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Abstract. In ontology-based data access, data are queried through an
ontology that offers a representation of the domain of interest. In this
context, correct answers are those entailed by the logical theory con-
stituted by the data and the ontology. Traditional database constraints
like tuple-generating dependencies (TGDs) and equality-generating de-
pendencies (EGDs) are a useful tool for ontology specification. However,
their interaction usually leads to intractability or undecidability of query
answering; separability is the notion that captures the lack of interaction
between TGDs and EGDs. In this paper we exhibit a novel and general
sufficient condition for separability, in the case where the ontology is
expressed with inclusion dependencies (a subclass of TGDs) and EGDs.

1 Introduction

Answering queries over ontologies has become an important problem in knowl-
edge representation and databases. In ontology-enhanced database systems, an
extensional relational database D is combined with an ontological theory Σ de-
scribing rules and constraints which derive new intensional data from the exten-
sional data. A query is not just answered against the database D, but against the
logical theory D ∪ Σ. This problem has been addressed in several settings. For
instance, the constraints of [1, 4, 6] are tailored to express Entity-Relationship
schemata, while [18] deals with expressive constraints based on Answer Set Pro-
gramming. The work [8] introduces and studies first-order constraints derived
from a “light” version of F-logic [15], called F-logic Lite. Another relevant for-
malisms for knowledge bases, especially in the Semantic Web, is the DL-lite
family ; in [10, 17] tractable query answering techniques under DL-lite knowledge
bases are presented.

In ontology-based query answering, a prominent family of languages, re-
cently proposed, is the Datalog± family. In Datalog±, the ontological theory
is expressed by means of rules of two kinds: (i) tuple-generating dependencies
(TGDs), that is, (function-free) Horn rules enhanced with the possibility of hav-
ing existentially quantified variables in the head; (ii) equality-generating depen-
dencies, that is, (function-free) Horn rules with a single equality atom in the



head. Several decidable and tractable Datalog± languages have been studied [2,
3, 5, 7]. Even the least expressive Datalog± languages, with some extra features
which do not increase the complexity of query answering, are able to properly
extend the DL-lite languages. This suggests that TGDs and EGDs, which are
in fact “traditional” database constraints, are a powerful and flexible tool for
ontology modeling. Consider the following example, adapted from [5].

Example 1. Consider the following relational schema.

dept(Dept Id,Mgr Id),
emp(Emp Id,Dept Id,Area,Project Id),
runs(Dept Id,Project Id),
in area(Project Id,Area),
project mgr(Emp Id,Project Id),
external(Ext Id,Area,Project Id).

The fact that each department has an employee as manager can be expressed
by the TGD

dept(V,W )→ ∃X∃Y ∃Z emp(W,X, Y, Z).

The following TGD expresses the fact that each employee works on some project
that falls into his/her area of specialization ran by his/her department.

emp(V,W,X, Y )→ ∃Z dept(W,Z), runs(W,Y ), in area(Y,X).

The fact that for each project run by some department there exists an exter-
nal controller, specialized on the area of the project, that works on it can be
expressed by the TGD

runs(W,X), in area(X,Y )→ ∃Z external(Z, Y,X).

With the EGD below, we specify that for each area, all project within it have
the same manager.

project mgr(X1, Y1), project mgr(X2, Y2),
in area(Y1, Z), in area(Y2, Z)→ X1 = X2.

In this paper we focus on the language of TGDs and EGDs, and we address
the problem of the interaction between the two types of constraints. Notice that,
when there is no limitation on how TGDs and EGDs interact, the conjunctive
query answering problem is undecidable; in fact, it is undecidable already for
inclusion dependencies (IDs) and key dependencies (KDs), two subclasses of
TGDs and EGDs, respectively. For this reason the notion of separability was
first proposed in [9]. A set Σ = ΣT ∪ ΣE , where ΣT and ΣE are TGDs and
EGDs, respectively, is said to be separable if, assuming the theory D ∪Σ to be
consistent, for each database D, the answers to a conjunctive query Q under Σ
and under ΣT coincide. In other words, EGDs do not play any role in query
answering, and queries can be answered by considering the TGDs only. Several



conditions have been proposed to ensure separability (see Section 3); here we
propose a sufficient condition in the case where the constraints are IDs together
with general EGDs. We also discuss that this condition can be easily combined
with the known condition for TGDs (and thus IDs) and FDs [5], hence identifying
a more general sufficient condition. The result can be straightforwardly extended
to linear TGDs and EGDs, where linear TGDs are a slight generalization of IDs
consisting of TGDs with exactly one atom in the body; however, for clarity of
exposition, we illustrate our results in the case of IDs.

