
DIAMON2 - IMPROVED MONITORING OF CERN’S ACCELERATOR
CONTROLS INFRASTRUCTURE

W. Buczak, M. Buttner, F. Ehm, P. Jurcso, M. Mitev, CERN, Geneva, Switzerland

Abstract
Monitoring of heterogeneous systems in large

organizations like CERN is always challenging. CERN's
accelerators infrastructure includes large number of
equipment (servers, consoles, FECs, PLCs), some still
running legacy software like LynxOS 4 or Red Hat
Enterprise Linux 4 on older hardware with very limited
resources. DIAMON2 is based on CERN Common
Monitoring platform. Using Java industry standards,
notably Spring, Ehcache and the Java Message Service,
together with a small footprint C++ -based monitoring
agent for real time systems and wide variety of additional
data acquisition components (SNMP, JMS, JMX etc.),
DIAMON2 targets CERN’s environment, providing
easily extensible, dynamically reconfigurable, reliable and
scalable monitoring solution. This article explains the
evolution of the CERN diagnostics and monitoring
environment until DIAMON2, describes the overall
system’s architecture, main components and their
functionality as well as the first operational experiences
with the new system, observed under the very demanding
infrastructure of CERN’s accelerator complex.

INTRODUCTION
The controls infrastructure of CERN’s particle

accelerator complex covers large surfaces and integrates
significant number and wide variety of equipment,
including legacy hardware and software. Since the
successful introduction of DIAMON [1] in 2007, the
operational experience and the additional requirements
surfaced, justified further development, which finally led
to DIAMON2.

The main requirements identified were: improved
scalability, simplified maintenance including system wide
dynamic re-configuration at runtime, higher level
business logic, improved analysis capabilities, possibility
to replay historical events and to create synoptic panels.
Last but not least DIAMON1 was getting obsolete, with
its technological choices justified few years ago, but not
anymore, notably oc4j EJB container and SonicMQ.

The new improved DIAMON2 should have been
realized by better use of the available resources with
emphasis on applying industry standards wherever
possible and reusing existing components. Since two
departments at CERN, the Beams (BE) and General
Services (GS) deal with similar topics, a decision was
taken to set-up a collaboration [2] which resulted in the
creation of the CERN Control and Monitoring (C2MON)
platform – a generic framework for building inter-
operational monitoring solutions.

DIAMON2, similarly to the Technical Infrastructure
Monitoring (TIM2) [3] is based entirely on the C2MON
framework. The implementation time was shortened by

delivering ready-to-use solutions for the majority of
required functionalities, allowing us to focus on specific
DIAMON2 features and customizations, especially on the
design of the server-side business logic, system’s
configuration tools, development of the required Data
Acquisition (DAQ) components and finally on the
improvement of the GUI applications. At the same time,
the active contribution of the DIAMON team to the
C2MON project resulted in the extension of the
framework’s functionality and significantly improved its
robustness.

THE DIAMON2 ARCHITECTURE
DIAMON2 is following the classic multi-layer system

approach allowing high level of flexibility. As illustrated
in Figure 1, specific DAQ modules, based on the C2MON
DAQ Core ensure the communication between a variety
of data providers and the DIAMON2 server. The
communication can be uni- or bi-directional (support for
settings and commands).

Figure 1: DIAMON2 architecture.

With a set of DAQ core plugins we establish
communication to all required types of devices. The
DIAMON2 server handles the messages received from
the DAQ layer, computes the state of the rules (business
logic) and provides the results to the client applications
through C2MON Client API. The communication between
components of the system layers is based on JMS
messages and configured through a set of web
applications operating on DIAMON2 configuration
database [4]. All configured points (further called
metrics), alarms and rules (so-called limits) are handled
inside the server’s internal cache (Ehcache) and the states

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA03

Control System Infrastructure

ISBN 978-3-95450-139-7

1415 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

are periodically persisted into the server’s cache-
persistency database. Updated metrics and limits are also
periodically written into the Short-Term-Log (STL)
database, which holds thirty days snapshots and provides
the data on demand to the client applications. This allows
our users to replay the chain of events and precisely
analyse the problems retroactively. For all GUI clients
and web-based client applications an instance of the
Tomcat servlet container has been set-up, hosting a Spring
Java module which renders a set of web pages with the
data received at runtime from the server as well as the
offline data from the STL database.

