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Abstract

The damping rings of the International Linear Collider
(ILC) are specified to operate with a vertical emittance of
2 pm. To achieve this challenging goal, an effective di-
agnostics and correction system will be needed; however,
BPMs add impedance to the ring, and diagnostics and cor-
rectors add complexity and cost. It is therefore desirable
to understand how the final achievable vertical emittance
depends on the numbers, locations and performance of the
BPMs and correctors, and to determine the minimum num-
ber of these components required. We present the results
of simulations for the damping rings, aimed at indicating
the effectiveness of coupling correction for different design
scenarios of the diagnostics and correction systems.

INTRODUCTION

The luminosity of a linear collider depends on the ver-
tical emittance of the beam extracted from the damping
rings. For the ILC [1] the specified vertical emittance for
the beam from the damping rings is 2 pm; this is a fac-
tor of two lower than the smallest emittance achieved in
any existing storage ring. In an electron storage ring, the
dominant sources of vertical emittance are the vertical dis-
persion and the betatron coupling. An important part of
the design of the damping rings is the specification of sys-
tems capable of correcting the dispersion and the coupling
at the necessary level. To understand the issues and opti-
mise the design we perform simulation studies exploring
different design scenarios. As a first step, we can look at
the sensitivity of the vertical emittance to vertical align-
ment errors on the quadrupoles and sextupoles: these errors
are expected to make a significant contribution to the verti-
cal emittance in the operating rings, although other errors,
such as quadrupole tilts, are also likely to be important [2].
We can then investigate the effectiveness of a simple com-
bined correction of the orbit and the dispersion in minimis-
ing the vertical emittance. This will provide the foundation
for more complete studies, including such effects as BPM
noise and rotation.

The present baseline lattice for the ILC damping rings
[3] has a circumference of 6476 m and a racetrack layout.
Two arcs, each consisting of 96 FODO cells, are joined
by two long straights containing the damping wiggler, rf
cavities and injection/extraction systems. To provide op-
erational flexibility, the momentum compaction factor is
tunable between 1.3×10−4 and 2.8×10−4; adjustment of
the momentum compaction factor is achieved by changing
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Scenario Arc phase Arc BPM
advance locations

I 72◦ every quad
II 90◦ every quad
III 72◦ every D-quad
IV 90◦ every D-quad
V 72◦ 2/3 D-quads
VI 90◦ 2/3 D-quads

Table 1: Scenarios studied in orbit and dispersion correc-
tion simulations.

the phase advance in the arc cells. To achieve the specified
damping time of 20 ms with a beam energy of 5 GeV, a
damping wiggler of length 200 m is needed. Under ideal
conditions the equilibrium emittance is dominated by the
lattice functions in the wiggler; however orbit distortion
and dispersion in the arcs can make a significant contribu-
tion to the vertical emittance if not corrected carefully.

In this paper we present the results of simulations of
orbit and dispersion correction in six different scenarios,
shown in Table 1. In each case the phase advance across
a single arc cell is either 72◦ or 90◦. BPMs are located
at every quadrupole in the straights; in the arcs BPMs are
located either at every quadrupole, or only at every defo-
cusing quadrupole, or only at two out of every three de-
focusing quadrupoles. Note that the number of correctors
that we use is always equal to the number of BPMs. For
each scenario we apply random vertical misalignments to
all quadrupoles (50 μm rms) and to all sextupoles (100 μm
rms). We then apply a combined orbit and dispersion cor-
rection, with the goal of minimising the vertical emittance,
as described in the next section.

ORBIT AND DISPERSION CORRECTION

The beam position is measured with a set of N BPMs,
which are distributed over the ring depending on the sce-
nario (Table 1). The beam is steered using a set of M
dipole magnets (correctors). The BPM readings are rep-
resented by a vector �u of dimension N and the corrector
strengths (kicks) by a vector �θ of dimension M . Measured
dispersion at the BPMs is represented by vector �D (dimen-
sion N ). The orbit response matrix (ORM) A describes
the change in beam position at each BPM resulting from
a change in strength of each corrector. Similarly, the dis-
persion response matrix (DRM) B describes the change in
dispersion at each BPM resulting from a change in strength
of each corrector. Both A and B are matrices of dimension
N ×M .
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For both orbit and dispersion to be corrected simultane-
ously, a set of corrector kicks �θ must be found that solves
the following system of linear equations [4]:

(
(1− α)�u

α�Du

)
+

(
(1− α)A

αB

)
�θ = 0 (1)

In general, there are 2N equations in M unknowns. If,
as is the case here, 2N > M then it is not possible, in
general, to find exact solutions for the kicks �θ. However,
using singular value decomposition, we can find a solution
that minimises the residual orbit and dispersion. The factor
α appearing in Eq. (1) determines whether more weight is
given to correcting the orbit (α = 0) or to correcting the
dispersion (α = 1) in finding the solution. The optimum
value of α for minimising the vertical emittance depends
on the lattice and the arrangement of BPMs and correctors:
one of our goals is to investigate this dependence.

For each scenario in our simulations, we first obtain the
ORM and DRM. For a given set of random misalignments
we then find the closed orbit and the dispersion at each
BPM. The solution for the corrector strengths in Eq. (1)
can then be found, for a given weight factor, by singular
value decomposition.