We do believe that our preliminary results pave the way to the discovery of
more general separability conditions between EGDs (or their restrictions) and
decidable classes of TGDs such as guarded TGDs (guarded Datalog±) [2] or sticky
sets of TGDs (sticky Datalog±) [5, 7].

2 Preliminaries

In this section we recall some basics on databases, queries, tuple-generating
dependencies, equality-generating dependencies, and the chase procedure.

General. We define the following pairwise disjoint (infinite) sets of symbols:
(i) a set Γ of constants (constitute the “normal” domain of a database), (ii)
a set ΓN of labeled nulls (used as placeholders for unknown values, and thus
can be also seen as variables), and (iii) a set ΓV of variables (used in queries
and dependencies). Different constants represent different values (unique name
assumption), while different nulls may represent the same value. A lexicographic
order is defined on Γ ∪ ΓN , such that every value in ΓN follows all those in Γ .
Throughout the paper, we denote by X sequences of variables X1, . . . , Xk, where
k > 0. Also, let [n] be the set {1, . . . , n}, for any integer n > 1.

A relational schema R (or simply schema) is a set of relational symbols (or
predicates), each with its associated arity. A position r[i] (in a schema R) is
identified by a predicate r ∈ R and its i-th argument (or attribute). A term t is
a constant, null, or variable. An atomic formula (or simply atom) has the form
r(t1, . . . , tn), where r is an n-ary relation, and t1, . . . , tn are terms. Conjunctions
of atoms are often identified with the sets of their atoms. A database (instance) D
for a schema R is a (possibly infinite) set of atoms of the form r(t) (a.k.a. facts),
where r is an n-ary predicate of R, and t ∈ (Γ ∪ ΓN )n. We denote as r(D) the
set {t | r(t) ∈ D}.

A substitution from one set of symbols S1 to another set of symbols S2

is a function h : S1 → S2 defined as follows: (i) ∅ is a substitution (empty
substitution), (ii) if h is a substitution, then h ∪ {X → Y } is a substitution,
where X ∈ S1 and Y ∈ S2, and h does not already contain some X → Z with
Y 6= Z. If X → Y ∈ h we write h(X) = Y . A homomorphism from a set of
atoms A1 to a set of atoms A2, both over the same schema R, is a substitution
h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV such that: (i) if t ∈ Γ , then h(t) = t, and
(ii) if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2.
If there are homomorphisms from A1 to A2 and vice-versa, then A1 and A2 are
homomorphically equivalent. The notion of homomorphism naturally extends to



conjunctions of atoms. Given a set of symbols S, two atoms a1 and a2 are S-
isomorphic iff there exists a bijection h such that h(a1) = a2, h

−1(a2) = a1, and
h(X) = X, for each X ∈ S.

Conjunctive Queries. A conjunctive query (CQ) Q of arity n over a schema
R has the form q(X)← ϕ(X,Y), where ϕ(X,Y) is a conjunction of atoms over
R, X and Y are sequences of variables or constants in Γ , and q is an n-ary
predicate that does not occur in R. ϕ(X,Y) is called the body of q, denoted as
body(q). A Boolean CQ (BCQ) is a CQ of zero arity.

The answer to an n-ary CQ Q of the form q(X)← ϕ(X,Y) over a database
D, denoted as Q(D), is the set of all n-tuples t ∈ Γn for which there exists a
homomorphism h : X∪Y → Γ ∪ΓN such that h(ϕ(X,Y)) ⊆ D and h(X) = t. A
BCQ has only the empty tuple 〈〉 as possible answer, in which case it is said that
has positive answer. Formally, a BCQ Q has positive answer over D, denoted as
D |= Q, iff 〈〉 ∈ Q(D), or, equivalently, Q(D) 6= ∅.

