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Abstract 
In the frame of the TRASCO/ADS project, the Italian 

study for an accelerator driven system for nuclear waste 
transmutation, we have built and developed a 3 m 
aluminium RFQ cold model divided in three resonantly 
coupled segments.  

This paper presents the results of the RFQ tuning. The 
tuning procedure was performed by employing the bead-
pulling technique, aimed to obtain a constant transverse 
electric field along the RFQ with a field error of the order 

%2≤���� . The procedure and the tuning algorithm 

based on the analysis of the second derivative of the 
measured data will be described in details. 

1 INTRODUCTION 
A CW RFQ (Radio Frequency Quadrupole) is under 

construction at LNL. It is intended as the injector of a 
high intensity proton linac to be used in ADS (Accelerator 
Driven System) for the TRASCO project [1]. The 
construction of the first part of this proton linac at LNL, 
up to the energy of 100 MeV, has been envisaged as the 
primary linac of an ISOL facility.  

One of the major constrains concerns the achievement 
of a transverse electric field having a field %2≤����  

along the RFQ; this will allow a particle transmission 
higher than 95 % [2]. We have built aluminium RFQ cold 
[3] model having three resonantly coupled segments to 
carry out bead-pulling measurement and check tuning 
procedure. 

2 DATA ANALYSIS AND ALGORITHM 
The algorithm is based on the direct integration of the 

wave equation, for small deviation from the desired field 
distribution. Respect to the method based on the 
expansion of the measured field in normal modes and 
consequent application of the eigen-problem perturbative 
theory [4], this method has the advantage that can be 
applied even when eigen-vectors are non-orthonormal. 
This is the case of resonantly coupled RFQs, where the 
normal modes can be calculated either by the 
transmission line model or by direct simulations, but it is 
not easy to define a scalar product respect to which the 
modes are normal. Moreover, the use of the direct 
equation can give any field shape, not necessarily the flat 
quadrupole field [5]. 

In order to explain the method, let us consider the case 
of one single mode (TE21); the field configuration is 

determined by Bz(x,y,z,t) , obeying to the equation: 
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With the ansatz tj
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transverse dependence is determined by solving the 
eigenvalue equation: 
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for the given mode configuration and geometrical 
boundary conditions; ωc(z) is the mode cut-off frequency 
and, if the geometry varies longitudinally, it is a function 
of z. Substituting the previous ansatz in Eq. (1) we get: 
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and for small deviations from the measured quadrupole 
frequency ω0 with associated wavelength λ0: 
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Given the field measurement V(z), the unknown in Eq. 4 
is ωc(z). In particular when one is looking for a flat field, 
the desired condition is ωc(z)=ω0 and the ωc(z) solution of 
Eq. 4 with the measured field is due to the mechanical 
errors. Ideally one would move the tuner penetrations Pi 

so as to cancel the errors, i.e.: 
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where 
P

zc

∂
∂= )(ωχ  is the tuner sensitivity, in first 

approximation supposed to be independent from the tuner 
position, and zi the tuner location. This procedure can be 
iterated. 

In practice one has a finite number of tuners, and a 
measured field rather noisy, so the difficulties lie in 
calculating the second derivative of the measured field 
properly smoothed, taking into account all the available 
tuners. One has to keep in mind that a perturbation with 
wavelength smaller than the distance between two 
neighbour tuners cannot be corrected.  

This method has been extended [6] to include the 
perturbation given by the neighbour’s dipole band. This is 
accomplished by an extension of the Eq. 4 over the four 
RFQ quadrants: 
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(j±1 �������d 4) 
where: 

• Vj(z) is the measured field in the jth quadrant, 
• ωd is the calculated dipole cut-off frequency, that 

determines the coupling between TE21 and TE11 
bands, 

•  )(zjω is the quadrant local frequency, 

determined by geometrical details, i.e. machining 
errors and tuner penetrations (at the various 
locations one has generally one tuner per 
quadrant). 

In perfect analogy with the procedure shown before, to 
get a flat field, one solves Eq. 6 for the measured field 

and then corrects the )(zjω  dependence with the tuners. 

It should be mentioned that the tuner positions at this 
point are not fully determined, and the remaining degrees 
of freedom are used to maintain the frequency and to cope 
with the field matching at the coupling cells. The tuning 
procedure has been implemented in the program TRITA 
(TRASCO RFQ Iterative Tuning Algorithm).  

