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Abstract

High energy focused ion (proton) micro- and nanoprobes
are intensively integrated as powerful analytical tools for
different scientific and technological goals. Requirements
for beam characteristics of similar focusing systems are ex-
tremely rigid. The value of demagnification for micro- and
nanoprobes is the main optimality criteria, and as desirable
value are in the range from 50 to 100 or even more. In
the paper, we reconsider the basic properties of first order
focusing systems from an optimal viewpoint. The matrix
formalism allows us to formulate a nonlinear programming
problem for all parameters of guiding elements. For this
purpose there are used computer algebra methods and tools
as the first step, and then some combination of special nu-
merical methods. As a starting point for nanoprobe we con-
sider so called ”russian quadruplet”. On the next steps, we
also investigate other types of nanoprobes. Some graphical
and tabular data for nanoprobe parameters are cited as an
example.

INTRODUCTION

During recent years many scientists have been showing
interest in ion nanoprobes, which help to create tiny particle
beams about some nanometers on a target. Nanoprobes are
known to be used in wide field of application by success-
ful centers of nanoprobes (see, for example, [1]). There
is rich experience for such systems development. How-
ever, in spite of this fact, review of many papers deal with
nanoprobes shows that there is no quite comprehensive
concept of modeling such systems in scientific literature.
Four papers are presented at this conference (see also [2]–
[4]), which are dedicated to different aspects of develop-
ment of corresponding optimal systems. This is basic pa-
per because general statements are formulated which are
required to use for solving tasks with nanoprobes. On the
basis of linear model we can create a development algo-
rithm for optimal desired focusing systems and possible
decisions with necessary illustrations about some choice
reasonability.

BASIC CONCEPTS AND MODELS

Usually three or more quadrupoles are used as a focus-
ing system for a micro- or nanoprobe. Destination and
manufacturing restrictions define choice of acceptable con-
figuration in every specific case. As the example, au-
thors consider so-called “russian quadruplet” [5], which
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Figure 1: A “russian quadruplet” focusing system.

allows forming “high-quality” beams. Control system of
quadrupoles satisfies “symmetry on power supply” con-
dition, which can be written in the form of the following
equality

k(s) = −k(st − s), s ∈ [s0, st], (1)

where s — a length parameter, which is measured along
with optical axis of the system, s0 — an initial point, st —
an end point (see Fig. 1), k(s) — a distribution function of
gradient along the optical axis of the system. In linear ap-
proximation particle motion equations have the following
form

x′′ + k(s)x = 0, x′ = dx/ds,

y′′ − k(s)y = 0, y′ = dy/ds.
(2)

The solution of the system (2) could be written using so
called a matrizant R(s|s0) (see [6]):

X(s) = R(s|s0)X0, X0 = X(s0), (3)

where X = (x, x′, y, y′)∗ — a phase coordinates vector.
The matrizant R(s|s0) is the corresponding matrix propa-
gator of the system on components (see Fig. 1): a drift gap
(“pre-distance”) with the length a, a focusing component
— “objective” (with the length st − s0), drift gap with the
length g — “working distance” [5]. In this case the propa-
gator R could be presented in form

R(st|s0) = RgM(s1|s0)Ra, (4)

where partial propagators have a block-diagonal structure.
Condition (1) is imposed on objective leads to contract be-
tween elements mik of the transfer matrix M:

m11 = m44, m12 = m34,

m21 = m43, m22 = m33.
(5)

It is obviously that if the condition

m11 = m22, (6)
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is correct, then we can get identical equality between trans-
fer matrices in both planes {x, x′}, {y, y′} from (5). It is
also evidently that if the condition (6) is correct full-length
propagators will be equal in mentioned planes. As the addi-
tional clause for system we consider the well known focus-
ing condition — the focusing “from point to point“. Using
eq. (6) this condition can be written as r12 = r34 = 0,
which leads to the following equation for the working dis-
tance g:

g = −a m11 + m12

a m21 + m22
. (7)

Parameter of the focusing quality is the value of |r11|. If
|r11| < 1 we have condition of initial beam size compres-
sion on target and we will define it as DMl = r11 (de-
magnification in the linear case). Thereby a procedure of
construction of optimal nanoprobe design task could be for-
mulated as following:

Find control gradients of magnets, their lengths,
lengths of drift gaps for ensure conditions (5), g ≥
gtechn > 0 and |r11| = γ. Here gtechn — is a tech-
nological restriction on the working distance from the
bottom, γ — a desired demagnification parameter.

It is necessary to ensure condition γ ≤ 0.01 for achieve-
ment tiny beam size (about some nanometers) on the target
with its sufficient emittance (an object diaphragm aperture
must be near 1μ). It should be mentioned that drift gap
between magnets s (between each couple of magnets, first
and second, third and fourth) and λ (between second and
third magnets) must ensure technological conditions too.
In particular these conditions are determined from solution
of the task regarding fringe fields, see [3].