Dependencies. Given a schema R, a tuple-generating dependency (TGD)
σ over R is a first-order formula ∀X∀Yϕ(X,Y)→ ∃Zψ(X,Z), where ϕ(X,Y)
and ψ(X,Z) are conjunctions of atoms over R, called the body and the head
of σ, denoted as body(σ) and head(σ), respectively. Henceforth, to avoid nota-
tional clutter, we will omit the universal quantifiers in TGDs. Such σ is satis-
fied by a database D for R iff, whenever there exists a homomorphism h such
that h(ϕ(X,Y)) ⊆ D, there exists an extension h′ of h (i.e., h′ ⊇ h) where
h′(ψ(X,Z)) ⊆ D.

A restricted class of TGDs which is of special interest in this paper is the
class of inclusion dependencies (IDs). In fact, IDs are the simplest class of TGDs;
they have just one body-atom and one head-atom, without repetition of variables
neither in the body nor in the head.

An equality-generating dependency (EGD) η over R is a first-order formula
∀Xϕ(X) → Xi = Xj , where ϕ(X) is a conjunction of atoms over R, called the
body and denoted as body(η), and Xi = Xj is an equality among variables of X.
Henceforth, for brevity, we will omit the universal quantifiers in EGDs. Such η
is satisfied by a database D for R iff, whenever there exists a homomorphism h

such that h(ϕ(X)) ⊆ D, then h(Xi) = h(Xj).

CQ Answering under Dependencies. We now define the notion of query
answering under TGDs and EGDs. Given a database D for R, and a set Σ of
TGDs and EGDs over R, the models of D w.r.t. Σ, denoted as mods(D,Σ), is
the set of all databases B such that B |= D ∪ Σ, i.e., B ⊇ D and B satisfies
Σ. The answer to a CQ Q w.r.t. D and Σ, denoted as ans(Q,D,Σ), is the set
{t | t ∈ Q(B), for each B ∈ mods(D,Σ)}. The answer to a BCQ Q w.r.t. D
and Σ is positive, denoted as D∪Σ |= Q, iff ans(Q,D,Σ) 6= ∅. Note that query
answering under general TGDs and EGDs is undecidable. In fact, this is true
even in extremely simple cases such as that of IDs and keys [11].

We recall that the two problems of CQ and BCQ answering under TGDs
and EGDs are logspace-equivalent [2]. Moreover, it is easy to see that the
query output tuple problem (as a decision version of CQ answering) and BCQ



evaluation are ac0-reducible to each other. Thus, we henceforth focus only on
the BCQ answering problem.

The Chase Procedure. The chase procedure (or simply chase) is a funda-
mental algorithmic tool introduced for checking implication of dependencies [16],
and later for checking query containment [14]. Informally, the chase is a process
of repairing a database w.r.t. a set of dependencies so that the resulted database
satisfies the dependencies. We shall use the term chase interchangeably for both
the procedure and its result. The chase works on an instance through the so-
called TGD and EGD chase rules. The TGD chase rule comes in two different
equivalent fashions: oblivious and restricted [2], where the restricted one repairs
TGDs only when they are not satisfied. In the sequel, we focus on the oblivious
one for better technical clarity. The chase rules follow.

TGD Chase Rule. Consider a database D for a schema R, and a TGD σ

of the form ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there
exists a homomorphism h such that h(ϕ(X,Y)) ⊆ D, then: (i) define h′ ⊇ h

such that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null
not introduced before, and following lexicographically all those introduced so
far, and (ii) add to D the set of atoms h′(ψ(X,Z)), if not already in D.