3 RFQ UNDER TEST AND TUNING 
PROCEDURE 

3.1 Experimental Apparatus 
The experimental apparatus (bead-pulling system Fig. 

1) consists of four empty cylindrical PVC dielectric beads 
20 mm long with a diameter of 24 mm, four cc motors 
driving the beads by means of a nylon thread of 0.23 mm 
diameter and, a Vector Network Analyzer (VNA) HP 
8753ES. Each bead touches a couple of adjacent 
electrodes, so the best reproducibility can be achieved.  

Due relatively large diameter of the beads, the wires are 
in a low electric field region. This avoids perturbations in 
case of wire asymmetry. The wires cause only a slight 
change of quadrupole frequency, kHz 8- ≈∆ qω . 

 
Figure 1: Experimental set-up for the bead-pulling 

measurements 

We perform phase shift measurements [3] that provide a 
relative measurement of the electric field. This 
measurement method is practically unaffected by 
temperature variation since a single phase plot is taken in 
about 40 sec and that the E-field variation along the 
structure is shown during the measurement, on the VNA 

screen. The flatness V
VFL ∆=  is easily evaluated. 

Phase measurement is performed with a VNA 
resolution bandwidth RBW=100 Hz, resulting in a phase 
error of 0.05 deg. Since VNA phase dynamic accuracy is 
about 0.15 deg., the total measurement error is 0.2 deg. 
corresponding to a flatness error of 0.21 %.  
 

3.2 Aluminium RFQ and tuning procedure 
RFQ transverse section is shown in Fig.2 while main 

parameters are listed in Tab.1. 

Table 1: RFQ main parameters 

Quad. Freq. with tuners flush 350.60 MHz 

Dip Freq.  339.08 MHz 

Quad Freq with tuner inserted 352.20 MHz 

Average Tuner insertion 13 mm 

 
Figure 2: RFQ transverse section, one quadrant 

(SuperFish Simulation) 

In Fig. 3 the quadrupole and dipole dispersion curves 
are shown.  

 
Figure 3: quadrupole and dipole measured dispersion 

curve at the end of the tuning procedure. 

Notice that the dipole and the quadrupole bands are not 
separated. The two dipole bands are almost overlapping. 
It is a sign of small mechanical errors.  
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The tuning procedure we have established is the 
following: 
1) Tune both end cells (we did it by varying the 
undercut region and the end cell plate) making 
measurement on one single RFQ segment. Tuners should 
be maintained in the middle of the tuners range; 
2) Tune the coupling cells by joining together 2 RFQ 
segments (as we did for the end cells); 
3) Join all the segments. Apply the code all the time 
needed to get flat field configuration at the level 

%1≤∆V/V for each individual quadrant segment by 

segment (see Fig. 5). This is very important since, at the 
end of tuning procedure, this will be the lowest 
achievable field flatness.  

Tuners are set at an insertion value of 15 mm (Fig. 4), 
i.e., 2 mm more then the foreseen value since both 
coupling and end cells were not exactly tuned. 

 
Figure 4: Normalized electric field for the 1st. bead-

pulling measurement. 

In Fig. 5 the 5th measurement is shown. As already 
mentioned, two steps exist, while field error for each 
quadrant related to a single segment is almost 

[ ]%21.01 ±≈FL  

 
Figure 5: Normalized electric field for the 5th. bead-

pulling measurement step 

4) Make the average field level in the three segments 
equal for all the quadrants. The tuner insertions for the 
tuners beside the coupling cells are calculated by the 
relation: 
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where Vj
l,r are the field magnitudes for the quadrant j at 

the left and at the right of the coupling cell, 0 is the 
measured quad frequency, and G is a constant related to 
the tuner sensitivity .  

The resulting field flatness is in Fig. 6. We have got an 
overall field variation [ ]%21.02 ±≈FL . 

 
Figure 6: Normalized electric field for the 6th 

measurement step 

5) In case of a final frequency different from the target 
value, the frequency can be shifted whithout spoiling the 
field flatness simply moving all the tuners keeping the 
quadrupole symmetry. 

The relative quadrupole field component is shown in 
Fig. 7. For the case of the 1st meas., a strong perturbation 
due to the neighbour modes is evident. 

 

Figure 7: Energy normalized quadrupole field component 

We have tuned the cold model RFQ at the target 
frequency value. It makes us confident that the algorithm 
can be applied for the tuning of the 7.13 m long TRASCO 
copper RFQ where 104 tuners are available. 
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