DATA ACQUISITION LAYER
DIAMON2 uses C2MON DAQ core component. It

handles automatic data-type conversions (from source
value types to the types expected by the server), value
range-checks, value and time-based dead-band filtering
which are individually configurable. The core optimizes
the traffic by buffering and grouping metric updates of the
same priority before putting them to the output channels.
The number and type of the output channels is also
configurable (see Figure 2).

Equipment message handlers implement specific
protocols, dedicated to the type of equipment, systems or
processes they communicate with. C2MON framework
offers a wide variety of handlers from which DIAMON2
uses: JMX, JMS, PING, JAPC [5] (RDA, SNMP) and
CLIC.

The DAQ modules are configured by the DIAMON2
server at start-up, and can be dynamically reconfigured
anytime without the need of a process restart. This feature
is extremely important and was one of the fundamental
requirements for DIAMON2, dictated by frequently
changing environment of the monitored infrastructure.

Figure 2: DIAMON2 DAQ components.

DIAMON2 CLIC Agent
The CLIC agent is a small footprint, non-invasive,

modular data acquisition agent for monitoring operating
system’s parameters and other specific metrics. It is
written purely in C++ and is available on multiple
platforms (supports PowerPC and Intel processors,
different operating systems both in 32 and 64 bit
versions). The agent is modular (Figure 3) and easily
extendable. The agent provides simple acquisition and

does not have any business-logic, since this part has been
moved entirely to the server in DIAMON2 system. In
addition, the CLIC agent integrates acquisition
functionality for selected system elements like hardware
timing and CMX [6].

An instance of a CLIC agent is deployed on every
computer monitored by DIAMON2 and started
automatically when the machine boots. It communicates
with CLIC DAQs through the STOMP protocol, as
presented in Figure 1. Subscriptions and command-reply
mechanisms are ensured via the diamon2-agentlib
module, available for C++ and Java. Putting the STOMP
broker in between the DAQs and the CLIC agents
significantly improved the system’s stability. Since
handling of multiple subscriptions remains on the broker
side, stopping (or rebooting) any agent (or CLIC DAQ)
has no impact on the behaviour of other agents and data
acquisition components.

At start-up, only the agent’s core system module is
loaded while additional modules are loaded only if
requested. Currently network, disk, network timing,
hardware timing, WorldFip and CMX modules are
available, some of them being limited to specific
operating system versions. Implementation and
integration of additional modules are possible.

SYS NET DISK NTP TIM FIP CMX

DMN2-AGENT-SERVER

DMN2-AGENTLIB

Figure 3: Modular structure of the CLIC agent.

The CLIC agents are deployed currently on about 2000
machines covering Linux, LynxOS and Windows. The
agent acquires and publishes the data in regular intervals
or as response to a specific acquisition command received
from the DAQs. The CLIC starts with a predefined list of
metrics to be collected and that list can be extended at
run-time if remote instruction is received from the DAQ.
The CLIC DAQ pushes reconfiguration request to the
CLIC agent if it detects that some expected metrics are
missing. By having this mechanism in place we keep the
CLIC configuration centrally assuring the agents always
monitor required metrics.

JMS and JMX
DIAMON2 not only monitors system properties, but

also metrics of selected Java processes hosted on those
systems. For that reason a dedicated JMX DAQ has been
implemented with the aim to monitor configured metrics
through periodic polling or by receiving attribute
notification events. Since the introduction of DIAMON2
we observe growing interest in our JMX interface as this
provides a powerful tool for debugging problems and
even for preventing problems from happening thanks to
the system’s business logic and the notification service.

For C++ developers, we offer similar functionality
through CMX [6] and the CLIC agent.

THCOBA03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1416C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

 BE-CO’s JMS broker infrastructure is monitored
through JMX (number of topics, number of dynamic
producers, message consumers, usage of broker internal
storage, etc.) and through a set of tests evaluated by the
JMS DAQ (queue and topic performance tests).