EGD Chase Rule. Consider a database D for a schema R, and an EGD η

of the form ϕ(X)→ Xi = Xj over R. If η is applicable to D, i.e., there exists a
homomorphism h such that h(ϕ(X)) ⊆ D and h(Xi) 6= h(Xj), then: (i) if h(Xi)
and h(Xj) are both constants of Γ , then there is a hard violation of η, and the
chase fails, otherwise (ii) replace each occurrence of h(Xj) with h(Xi), if h(Xi)
precedes h(Xj) in the lexicographic order, or vice-versa otherwise.

Given a database D and a set of dependencies Σ = ΣT ∪ ΣE , where ΣT

are TGDs and ΣE are EGDs, the chase algorithm for D and Σ consists of an
exhaustive application of the chase rules in a breadth-first fashion, which leads
to a (possibly infinite) database. Roughly, the chase of D w.r.t. Σ, denoted as
chase(D,Σ), is the (possibly infinite) instance constructed by iteratively apply-
ing (i) the TGD chase rule once, and (ii) the EGD chase rule as long as it is
applicable (i.e., until a fixed point is reached). A formal definition of the chase
algorithm is given, e.g., in [5].

Example 2. Let R = {r, s}. Consider the set Σ of TGDs and EGDs over R con-
stituted by the TGDs σ1 = r(X,Y ) → ∃Z r(Z,X), s(Z) and σ2 = r(X,Y ) →
r(Y,X), and the EGD η = r(X,Y ), r(X ′, Y )→ X = X ′. Let D be the database
forR consisting of the single atom r(a, b). During the construction of chase(D,Σ)
we first apply σ1, and we add the atoms r(z1, a), s(z1), where z1 is a “fresh” null
of ΓN . Moreover, σ2 is applicable and we add the atom r(b, a). Now, the EGD
η is applicable and we replace each occurrence of z1 with the constant b; thus,
we get the atom s(b). We continue by applying exhaustively the chase rules as
explained above.

The (possibly infinite) chase of D w.r.t. Σ is a universal model of D w.r.t. Σ,
i.e., for each database B ∈ mods(D,Σ), there exists a homomorphism from
chase(D,Σ) to B [13, 12]. Using this fact it can be shown that the chase is a



formal tool for query answering under TGDs and EGDs. In particular, given a
BCQ Q, D∪Σ |= Q iff chase(D,Σ) |= Q, providing that the chase does not fail.
If the chase fails, then the set of models of D w.r.t. Σ is empty, and D ∪Σ |= Q

trivially.

3 Overview of Decidable Classes

As already mentioned, the interaction of general TGDs and EGDs has been
proved to lead to undecidability of query answering. A semantic notion that
ensures decidability of query answering under sets of TGDs and EGDs, providing
that the set of TGDs falls in a decidable class, is separability [9, 3]. Roughly
speaking, separability guarantees that queries can be answered by considering
only the set of TGDs (apart from an initial check whether the chase fails); the
formal definition is given in Section 4. Several sufficient syntactic conditions for
separability have been proposed in the literature. In this section we give a brief
overview of these conditions.

An early separable class of IDs and KDs, called key-based, was proposed
in the seminal work of Johnson and Klug [14]. In short, given an ID σ of the
form r(X,Y) → ∃Z s(X,Z), (i) the set of X-attributes of head(σ) must be
strictly contained in the set of key attributes of the relation s, and also (ii) the
X-attributes of body(σ) must be disjoint from the set of key attributes of the
relation r.

As observed by Cal̀ı et al. [9], the first condition of key-based sets of IDs
and keys, as explained above, can be relaxed so that the set of X-attributes of
head(σ) can be also equal to the set of key attributes of s. Also, the second
condition, which imposes a restriction on the bodies of the IDs, is not needed. In
particular, the class of non-key-conflicting (NKC) IDs was defined: given an ID
σ = r(X,Y) → ∃Z s(X,Z), the set of X-attributes of head(σ) is not a proper
superset of the set of key attributes of s. Note that NKC IDs capture the well-
known class of foreign key dependencies, which corresponds to the case where
the set of X-attributes of head(σ) is equal to the set of key attributes of s.

