoles that have to be placed in the line to satisfy the
decoupling condition Rx = Ry , should come in pairs to
preserve the symmetry required by the achromaticity con-
dition. Therefore the first additional pair of quadrupoles
will satisfy the equality (R11 = R22) and the second pair
will satisfy the equality (R12 = R34). The equality (R21 =
R43) is automatically satisfied from the symplecticity con-
ditions (R11R22 = R12R21) and (R33R44 = R34R43).
Thus the minimum number of quadrupoles required to gen-
erate an achromatic matrix of the tilted S-bend line that
also satisfies the condition Rx = Ry is six. In the fol-
lowing two subsections we present two examples of achro-
matic and uncoupled lines that make use of six and seven
quadrupoles respectively. Although it is possible to find
a solution in a closed form, for a line that can satisfies
the conditions mentioned in the previous section, we have
chosen to use an optimization beamline code like TRANS-
PORT [3] or MAD [4] to find the optimum location and
strength of the quadrupoles that satisfy the conditions for
achromaticity and no coupling.

Line with Six Quadrupoles

As discussed earlier, the achromaticity condition re-
quires symmetric placement of quadrupoles with respect
to the center of the line. As a result the dispersion
function will appear as an antisymmetric function since
it transforms like the six dimensional vector x of the
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particle’s coordinate, namely xout = Rxin. Thus
ηout = (ηx, η

′
x, ηy, η

′
y, 0, 1)Tout = Rηin. The use of six

quadrupoles however symmetrically placed, can only sat-
isfy the achromaticity and decoupling conditions. Thus
when using six quadrupoles, in order to control the values
of the βx and βy functions along the line and keep them as
low as possible, we impose the conditions αx = αy = 0 at
the center of the line. This is done by varying the values of
βx, βy , αx, and αy at the entrance of the line.

Fig. 2 shows the βx, βy, ηx, and ηy functions, plotted
along the line as calculated using the computer code MAD
in the “coupled” mode. The elements of the R-matrix of
the six-quadrupole line are:

⎛
⎜⎜⎜⎜⎜⎝

1.8268 0.2492 0.0000 0.0000 0 0.0000
9.3782 1.8268 0.0000 0.0000 0 0.0000
0.0000 0.0000 1.8268 0.2492 0 0.0000
0.0000 0.0000 9.3782 1.8268 0 0.0000
0.0000 0.0000 0.0000 0.0000 1 −0.0071
0.0000 0.0000 0.0000 0.0000 0 1.0000

⎞
⎟⎟⎟⎟⎟⎠

.
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Figure 2: Values of βx, βy , ηx, and ηy along the line with
six quads. The first and last blue rectangles represent the
dipoles; the others are quadrupoles.

Line with Seven Quadrupoles

In order to provide additional control on the βx βy func-
tions we introduced an additional quadrupole which was
placed at the center of the line to preserve the symmetry.
Fig. 3 shows the βx, βy ,and ηx, ηy functions, plotted along
the line as calculated using the computer code MAD in the
“coupled” mode. Here the R-matrix is:
⎛
⎜⎜⎜⎜⎜⎝

0.1882 0.1048 0.0000 0.0000 0 0.0000
−9.2079 0.1882 0.0000 0.0000 0 0.0000

0.0000 0.0000 0.1882 0.1048 0 0.0000
0.0000 0.0000 −9.2079 0.1882 0 0.0000
0.0000 0.0000 0.0000 0.0000 1 −0.0071
0.0000 0.0000 0.0000 0.0000 0 1.0000

⎞
⎟⎟⎟⎟⎟⎠

.

Table 1 contains the parameters of the magnets and the
drift spaces for the first half of both the six-quadrupole and
seven-quadrupole lines.
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Figure 3: Values of the βx, βy , ηx, and ηy along the line
with seven quadrupoles. The first and last blue rectangles
represent the dipoles; the others are quadrupoles.

Table 1: Parameters of the elements for half of the six-
quadrupole and seven-quadrupole lines

Six Quads Seven Quads
Element ρ [m] θ ρ [m] θ
DIPOLE 0.5 20◦ 0.5 20◦

Element L [m] k [m−2] L [m] k [m−2]
DRIFT 0.1 — 0.1 —
QUAD 0.15 36.849 0.15 29.7744
DRIFT 0.3334 — 0.3 —
QUAD 0.15 -20.8498 0.15 -18.8317
DRIFT 0.30106 — 0.724 —
QUAD 0.15 10.670 0.15 13.7085
DRIFT 1.1905 — 0.72574 —
1
2QUAD — — 0.075 -27.4169

CONCLUSION

We discussed sufficient conditions that the R matrix for
a rotated S-bend should satisfy for the line to be achro-
matic and uncoupled. Such a line can be built with six
quadrupoles. Although we only require a fixed rotation,
this solution is invariant to the rotation and could be used
as a gantry.
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