Additional Data Acquisition Modules
In addition to CLIC and JMX, DIAMON2 verifies in

regular intervals network availability of all monitored
computers and virtual machines using the PING DAQ.

Certain amounts of devices are also monitored using
CERN’s JAPC protocol, with its SNMP and CMW-RDA
[7] extensions.

CMW-RDA protocol is used by DIAMON2 mainly to
acquire information from FEC computers and PLC
controllers around the LHC complex and for the Beam
Interlock System (BIS). Finally, we provide a CMW-
ADMIN DAQ which monitors the health of the CMW-
RDA middleware’s infrastructure.

SERVER LAYER
The DIAMON2 server, entirely based on C2MON

framework, is also modular. Modules are individual jars,
loaded into the server’s Spring context at start-up. They
implement specialized functionality (e.g. preloading the
cache from external database, server-to-DAQs
communication, etc.) and usually operate on the internal
cache instances of the server. C2MON delivers large set of
modules, from which some are mandatory, i.e. the server
must load them at start-up in order to work properly,
providing basic functionality (core server modules), while
some are optional (see Figure 4). DIAMON2 loads five
optional modules which are responsible for logging
updated metrics into STL database (logging), user
authentication (auth), server-client communication, rules
evaluation (rule) and for propagating alarms to LHC
Alarm Service (LASER).

Figure 4: C2MON-DIAMON2 server components.

Business Logic
In DIAMON1 business logic was distributed across

components of different layers. In DIAMON2 the entire
business-logic has been centralised inside the server. The
server’s virtual representation of the monitored systems
reflects the physical one. We define a number of
equipment, each monitoring a number of metrics. On top

of selected metrics limits are declared. A limit is a virtual
metric with simple logic behind (arithmetical, relational,
bitwise or logical operators). The values of the limits are
calculated by the server’s rule module. Values of different
limits (eventually based on data arriving from different
DAQs) are combined to provide the overall state of the
equipment (equipment rule) as illustrated in Figure 5.
Each state has its unique value (OK, WARNING or
ERROR), easily identifiable by associated colour which is
used by the client GUI consoles and on the synoptic
panels. Client applications subscribe to high level
equipment limits, simple limits or individual metrics,
depending on the use-case.

Figure 5: Metrics, Limits and Equipment-Limits in
DIAMON2.

CERN’s Safe Machine Parameters (SMP) controllers’
(SMPC) health checks are also integrated into DIAMON2
through a set of metrics and limits.

CLIENT LAYER APPLICATIONS
DIAMON2 delivers interactive and a few non-GUI

applications all build on top of the C2MON Client API
(see Figure 1). C2MON Client provides API for
subscribing to metrics, limits, authentication mechanisms,
functions to query for historical data, connection
assurance mechanisms (heartbeat) and commands
execution facility.

DIAMON2 Console
The primary DIAMON2 GUI application used by the

operators in the CERN Control Center (CCC) and other
control rooms is the DIAMON2 Console. The application
is also used by equipment experts to monitor and check
the health of different equipment. The Console gives high
level overview of the state of selected computers which
are assigned to several groups. On demand the console
can also present a list of services running on a selected
host or a list of monitored metrics and limits. Authorised
users may perform some operations, such as triggering
additional data acquisition, restarting selected processes
or rebooting a machine.

The DIAMON2 Console has been ported from
DIAMON1 [8], refactored and equipped with a set of new
functionalities (history replay, charts, link to the online
web client applications etc.).

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA03

Control System Infrastructure

ISBN 978-3-95450-139-7

1417 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

DIAMON2 Viewer
DIAMON2 Viewer is the secondary GUI application

used to present synoptic diagrams. The viewer can run as
standalone application or as an extension to the console.
Users can now design their own synoptic panels in order
to present selected monitoring data in a customized way,
according to their requirements. Based on C2MON
framework, the DIAMON2 Console and the Viewer
applications reuse a variety of common GUI components,
making both interfaces very similar.

Notification Service
The result of server rule evaluation also triggers
notifications. The users can set up notifications on
selected limits in order to be notified via e-mail or SMS
whenever any value they monitor gets out from the
normal state. This task is handled by a standalone Java
notification service process (see Figure 1).