The class of NKC IDs was generalized in [3] to the context of arbitrary
(single-head) TGDs by defining the class of non-key-conflicting TGDs. Actually,
the underlying idea is the same: given a TGD σ = ϕ(X,Y) → ∃Z r(X,Z), the
set of X-attributes of head(σ) is not a proper superset of the set of key attributes
of r; moreover, each existentially quantified variable in head(σ) must occur only
once. In [5], it was observed that the class of non-key-conflicting TGDs can be
effortless extended to treat, not just keys, but functional dependencies.

The main reason due to which the above classes are separable is because, if
the given database satisfies the set of EGDs, we know that it is not possible to
apply an EGD during the chase procedure. The separable classes of IDs and KDs
introduced in [4, 6] in the context of Entity-Relationship schemata, instead, are
such that KDs can be applied during the chase. The separable class of IDs and
EGDs that we propose in this paper is actually a generalization of the classes of
IDs and KDs introduced in [4, 6].



4 Separable IDs and EGDs

In this section we exhibit a sufficient syntactic condition for separability between
a set of IDs and a set of EGDs. Before we proceed further, let us give the formal
definition of separability [9, 3].

Definition 1. Consider a ΣT of TGDs over a schema R, and a set ΣE of EGDs
over R. We say that the set Σ = ΣT ∪ΣE is separable if, for every database D
for R, either chase(D,Σ) fails, or, chase(D,Σ) |= Q iff chase(D,ΣT ) |= Q, for
every BCQ Q over R.

4.1 Non-Conflicting Sets of IDs and EGDs

In this subsection we define when a set of IDs and EGDs is non-conflicting, and
then establish that this condition is indeed sufficient for separability. Intuitively,
the condition ensures that, if the chase does not fail, whenever “new” atoms
(from the logical point of view) are created in the chase by the application of
the EGD chase rule, atoms that are logically equivalent to the new ones are
guaranteed to be generated also in the absence of the EGDs. This is sufficient
to guarantee that EGDs do not have any impact on the chase with respect to
query answering.

Before we proceed further, we need to give some preliminary definitions. First,
we define the notion of affected positions of a relational schema w.r.t. a set of
TGDs. Given a schema R, and a set Σ of TGDs over R, an affected position of
R w.r.t. Σ is defined inductively as follows. Let πh be a position in the head of
a TGD σ ∈ Σ. If an existentially quantified variable occurs at πh, then πh is
affected w.r.t. Σ. If the same universally quantified variable X appears both in
position πh, and in the body of σ at affected positions only, then πh is affected
w.r.t. Σ. Intuitively speaking, the affected positions of a schema w.r.t. a set
Σ of TGDs, are those positions at which a labeled null may occur during the
construction of the chase under Σ.

A useful notion is the well-known query containment under TGDs. Given a
set Σ of TGDs over a schema R, and two CQs Q1 and Q2 over R, we say that
Q1 is contained in Q2 w.r.t. Σ, written Q1 ⊆Σ Q2, if Q1(D) ⊆ Q2(D), for every
database D for R that satisfies Σ.

Consider now a set ΣT of IDs over a schema R, and an EGD η over R of
the form ϕ(X) → Xi = Xj , where {Xi, Xj} ⊆ X; we assume w.l.o.g. that ΣT

and η have no variables in common. Let λ be the substitution {Xj → Xi}. The
derivation forest for η under ΣT , denoted as Fη,ΣT

, is constructed as follows. If
at least one occurrence of the so-called watched variable Xi in λ(ϕ(X)) occurs
at a non-affected position, then Fη,ΣT

is empty; otherwise, the roots of the
forest are the atoms of λ(ϕ(X)). Now, we iteratively apply the following step
to every atom a in the part of Fη,ΣT

constructed so far; let Vη be the set of
all variables appearing in the atoms of ϕ(X). For each σ ∈ ΣT (for which we
assume w.l.o.g. that has no variables in common with any of the atoms in the
part of Fη,ΣT

constructed so far), if there exists a homomorphism h such that
h(head(σ)) = a, and also



r(X, Y )

s(Y,X)

p(X)

t(X, Y )

Fig. 1. The derivation forest Fη,ΣT
for Example 3.

