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Abstract

This paper is a continuation of the paper devoted to syn-
thesis of optimal nanoprobe in linear approximation. Here
the main goal is the optimization of nanoprobe including
nonlinear aberrations of different nature up to third order.
The matrix formalism for Lie algebraic methods is used to
account for nonlinear aberrations. This method gives a pos-
sibility to consider nonlinear effects separately. Here we
mean that a researcher can start or remove different kind
of nonlinearities. This problem is separated into several
parts. On the first step, we consider possibilities of ad-
ditional optimization for some structures, selected on the
step of linear approximation. The most of aberrations have
harmful character, and their effect must be maximally de-
creased. Therefore, on the next steps, some we use ana-
lytical and numerical methods for generation of nonlinear
corrected elements. The matrix formalism allows reducing
the correction procedure to linear algebraic equations for
aberration coefficients. Some examples of corresponding
results are given.

INTRODUCTION

In this paper we consider some problems of nonlinear ef-
fects in a nanoprobe with high value of demagnification pa-
rameter (less than 0.01). In the paper [1] there are described
procedures of optimal variants of a nanoprobe based on
researcher demands to system characteristics. Strong re-
quirements to the demagnification parameter, to beam spot
shape, beam emittance lead us to necessity of very care-
ful analysis of selected variants for a linear model of the
nanonprobe. The goal of similar analysis is to select the
most appropriate variants of nanoprobes. In case of need
a necessary procedure of unwanted nonlinear aberrations
using correcting multipoles, for example of correcting sex-
tupole or/and octupole lenses.

MATHEMATICAL BACKROUNDS AND
MODELS

A Model of the Beam Line System for Nanoprobe

Similar to the paper [1] our consideration is based on so
called “russian quadruplet” [1, 2], which allows forming
high quality beams. According to [1] the optimal variants
are based on the following demands:

1) focusing condition “point-to-point”;
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2) values of optimal lens gradients are belong to load
curves.

For the nonlinear model the base criterion of a beam
quality — linear demagnification — DMl = |R11| should
be replaced on its nonlinear variant

DMnl =

√
sup(x2 + y2)
sup(x2

0 + y2
0)

, x, y ∈ M, x0, y0 ∈ M0, (1)

where M0, M — input and output phase manifolds of a
beam.

Nonlinear Motion Equations for Beam Particles

For the necessity computation we use the Lie algebraic
methods [3], which allows to design a nonlinear propagator
M(s|s0) in according to the following formulae:

dM(s|s0)
d s

= L(s) ◦M(s|s0), (2)

whereL(s|s0) — a Lie operator of a dynamical system [3],
defined by the following nonlinear motion equations

dZ
ds

= F(Z, s), Z = (x, x′, y, y′)∗. (3)

Under the assumption of monochromaticity of the beam (in
this case we have δp = 0) eq. (3) is generated by the fol-
lowing scalar equations

x′′ + kx =− 3
2
kxx′ − 1

2
kxy′

2 + kx′yy′+

+ k′xyy′ +
1
12

k′′x3 +
1
4
k′′xy2 +O(5),

y′′ − kx =
3
2
kyy′ +

1
2
kyx′

2 − ky′xx′−

− k′yxx′ − 1
12

k′′y3 − 1
4
k′′yx2 +O(5),

(4)

where k is a reduced gradient.
In eq. (4) nonlinear terms describe nonlinear geometri-

cal effects. Restricted to nonlinearities up to the third order
the eq. (4) can be written in the form

dZ
ds

= P11(s)Z + P13(s)Z[3], (5)

According to the matrix formalism for Lie algebraic tools
[4, 5] the solution of eq. (5) may be written in the following
form

Z(s) = R11(s|s0)Z0 + R13(s|s0)Z
[3]
0 . (6)

where Z[3] — a Kronecker power for the phase vector Z of
the third order, s — a length, measured along of a beam line
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optical axis, s0 — its initial value (for example, s0 = 0).
Here nonlinear aberrations of the third order are collected
in the corresponding matrix R13(s|s0) — the matrix of the
third order geometrical aberrations.