Publishers
Publisher applications (see Figure 1) provide data to

external applications. Clients interested in receiving
updates (metrics or limits) from DIAMON2 have
currently following options:

1. They can integrate with DIAMON2 using C2MON
Client library

2. They can subscribe to the DIAMON2 data
published through the DIAMON2 CMW-RDA
publisher.

3. Selected metrics can be accessed directly through
LEMON [9] interface.

CMW-RDA Publisher
CMW-RDA publisher is a standalone Java process

which acts as a gateway between DIAMON2 and CMW-
RDA middleware. It allows users to subscribe to the
DIAMON2 data, without the use of C2MON Client
library. For selected clients at CERN that method is
preferred, mainly for none-Java clients and clients which
already depend on CMW-RDA middleware. Currently
our main client is the EN-ICE group with their PVSS
SCADA systems.

LEMON Publisher
LEMON is a computer monitoring solution for Linux

machines provided by CERN IT Department. Over a web
interface it offers interesting functionalities for system
administrators such as pre-generated clustered overview
of historical evolution on different metrics. The LEMON
publisher has been implemented to allow the use of the
LEMON web interface for PowerPC FECs running
LynxOS and profiting from the fact that DIAMON2
monitors those computers (through CLIC agents). Like
the CMW-RDA publisher it uses the C2MON Client API
to subscribe to the selected metrics. On updates, it
prepares the data package for LEMON and injects it into
the LEMON server, using the LEMON-specific protocol.

OPERATIONAL EXPERIENCE
DIAMON2 was made available to operations in 2012

and completely replaced DIAMON1 in March 2013. Due
to LHC Long Shutdown, the user community is currently
reduced. However, DIAMON2 has been used for several
months for the monitoring of parts of the CERN
accelerators controls infrastructure and successfully
passed the first LHC dry-run tests.

At the moment of writing this article, the production
server maintains 4820 equipment (including 2060 CLIC),
with around 67500 metrics and 30500 limits. Due to the
dead-band filtering policy, tuned over time, the DAQs
generate limited load on the server (around 200 updates
per sec, with av. 4-5% CPU consumption), which is far
below the server’s capacity evaluated during performance
tests, done in 2011 (during the tests we generated 30’000
updates/sec and the server computed approximately
40’000 rules/sec, with avg. heap consumption of 1.5Gb
and CPU load oscillating around ~18%. We conducted the
tests on HP ProLiant BL460c G7 24-core machine).

First operational experience also revealed that the
configuration of new elements to be monitored must
become simpler for the users. This is important especially
for the successful integration of controls software into the
monitoring system. The DIAMON team will put the focus
on this aspect in the coming months.

REFERENCES
[1] P. Charrue et al. “The DIAMON project –

Monitoring and diagnostics for the CERN controls
infrastructure” Proceedings of ICALEPCS 2007, p.
588 (2007).

[2] A Suwalska, M. Buttner, M. Braeger, W. Buczak
“C2MON CERN control and monitoring platform”,
CERN 2011.

[3] M. Braeger et al. “A customizable platform for high-
availability monitoring, control and data distribution
at CERN” Proceedings of ICALEPCS’11, p. 418
(2011).

[4] Z. Makkonen et al. “Challenges to Providing a
Successful Central Configuration Service to Support
CERN’s New Controls Diagnostics and Monitoring
System” Proceedings of ICALEPCS 2013 (2013).

[5] V. Baggiolini et al, “JAPC - the Java API for LHC
Timing Parameter Control”, ICALEPCS’05, Geneva,
Switzerland, TH1.5-8O.

[6] F. Ehm et al. “CMX - A Generic In-Process
Monitoring Solution for C and C++ Applications”
Proceedings of ICALEPCS 2013 (2013).

[7] Controls Middleware Project (CMW-RDA)
http://proj-cmw.web.cern.ch/proj-cmw.

[8] M. Buttner et al. “Diagnostics and Monitoring CERN
Accelerator controls infrastructure: the DIAMON
project first deployment in operation” ICALEPCS’09

[9] LEMON – LHC Era Monitoring
http://lemonweb.cern.ch.

THCOBA03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1418C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