1. h(body(σ)) contains the watched variable Xi,
2. all the occurrences of Xi in h(body(σ)) occur at affected positions of R

w.r.t. ΣT , and
3. h(body(σ)) is not Vη-isomorphic to some ancestor of a in the part of Fη,ΣT

so far constructed,

then add h′(body(σ)), where h′ ⊇ h maps the variables that occur in the body
but not in the head of σ to their self, as a child of a in Fη,ΣT

.
Intuitively, the atoms at the nodes of the derivation forest are representatives

of “new” atoms (from the logical point of view, as explained above) that could be
generated by applying the EGD chase rule in the chase. This because the forest
is generated by a procedure similar to backward resolution which, starting from
the root atoms, generates representatives of all possible atoms which could have
generated such root atoms, and which are also affected by the EGD application.
To guarantee that the new atoms are generated in the chase under the IDs alone,
we use a condition based on containment of suitable conjunctive queries, as we
shall explain below.

We are now ready to define formally when a set of IDs and EGDs is non-
conflicting. Henceforth, for notational convenience, given a set Σ of dependen-
cies, we will denote by ΣT and ΣE the set of IDs and EGDs, respectively.

Definition 2. Consider a set Σ of IDs and EGDs over a schema R. We say
that Σ is non-conflicting if, for each η ∈ ΣE of the form ϕ(X)→ Xi = Xj, the
following condition holds. For each atom a in Fη,ΣT

, Q1 ⊆ΣT
Q2, where Q1 and

Q2 are the conjunctive queries q(Y)← ϕ(X) and q(Y)← a, respectively, where
Y are the variables that appear both in ϕ(X) and a.

Example 3. Consider the set Σ consisting by the dependencies

σ1 : s(X,Y ) → r(Y,X)
σ2 : p(X) → ∃Y s(Y,X)
σ3 : t(X,Y ) → r(X,Y )
σ4 : r(X,Y ) → s(Y,X)
η : r(X,Y ), r(X,Z) → Y = Z.

The derivation forest Fη,ΣT
for η and ΣT is depicted in Figure 1. Note that the

shaded nodes are not part of the forest. The atom t(X,Y ) is not added since



the watched variable Y occurs at a non-affected position, while the atom p(X)
is not added since it does not contain the watched variable Y . It is not difficult
to see that Q1 ⊆ΣT

Q2 and Q1 ⊆ΣT
Q3, where

Q1 : q(Y )← r(X,Y ), r(X,Z)
Q2 : q(Y )← r(X,Y )
Q3 : q(Y )← s(Y,X).

Consequently, ΣE is non-conflicting with ΣT . This, as we shall state in Theo-
rem 2, implies separability of Σ. Let us give an informal explanation of why this
holds. If we apply η to two generic atoms of the form r(ζ1, ζ2), r(ζ1, ζ3) in the
chase under Σ (with {ζ1, ζ2, ζ3} ⊆ Γ ∪ΓN , and such that the chase does not fail
due to such application), we get r(ζ1, ζ2). The condition Q1 ⊆ΣT

Q2 ensures that
the same atom is generated from r(ζ1, ζ2), r(ζ1, ζ3) also in the chase under ΣT

only, that is, the application of η does not create new atoms. Notice that in this
particular case the containment holds trivially as the result of the application of
η is a mere elimination of an atom. As for Q1 ⊆ΣT

Q3, suppose now to have the
atoms of the form s(ζ3, ζ1) and r(ζ1, ζ2) in the chase under Σ. By virtue of σ1,
we also have r(ζ1, ζ3), and by applying η we have to replace ζ3 with ζ2, and this
creates the atom s(ζ2, ζ1). The condition Q1 ⊆ΣT

Q3 guarantees that s(ζ2, ζ1)
is generated in the chase under ΣT only.

Identifying Non-Conflicting Sets. Let us now establish that the deriva-
tion forest of an EGD under a set of IDs is always finite.

Proposition 1. Consider a set ΣT of IDs over a schema R, and an EGD η

over R. The derivation forest of η under ΣT is finite.

