A Formal Ontology on User Interfaces —
Yet Another User Interface Description Language?

Position Paper

Heiko Paulheim and Florian Probst
SAP Research
Bleichstrasse 8

64283 Darmstadt, Germany
{heiko.paulheim,f.probst} @sap.com

ABSTRACT

During the past years, a lot of user interface descrip-
tion languages, most of them based on XML, have been
introduced. At the same time, the use of formal ontolo-
gies for describing user interfaces has been discussed
for a number of use cases. This paper discusses the
differences between a formal ontologies and user inter-
face description languages and and points out how both
research directions can benefit from each other.

Author Keywords

User Interfaces, Ontology, UI Description Languages,
Formal Models

ACM Classification Keywords

D.2.2 Software Engineering: Design Tools and Tech-
niques— User Interfaces; D.2.11 Software Engineering:
Software Architectures—Languages; 1.2.4 Artificial In-
telligence: Knowledge Representation Formalisms and
Methods—Semantic Networks

General Terms
Design, Languages

INTRODUCTION

Recently, a number of use cases have been proposed that
employ ontologies for modeling user interfaces, their
components and interaction capabilities. Examples are
automatic generation of explanations for user interfaces,
adaptation of user interfaces for different needs and con-
texts, and integration of user interface components [14].
Those use cases require a strongly formalized ontology
of the domain of user interfaces and interactions.

In parallel, various Ul description languages have been
proposed, most of them XML based [7, 12]. The duality
of UI description languages and formal ontologies gives
rise to the question whether an additional ontology is
really needed, or whether it is going to be yet another
user interface description language.

ONTOLOGIES AND MODELS
Although ontologies and software models are related,
they are not essentially the same. Software models and

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

ontologies are different by nature. An ontology claims
to be a generic, commonly agreed upon specification of
a conceptualization of a domain [6], with a focus on pre-
cisely capturing and formalizing the semantics of terms
used in a domain. A software model in turn is task-
specific, with the focus on an efficient implementation
of an application for solving tasks in the modeled do-
main [2, 16, 18]. Thus, a software engineer would rather
trade off precision for a simple, efficient model, with the
possibility of code generation, while an ontology engi-
neer would trade off simplicity for a precise representa-
tion. Another difference is that in software engineering,
models are most often prescriptive models, which are
used to specify how a system is supposed to behave,
while ontologies are rather descriptive models, which
describe how the world is [1]. Figure 1 illustrates those
differences.

Taking this thought to the domain of user interfaces
and interactions, models are used to define particular
user interfaces (e.g. with the goal of generating code
implementing those interfaces), while a formal ontology
would capture the nature of things that exist in the
domain, e.g., which types of user interfaces exist, and
how they are related.

Due to those differences, we argue that developing a
formal ontology on user interfaces will not lead to yet
another user interface description language, but to a
formal model with different intentions and usages. In
the next sections, we will discuss how the two worlds
can benefit from each other.

HOW A FORMAL ONTOLOGY CAN BENEFIT

FROM Ul DESCRIPTION LANGUAGES

A lot of research work has gone into the development
of different user interface description languages. Those
research efforts can be and should be taken into account
when developing an ontology of the domain.

Collection of Concepts

Most methodologies for ontology engineering foresee the
capturing of key concepts and relationships as one of the
first steps. This can be done by conducting interviews



Different goals lead to
different models

Goal: efficient
programming

Software Model

develops

\

software developer

Goal: ,complete picture®,
semantic account of terms
in a domain

Ontology

develops

-

ontology engineer

Figure 1. Ontologies and modeling languages serve different purposes.

with domain experts, scanning books and other mate-
rial, and/or reusing parts of other ontologies [5, 19]. At
this point of ontology engineering, lots of input can be
used from existing user interface description languages.

Since those languages are most often XML-based, they
consist of a smaller or larger number of tags and at-
tributes, which determine the expressivity of the lan-
guage. As many of those elements define certain con-
cepts of the domain, such as Ul components or actions
that can be performed with them, they are a good start-
ing point for developing a formal ontology of the do-
main.

Benchmarking the Ontology’s Completeness

As discussed above, ontology engineering aims at pro-
viding a complete, comprehensive formal description of
a domain. However, assessing the completeness of an
ontology is not always an easy task. Here, user interface
description languages can once again help by providing
a benchmark for the ontology’s completeness.

Such a benchmark can be performed in different ways.
On the meta-model level, the number of concepts con-
tained in the meta model (e.g., tags and attributes in
an XML schema) which have a counterpart in the on-
tology can be determined. On the model level, one can
check whether given models in a user interface descrip-
tion language can be expressed using only the terms
given in an ontology, either informally, or formally, e.g.,
in RDF. Thus, user interface description languages can
provide a measure for the completeness of an ontology
of the domain.

HOW Ul DESCRIPTION LANGUAGES CAN BENEFIT

FROM A FORMAL ONTOLOGY
Once an ontology of the domain of user interfaces and
interactions has been created, it can be used to improve

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

the development and usage of new and existing user
interface description languages as well.

Disambiguation of Terms

In an analysis of user interface description languages,
we have found that terms are often used differently in
different standards. An example is the term dialog. In
XIML, for example, a dialog element is defined as be-
ing “like a command that can be executed [...] It is the
more concrete instantiation of a task.” [15]. In contrast,
XUL defines a dialog as an “element [which] should be
used in place of the window element for dialog boxes”
[10]. