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Abstract 
The APS storage ring is a very complicated machine 

containing 400 quadrupoles and 280 sextupoles, each 
powered separately. The quadrupole calibration errors and 
orbit errors through the sextupoles are two main sources 
of linear optics distortion. The linear optics of the APS 
storage ring has been experimentally calibrated using an 
orbit response matrix analysis. The results obtained were 
used to correct the β-function beating around the ring. 
These corrections significantly improved the lifetime and 
injection efficiency for the low-emittance lattice. The 
energy acceptance of the machine was also increased from 
1.8% to 2.5%. In this paper we present the results of the 
response matrix analysis and discuss the difficulties 
arising from the large size of the machine. 

1 INTRODUCTION* 
From the beginning of the APS storage ring operation 

there was a substantial difference between the linear 
model and the real storage ring. We even have to use 
empirical correction factors when transforming the model 
into the real machine to get the betatron frequencies 
correct. This results in difficulties when tuning the 
machine to new lattice conditions, such as the low-
emittance lattice. That is why we decided to develop a 
method for linear lattice calibration using orbit response 
matrices. There are several other problems that can be 
solved using the response matrix fit method: 
• β-function measurements around the ring.  
• BPM gain calibration. There are more than 400 beam 

position monitors (BPMs) around the ring, and many of 
them have substantial gain errors. Right now there is no 
reasonably fast way to calibrate them all. 

• Local linear coupling characterization and correction. 
The orbit response matrix is the change in the orbit at 

the BPMs as a function of changes in orbit correctors. The 
response matrix is defined by the linear lattice of the 
machine; therefore it can be used to calibrate the linear 
optics in a storage ring. Modern storage rings have a large 
number of correctors and precise BPMs, so measurement 
of the response matrix generates a very large array of 
precisely measured data.  

The main idea of the analysis is to adjust the 
quadrupole gradients of a computer model of the storage 
ring until the model response matrix best fits the 
measured response matrix. The method was first 
suggested (to the authors’ knowledge) by Corbett, Lee, 
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and Ziemann at SLAC [1]. A very careful analysis of the 
response matrix was done at the NSLS X-ray ring [2] and 
at the ALS [3]. There are a number of papers in the 
Particle Accelerator Conference Proceedings that describe 
similar model calibration techniques.  

The problem of fitting the response matrix is solved in 
the following way. Let the response matrix M be a 
function of the vector of variables x. Then we need to 
solve the equation 
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which can be solved by Newton’s method: 
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where x0 corresponds to the initial model. To fit the 
response matrix, we have to determine all variables on 
which the response matrix depends, calculate the 
derivative of the response matrix with respect to these 
variables, and then invert it. After that, the solution can be 
found by iteration.  

The most obvious and important variables are focusing 
errors (quadrupole calibration errors or orbit errors in 
sextupoles), corrector calibration errors, and BPM gain 
errors. Another obvious but less important set of variables 
is the energy shift associated with the changing of each 
corrector. These are the variables that are used for the 
response matrix fit described in this paper. The decision 
on what variables to use depends on details of the 
particular storage ring and how accurately the response 
matrix can be measured.  

2 APPLICATION TO APS  

2.1 Difficulties: model size and degeneracy 
Up to this time, the most comprehensive analysis of the 

response matrix has been done at the NSLS X-ray ring 
and at the ALS. These two storage rings are smaller than 
the APS. In case of the APS, if one would try to use all 
correctors and BPMs, there would be 2,240 variables to 
vary and about 560,000 elements to fit. The size of the 
response matrix derivative would be 9 Gb and is much 
larger than the memory size of an average computer. In 
addition, the computation time would be many days.  

There are two sources of model degeneracy the APS 
storage ring has that the other smaller rings lack. First, the 
smaller rings are able to store the beam without the 
sextupoles powered. This allows them to separate two 
kinds of gradient errors: quadrupole imperfections and 
orbit errors in sextupoles. Second, the average betatron 
phase advance between quadrupoles at APS is a rather 
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small value, 0.088, while for the NSLS X-ray ring it is 
0.17, and for the ALS it is 0.28. 

2.2 Choice of variables 
In order to limit the required computer memory usage 

and the computation time, we have to limit the size of the 
measured response matrix. The size of the uncoupled 
response matrix is  

yBPMycorrxBPMxcorrelements NNNNN ×+×= , 

where Ncorr and NBPM are the number of correctors and 
BPMs in the x and y planes The number of variables is  

yBPMycorrxBPMxcorrquadsrva NNNNNN ++++= 2 , 

where the factor of 2 in front of Ncorrx comes from the 
energy variation.  

The obvious way to decrease the response matrix size is 
to reduce the number of correctors and BPMs in 
measurements. However, to achieve a high-precision fit, 
we have to use as many BPMs as possible. This leaves 
only one available option – reducing the number of 
correctors. 

The most obvious minimal set of correctors is one 
corrector per sector. Then, in the case of one corrector, 
nine BPMs, and nine quadrupoles per sector per plane, the 
size of the response matrix derivative is  

288001200 ×=× elementsrva NN . 

For double-precision calculations, the size of the 
response matrix derivative is about 260 Mb. The size of 
the computer memory required to invert the matrix and 
then manipulate it is about 1.2 Gb in this case. This set of 
variables is usually used for our calculations. 

2.3 Measurements and fitting 
The fitting process, which is just solving equation (1), is 

done in iterations. All accelerator-related calculations are 
performed using the code elegant [4]. The output of 
the fitting application is a file of fitted variables in the 
format of the “parameter” file of the elegant. This file 
is used to update the ideal elegant model of the storage 
ring. Before the fitting, a typical rms difference between 
the ideal model and the measured orbit distortions is about 
50 µm. After the fit is done, the rms difference is 
decreased to the noise level of the BPMs, which is about 1 
µm. This updated model can then be used for all kinds of 
calculations in elegant, including calculation of the β-
function around the ring. 

After this nearly perfect agreement between the model 
and measured data is achieved, we have to ask: does this 
agreement necessarily imply a good agreement between 
the fitted model and the real elements in the storage ring? 
Although the number of data points (28800) is much 
greater than the number of fit parameters (1200), this does 
not guarantee the solution is unique. The redundancy of 
quadrupoles in the storage ring and the lack of ability to 
store the electron beam without sextupoles make it 
impossible to determine separate quadrupole errors. In 
other words, it is very likely that the measured response 

matrix can be reproduced (within the accuracy of the 
measurements) using different sets of quadrupole 
gradients. However, one would expect that the other 
varying parameters like BPM gains and corrector 
calibrations should be unique.  

The easiest way to confirm the above statement is to 
measure several orbit response matrices, analyze each one 
separately, and see how much variation there is between 
the fit parameters for the different data sets. Figure 1 
shows the results of fitting of two different measurements 
using the two different configurations of correctors. As 
expected, the solution for the quadrupoles is ambiguous 
and shows considerable difference between the two sets. 
At the same time, the solution for BPM gains does not 
depend on the response matrix configuration. 

 

 

Figure 1. Some results of quadrupole (top) and BPM 
(bottom) calibrations using two different response 
matrices. As expected, different matrices resulted in 
different quadrupole calibrations but the same BPM gains. 

 

Figure 2. Relative difference in vertical β-functions 
calculated using two different response matrices. The rms 
difference is 1%. 
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As a confirmation that the two different quadrupole sets 
indeed represent the same response matrix, Figure 2 
shows small differences between the vertical β-functions 
calculated by elegant for both quadrupole sets. In spite 
of the quadrupole calibration ambiguity, the fit provides a 
unique storage ring model in terms of β-functions. The 
relative rms difference between the β-functions calculated 
using two different sets is 0.5% for horizontal and 1% for 
vertical β-function. These numbers can be used as an 
estimation of the accuracy of the β-function 
determination.  

2.4 Beta function beating correction 
Since the solution for the quadrupole errors is 

ambiguous and varies from measurement to measurement, 
we cannot directly apply it with the opposite sign for the 
β-function corrections. Instead, the fitted model was used 
to calculate the β-functions, and then the 
SRbetaCorrection application was used to compute the 
quadrupole corrections. This application uses an inverse 
matrix multiplication to determine a set of gradient 
corrections. It was previously used to correct β-function 
modulation using a sparse set of measured β-functions 
from quadrupole scans [5]. The corrections were then 
applied to the storage ring, and the response matrix 
measurement and fit were performed again. The β-
functions before and after correction are shown in Figure 
3. 

 

Figure 3. Horizontal β-functions of the “low-emittance” 
lattice before (left) and after (right) correction. 

Corrected β-functions improve the symmetry of the 
machine; this in turn should improve the nonlinear beam 
dynamics. The positive effect of the correction was 
observed for the low-emittance lattice; the lifetime was 
increased by 40% and the injection efficiency was 
improved.  

At the APS storage ring, the lifetime is defined by the 
nonlinear energy acceptance. To confirm that the energy 
acceptance was increased after the correction, the lifetime 
dependence on the rf voltage was measured. Figure 4 
shows the lifetime vs. rf voltage taken on three different 
dates. The important feature of this plot is not the absolute 
lifetime, but the gap voltage where the lifetime achieves a 
maximum (the overall lifetime is dependent on bunch 
pattern and coupling, which we did not reproduce for all 
measurements). This voltage is a measure of the energy 
acceptance. The first curve corresponds to the initial low-
emittance lattice; the best lifetime is achieved at 8.0 MV. 
The second curve was measured after the first correction 

was applied; the maximum is achieved at 8.5 MV. This 
correction was based on the β-functions measured in 
several quadrupoles by the quadrupole scan method. The 
third curve was measured after the correction based on the 
response matrix fit. The lifetime maximum is achieved on 
or beyond 9.5 MV. Overall, the energy acceptance was 
increased from 1.8% to 2.5%. 

We have to mention that not every attempt to correct 
the lattice was successful. This is due to the fact that the 
existing β-function correction application does not use all 
available quadrupoles. It also does not provide 
simultaneous correction of the dispersion. This 
shortcoming will be corrected in the future. 

 

Figure 4. Lifetime dependence on the rf voltage. The 
important feature of this plot is the gap voltage where the 
lifetime achieves its maximum. 

3 CONCLUSIONS 
We have created precise linear models of the storage 

ring in terms of β-functions for both low-emittance and 
high-emittance lattices. Using these models, the β-
function beating corrections have been successfully 
applied. The lifetime was increased by 40% for the low-
emittance lattice as a result of the corrections. The models 
allow the user to apply predictable and precise changes to 
the existing lattice. For example, after applying the β-
function corrections, the β-function changes exactly 
coincide with the changes predicted by the model. 

This work would not be possible without the help 
provided by many APS people. In particular, one of the 
authors (VS) would like to thank S. Milton for stimulating 
and supporting the work, and M. Borland for his 
tremendous support with regard to the storage ring 
operation and software implementation. 
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