Proof. It suffices to show that on a certain path P of the derivation forest of
η under ΣT only finitely many non-Vη-isomorphic atoms can appear. Let η be
of the form ϕ(X) → Xi = Xj , and λ = {Xj → Xi}. Observe that, two atoms
a and b of P are Vη-isomorphic iff a⋆ = b⋆, where a⋆ and b⋆ are the atoms
obtained by replacing in a and b, respectively, the variables that do not occur in
λ(ϕ(X)) with the “don’t care” character “⋆”. Therefore, the maximum number
of non-Vη-isomorphic atoms that we can have on P is |R| · (|S|+ 1)w, where w
is the maximum arity over all predicates of R, and S is the set of symbols that
can appear on P , that is, the variables and constants that appear in the root
node of P , and the constants that occur in ΣT . Since both R and ΣT are finite,
the claim follows.

Since the conjunctive query containment problem under the class of IDs is
decidable [14], we immediately get that the non-conflicting condition as defined
above is decidable. In particular, given a set Σ of IDs and EGDs, the problem of
deciding whether Σ is non-conflicting is pspace-complete. The upper bound is
obtained by exhibiting a simple non-deterministic polynomial space algorithm,
while the lower bound is established by providing a reduction from the conjunc-
tive query containment problem under IDs, which is pspace-hard [14].



Theorem 1. Consider a set Σ of IDs and EGDs over a schema R. The problem
whether Σ is non-conflicting is pspace-complete.

Soundness and Completeness. We now establish that non-conflicting sets
of IDs and EGDs are indeed separable. Before we proceed further, let us establish
an auxiliary technical lemma.

Lemma 1. Consider a non-conflicting set Σ of IDs and EGDs over a schema
R. If chase(D,Σ) does not fail, then there exists a homomorphism h such that
h(chase(D,Σ)) ⊆ chase(D,ΣT ), for every database D for R.

Proof (sketch). The proof is by induction on the number of applications of the
(TGD or EGD) chase rule. We need to show that, for each k > 0, there ex-

ists a homomorphism hk such that hk(chase
[k](D,Σ)) ⊆ chase(D,ΣT ), where

chase [k](D,Σ) is the initial finite part of the chase obtained by applying k

times either the TGD or the EGD chase rule. The base step is trivial since
chase [0](D,Σ) = D, and therefore h0 is the identity homomorphism. Now, sup-
pose that during the k-th application, the TGD chase rule is applied due to
an ID σ ∈ ΣT , which implies that there exists a homomorphism µ that maps
body(σ) to chase [k−1](D,Σ). The homomorphism hk can be defined easily by
exploiting the homomorphisms hk−1 and µ.

The interesting case is when during the k-th application, the EGD chase
rule is applied due to an EGD η of the form ϕ(X) → Xi = Xj . Thus, there

exists a homomorphism µ such that µ(ϕ(X)) ⊆ chase [k−1](D,Σ), and µ(Xi) 6=
µ(Xj). W.l.o.g. we assume the during the application of the EGD chase rule
the substitution λ = {µ(Xj) → λ(Xi)} is applied. Consider an atom a ∈

chase [k](D,Σ) \ chase [k−1](D,Σ), i.e., was obtained by applying the EGD chase

rule. Assume that a = λ(a′), where a′ ∈ chase [k−1](D,Σ). We are going to show
that hk−1(a) ∈ chase(D,ΣT ). We proceed by identifying the following two cases.

Suppose first that a′ is the ancestor in the chase graph (i.e., the graph where
the nodes are the atoms of chase(D,Σ), and there exists an edge from a to b if
b is obtained from a by a single TGD chase rule application) of some atom of
µ(ϕ(X)). Clealry, µ(Xi) occurs in a

′. Moreover, since by hypothesis chase(D,Σ)
does not fail, µ(Xj) is a null of ΓN , and thus all the occurrences of µ(Xj)
in a′ appear at affected positions. Furthermore, by induction hypothesis, hk−1

maps µ(ϕ(X)) into chase(D,ΣT ). Since Σ is non-conflicting we get that there
exists a homomorphism ha ⊇ hk−1 ◦µ such that ha(a) ∈ chase(D,ΣT ). Observe
that ha ⊆ hk−1 and µ(a) = a. Therefore, ha(a) = hk−1(a) which implies that
hk−1(a) ∈ chase(D,ΣT ).