SIMULATION RESULTS

First we look at how the orbit and the dispersion behave
as we apply the correction. Fig. 1 shows the results for
scenario I averaged over 100 seeds of random errors. As
expected the orbit is almost perfectly corrected for α = 0,
and the dispersion is almost perfectly corrected for α = 1.
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Figure 1: Orbit and dispersion correction in scenario I.

Given the orbit and dispersion, it is possible to make an
analytical estimate of the vertical emittance using the fol-
lowing equation [5]:

εy =
Jx

4Jy

1− cos(2πνx) cos(2πνy)
[cos(2πνy)− cos(2πνx)]2

εx ×
∑

sexts

βyβx(k2L)2
[〈

y2
sext

〉
+

〈
y2

orbit

〉]

+Jzσ
2
δ

〈
η2

y

βy

〉
(2)

where Jx, Jy and Jz are the horizontal, vertical and longi-
tudinal damping partition numbers; νx and νy are the be-
tatron tunes; εx is the horizontal emittance; βx and βy are

the horizontal and vertical beta functions; k2L is the inte-
grated normalised sextupole strength; σδ is the rms energy
spread; ηy is the vertical dispersion; ysext is the vertical
displacement of a sextupole magnet with respect to the de-
sign reference trajectory; and yorbit is the vertical closed
orbit distortion with respect to the design reference trajec-
tory. The estimate of the vertical emittance using this for-
mula may be compared to that obtained from the simulation
code. The result, for scenario I, is shown in Fig. 2. While
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Figure 2: Emittance following orbit and dispersion correc-
tion, as a function of weight factor in scenario I. The red
line shows the theoretical expected emittance from the cor-
rected orbit and dispersion; the blue line shows the actual
calculated emittance

the theoretical emittance shows broadly similar behaviour
to the simulated emittance there are also considerable dis-
crepancies, particularly at low values of α. It appears that
the theoretical relationship can not be used for a quanti-
tive prediction of the vertical emittance; this is beccause
the derivation of Eq. (2) makes a number of assumptions
that are not expected to be completely valid in the present
model.

Now we compare the final vertical emittance as a func-
tion of the weight factor for the different scenarios given
in Table 1. For each scenario, we vary the weight factor in
steps of 0.01, between 0 and 1. For each weight factor, we
apply the correction to each of 100 seeds of random mis-
alignments. The final vertical emittance averaged over 100
seeds is shown in Fig. 3. We see that in several scenarios
the final vertical emittance is less than 1 pm; this is not re-
alistic, and occurs because of the limited set of errors we
have applied. On the other hand, in scenarios V and VI the
vertical emittance does not come down below 10 pm. We
therefore focus our attention on scenarios I to IV. As well
as a distribution in the final emittance there is a distribu-
tion in the weight factor that gives the minimum vertical
emittance. For tuning the machine in practice, i.e. without
explicit knowledge of the magnet misalignments, it is im-
portant to know the optimum weight factor, i.e. the weight
factor that is (in a statistical sense) most likely to lead min-
imum emittance. One way to define the optimum weight
factor is as follows. For a given scenario and set of ran-
dom errors, we can determine the weight factor that leads
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Figure 3: Corrected vertical emittance, averaged over 100
seeds of random errors, as a function of weight factor.

to the minimum emittance. We can repeat for a number of
sets of random errors, recording the “best” weight factor
for each set. The weight factors thus recorded have some
distribution–see Fig. 4 for the cases of scenarios I through
IV. The optimum weight factor is the point at which the
distribution peaks. The width of the distribution is also im-
portant: a lattice that has a very wide distribution for the
optimum weight factor may be harder to tune than a lattice
with a very narrow distribution, since the statistical opti-
mum weight factor is less likely to be close to the “best”
weight factor in any given case. On the other hand, if the
final vertical emittance has a very broad minimum, then
tuning the lattice may not be very sensitive to the weight
factor.
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Figure 4: Distribution of weight factors leading to the low-
est emittance for each of 100 seeds of random errors.

Finally, we can apply the correction to each of a number
of sets of random errors, using a single optimised weight
factor for each scenario. The average final vertical emit-
tances obtained in this way are shown in Fig. 5. Note that,
as already mentioned, the absolute values obtained are not
very meaningful, because of the idealised nature of the sim-
ulations. However, the relative values obtained (and their
spread) give some indication of how the different scenarios
behave in comparison with each other.
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Figure 5: Final vertical emittances. The error bars show the
5th and 95th percentiles, over 100 seeds of random errors.

CONCLUSIONS

A combined orbit and dispersion correction is most ef-
fective when a BPM is located at every quadrupole (scenar-
ios I and II). However, the correction is almost as effective
if, in the arc cells, the number of BPMs is reduced by half
(scenarios III and IV), so that the BPMs are located only
at horizontally defocusing quadrupoles. If the number of
BPMs is further reduced, then we begin to see a more sig-
nificant degradation in the performance of the correction
algorithm. There is some indication that a lower final emit-
tance is achieved in the lattices with phase advance of 90◦

per arc cell, though the differences to the lattices with phase
advance of 72◦ is not large.

Focusing on scenarios I through IV, we observed some
variation in the optimum weight factor to use in each case.
However, even when the distribution of weight factors had
a relatively large width, it was possible to obtain an effec-
tive correction using a single optimised weight factor for
a given scenario. The results of our simulations provide a
useful basis for more detailed and detailed studies of the
coupling correction scheme in the ILC damping rings.
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