For quadrupole focusing systems the forth-dimensional
equation (6) it be convenient to rewritten as two two-
dimensional equations

X(s) = R11
x (s|s0)X0 + R13

x (s|s0)X
[3]
0 ,

Y(s) = R11
y (s|s0)Y0 + R13

y (s|s0)Y
[3]
0 .

(7)

For the partial matrices R11
x , R11

y and R13
x , R13

y there are
evenly the group properties in the recurrent form (for ex-
ample, for Rik

x )

R11
x (s|s0) = R11

x (sj+1|sj)R11
x (sj |s0),

R13
x (s|s0) = R11

x (sj+1|sj)R13
x (sj |s0)+

+ R13
x (sj+1|sj)R33

x (sj |s0),

(8)

where R33
x =

(
R11

x

)[3]
. It should be mentioned that among

these aberrations the main role play so called spherical
aberrations, which are described the following elements of
R13

x : Rx
1 4 under x′3, R1 10 — x′y′2, and for R13

y : Ry
1 4 —

y′x′2, and Ry
1 10 under y′3.

Motion Equation for Beam Matrix Envelope

It is known that for the linear motion equations we can
use the so called envelope matrix — σ-matrix:

σenv = {σik} , i, k = 1, 4.

In this paper we use two variants of this matrix. The first
can be defined according to equalities

σenv
ik = zi(k −max(M)) zk(i−max(M)),

where zi(k−max(M)) — an i-th component of the phase
vector Z with maximal k-th component on the beam trans-
verse manifold M. The second case for σ-matrix is well
known rms-envelope matrix

σrms(s) =
∫

M(s)

f(Z, s)ZZ∗dZ, (9)

where f(Z, s) is a distribution function.
For the linear beam line model the propagation of σ-

matrix is defined by following equation (both for σ env and
σrms)

σ(s) = R(s|s0)σ(s0)R∗(s|s0), (10)

In the nonlinear case we can use the nonlinear variant of
the equality (10) (see, for example, [5])

σ11(s) =
∞∑

i=1,k=1

R1,i(s|s0)σik(s0)
(
R1k(s|s0)

)∗
, (11)

where “nonlinear components” of the σ-matrix — σ ik,
i, k ≤ 1 in (11) can be evaluated using the analogue of
the equality (9)

σik(s) =
∫

M(s)

f(Z, s)Z[i]
(
Z[k]

)∗
dZ, (12)

It is not difficult to see, that in the linear case for the
demagnification parameter we have

DM2
l =

|σout
11 |∣∣σin
11

∣∣ = |R11|2. (13)

For nonlinear case instead of DMl we should use the new
parameter DMnl, for which the equalities (1) and (11) al-
low to evaluate the demagnification in nonlinear case.

Characteristics for Nonlinear Nanoprobes

For the nonlinear nanoprobe there are some other distor-
tions of optimal characteristics (see, [6]). Indeed, in the
case of nonlinear beam dynamics we should use the con-
dition σ11 = σ22 instead of R11 = R22 the load curves
change their configuration. If we take into consideration
only spherical aberrations (see above) the circular symme-
try for linear case should be replaced by symmetry relative
to turn over π/2 (see Fig. 1). As it can be shown from this
image, similar symmetry of the output beam spot guaran-
tees the equality σ11 = σ44 (i. e. sup x2 = sup y2). The
main contribution of nonlinear aberrations of third order
leads to increasing of the beam size and changes the cir-
cular symmetry (compare the corresponding images on the
Fig. 1).

Figure 1: Comparison of the beam spot for linear and non-
linear models.