Finally, suppose that a′ is not the ancestor of any atom of µ(ϕ(X)), but there

exists an atom a′′ ∈ chase [k−1](D,Σ) which is the ancestor of a′, and also a′′ is
the ancestor of some atom of µ(ϕ(X)). Since, by the previous case, hk−1(a

′′) ∈
chase(D,ΣT ), it is straightforward to see that hk−1(a

′) ∈ chase(D,ΣT ).
The desired homomorphism is eventually h =

⋃∞

i=0 hi.

Our main result follows by exploiting the above technical lemma.



Theorem 2. Consider a set Σ over a schema R. If Σ is non-conflicting, then
it is also separable.

Proof. Let D be a database for R such that chase(D,Σ) does not fail. Clearly,
by construction, chase(D,Σ) satisfies all the dependencies in Σ. Therefore,
chase(D,Σ) ∈ mods(D,Σ) ⊆ mods(D,ΣT ). Since chase(D,ΣT ) is a universal
model of D w.r.t. ΣT we immediately get that there exists a homomorphism h

such that h(chase(D,ΣT )) ⊆ chase(D,Σ). On the other hand, Lemma 1 implies
that there exists a homomorphism h′ such that h′(chase(D,Σ)) ⊆ chase(D,ΣT )
Due to the existence of h and h′ we get that chase(D,Σ) and chase(D,ΣT ) are
homomorphically equivalent. Consequently, for every BCQ Q over R, it holds
that chase(D,Σ) |= Q iff chase(D,ΣT ) |= Q, and the claim follows.

Let us say that our non-conflicting condition can be combined with existing
techniques in order to capture additional cases that involve functional depen-
dencies which are not triggered during the construction of the chase. In par-
ticular, it can be combined with the non-conflicting notion proposed in [5] for
general TGDs (and thus IDs) and FDs. In this case, we say that an EGD is
non-conflicting with a set of IDs if the condition given in [5] is satisfied, or the
non-conflicting condition defined above is satisfied.

For simplicity reasons, in this work we considered only IDs. However, the
non-conflicting condition can be extended to the slightly more general class of
linear TGDs, i.e., TGDs with just one body-atom, where repetition of variables
is allowed both in the body and in the head. Roughly, this can be achieved
by modifying the non-conflicting condition in such a way that, instead of a
homomorphism that maps the head of a TGD σ to an atom a of the derivation
forest, we need that head(σ) and a unify. Then, during the construction of the
derivation forest, we exploit the most general unifier of head(σ) and a.

5 Conclusions

In this paper we have addressed the problem of separability between TGDs and
EGDs in the context of ontological query answering. We have exhibited a suffi-
cient, syntactically checkable condition for separability for the case of IDs and
general EGDs. The result can be straightforwardly extended to linear TGDs and
EGDs. We remind the reader that the condition is sufficient but not necessary.
Deciding separability of sets of IDs and general EGDs is, in fact, undecidable.

Notice that, by the results of [3], answering conjunctive queries under linear
TGDs is pspace-complete in combined complexity (complexity when both data
and constraints are considered as input) and in ac0

1 in data complexity (com-
plexity where only data are considered as input). Moreover, a query Q can be
evaluated against a database D under a set of linear TGDs ΣT by rewriting it

1 The complexity class of recognizing words in languages defined by constant-depth
Boolean circuits with (unlimited fan-in) and and or gates.



into a union of conjunctive query QΣT
(expressible in SQL), and then evaluating

QΣT
directly over D.

By exploiting the results of this paper, it is possible to show that the com-
plexity of conjunctive query answering under non-conflicting sets of linear TGDs
and EGDs is the same as in the case of linear TGDs alone. Thus, as a corollary
we get that the complexity of conjunctive query answering under non-conflicting
sets of linear TGDs and EGDs is pspace-complete and in ac0 in combined and
data complexity, respectively.
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