SOLUTION OF THE TASK

In this section we discuss the computer modeling and
corresponding results. Some part of results were drawn us-
ing the well known computer algebra system — the pack-
age Maple, and some of them — using a special developed
software. Similar approach allows realizing a procedure of
parametric investigations of the desired focusing system as
a prototype of nanoprobes. The load curves family should
be constructed for this purpose (determined by (6)) in the
space of magnet excitations κi =

√
|ki|Li, where Li —

magnet length. In this paper the authors use as a normal-
ized (scale) parameters the lens length Li = L. It is conve-
nient to put L = 1.

The Family of the Load Curves

Figs. 3–4 illustrate a couple of examples of load curves
for various s and λ (the black lines), the graphics of |r11| =
γ (the red and blue lines). On Fig.4 one can also see the
plots g = gtechn (the green line and the dotted magenta).
Points of intersections of referred above curves could be
chosen as appropriate solutions. Modeling using symbolic
procedures permits to find the whole convenient solution
family with the values γ ≤ 0.01 and ensures necessary

conditions. It should be mentioned that optimization is re-
quired for retrieval of the values κ1 κ2, s, λ and a. Spe-
cial software (the optimization package) for the solution
of nonlinear programming tasks is used for this purpose
in this paper. The software is based on aggregate random
search methods and the so called flexible admission method
[7]. This package allows us to find optimal solutions (for

Figure 2: A screen shot of a user interface for the optimiza-
tion package.

example, for minimization problem of the demagnification
parameter).

This gives us a possibility to find different points in the
control parameters space, which can be of interest of prac-
tical realization of micro- or nanoprobe systems in accord-
ing to our wishes. It should be noticed that only some so-
lutions (from the quite wide family of ”appropriate“ solu-
tions) must be chosen, which convenient for specified task
because of its realizability and optimality for a real physical
goal.

Some xamples for ptimal olutions

On Fig. 3 one can see load curve (its part) and level sur-
faces for demagnification parameter. The load curve pre-
sented as dashed black line, a curve, which corresponds
to r11 = 0.01 (demagnification parameter) is displayed as
blue line and red line is corresponding to r11 = 0.001.
These parameters are retrieved from [8] paper. If we put
effective length of each lens L = 1, it is easy to calcu-
late other parameters (see Fig. 1): a = 135.5625, s = 3.3,
λ = 5.5 and g = 2.34375 could be found using (7). In
order to keep circular beam it is necessary to choose point
which belongs to load curve. Using desirable demagnifica-
tion parameters one can construct level surfaces, and then
choose convenient points in exterior of set framed by level
surface.

Sometimes it is necessary to choose optimal parameters
for a nanoprobe, when some of them are almost fixed or
they have the strict limits. In this case an investigator can
choose optimal parameters too. For example, one can put
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Figure 3: The load curve for Kiev’s nanoprobe [8] and level
curves for the demagnification. The dashed black line —
the initial load curve, the blue line for r11 = 0.01, the red
line for r11 = 0.001

a = 200, λ = 3 and do not hold fixed other parameters, so
using e. g. the package Maple, it is feasible to adjust the rest
of parameters to convenient. The usage of a computer alge-
bra system (e. g. Maple) allows us to animate a number of
plots in order to choose more appropriate parameters. Also
it is very useful to construct level curves too. Using this

Figure 4: The load curve for a custom nanoprobe, the level
curves for the demagnification and g. The dashed black line
for the initial load curve, the blue line for r11 = 0.01, the
dashed red line for r11 = 0.001, the green line for g = 3,
the dotted pink line for g = 10.

technique one can track the value of g techn depending on
customer requirements. On Fig. 4 the green line conforms
to the value of g = 3 and the dotted pink line — to g = 10
(here s = 0.625).

Using the above described approach one can find dif-
ferent variants of nanoprobe characteristics. Combination
of computer algebra methods and technologies on the one
hand and numerical optimization approaches on the other
hand provides the flexibility of parameters selection. If it
is necessary to receive a given demagnification with round
beam one can calculate g using (7) and choose convenient
a, s and λ for a practical task. Many sets of optimal param-
eters could be found in linear model, but in order to choose
the best set it is required to consider at least nonlinear ef-

fects and fringe fields effects (see [2]–[4]).
Some optimal set could be conformed to unstable sys-

tem, which characteristics are instantly change with tiny
deviation from optimal parameters.

CONCLUSION

The above described methodology could help to find a
set of optimal parameters for nanoprobe systems under the
assumption of a linear model approximation. Similar in-
vestigation is the initial step for modeling process of such
kind of focusing systems. One of the next steps is based
on nonlinear approximation for steering fields, and some
approaches are described in [2].

With taking into account of nonlinear effects beam char-
acteristics usually become worse than in linear model.
Some correction mechanisms are reviewed in [2]. It is also
required to consider fringe fields effects (see [3]), because
they are intrinsic and could heavily impact on beam dy-
namic and beam characteristics. Comparative analysis of
different effects in nanoprobe systems [4] could help to un-
derstand, what effects are most essential and require special
attention.

Summarize above mentioned consequences it should be
mentioned that linear model should give only rough ap-
proximation of real systems parameters. On the next steps
it is necessary to verify an obtained set of optimal parame-
ters. It helps to select a parameters subset, which satisfy
completely a number of conditions of operability of the
nanoprobe design concept.
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