For focusing systems with critical characteristics the
spread for beam spot may become too big. That is why
in this case we have to put to use special correctors. In the
case of geometrical aberrations these are octupole lenses.
These lenses can be used either as separate elements (be-
tween quadrupole lenses) or both as combined lenses,
which are quadrupole and octupole lenses at the same time.
Here one can use two approaches. Beam spot after correc-
tion (this procedure is presented on Fig. 1 as black dashed
lines) could be like on Fig. 1 as red line.
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A roblem of orrection of ndesirable berra-
tions

The first of the used method is based on usual nonlinear
programming methods. Here we use a combination of a
Monte-Carlo method and the flexible tolerance method [7].
For this approach one should form an objective function
f(U), U = n and derating in the form of equalities and
inequalities:

H(U) = 0, dimH = m < n,

G(U) ≤ 0, dimG = p,
(14)

where U is a vector of variable parameters. In is nec-
essary to point that these parameters (non-dimensional)
have to reduce to a single scale. For our problem for the
objective function we can use f(U) = DMnl(U), see
eq. (1). As an equality constraint we can use H(U) =
(σ11(U) − σ44(U))2. At last the inequalities constraints
describe the range of variation of required parameters —
components of U.

Let us describe the second approach [8]. The “nonlinear
part” of the matrizant R13 can be presented as a production
R13(s|s0) = R11(s|s0)Q13(s|s0). The matrix P13(s) can
be presented as a sum P13 = Pquadr + Poct(C), where C is
a vector of octupole forces Cj , j = 1, NO, where NO is a
number of correcting octupole lenses. For the introduced
matrix Q13 we can write in the form (6)

Q13(st|s0) = Q13
quad(st|s0)+

+
NO∑

j=1

Cj

sj∫

sj−1

R11(s0|τ)P13
j-oct(τ)R33(τ |s0)dτ.

Here the intervals [sj , sj+1] enclose only one control ele-
ment (one of multipole lenses), and the matrices Pk-oct is a
matrix, calculated under the condition Cj = 1, Ck = 0,
∀ k �= j.

Consider as an example the problem of spherical aber-
ration correction. In this case we can include in the focus-
ing system four correctors — octupole lenses. In this case
eq. (corrector1) can be write the following equation

X(st) = R11(st|s0)
(
X0+

+
[
Q13

quad(st|s0) +
NO∑

j=1

Q13
j-oct(st|s0)

]
X[3]

0

)
,

where

Q13
j-oct(sj |sj−1) = Cj

j∫

sj−1

R13(s0|τ)P13
j-octR

33(τ |s0)dτ.

For the spherical aberrations it is quite enough to use four
octupole lenses as correctors. The forces of these lenses
can be found form the following linear algebraic equation

AC = Bquadr,

where the matrix A consists of the R13 = R11Q13(st|s0)
elements R1 6 and R1 12, calculated under the following
conditions: the k-th column calculated under Ck = 1,
Cj = 0, ∀ j �= k. The vector Bquadr consists of the same
matrix elements, but calculated under Cj = 0, ∀ j.

The analogue procedure can be applied for a non-
monochromatic beam (see, for example, [9]). But in this
case we should use sextupole lenses.

The above described approach can be simplified. For this
we can use minor number of correctors. In this case we
have to use the first of above mentioned approach, based
on nonlinear programming methods. But here we can not
to obtain so essential decreasing the for beam spot.

Usage of the described approach we can minimize the
beam spot, which generate “nonlinear focusing system”
(see Fig. 1). For some variants we succeeded in beam spot
size contraction up to 6 times. But it should be mentioned
that similar correction procedure can be realized in the case
of all beam line parameters setup. Unfortunately many of
appropriate variants have property of high sensitivity with
respect to parameters deviation.

CONCLUSION

As above described, the nonlinear aberrations (both ge-
ometrical and chromatic) lead to modification of the form
and increasing of beam spot size. The corresponding cor-
rection procedures help to reduce the beam size on the tar-
get. But it should be mentioned that the described correc-
tion procedures depend on the value of the selected beam
parameters set. Here we mean that basic beam character-
istics could be very sensitive to possible deviations from
optimal parameters (see, i. e. [6]).
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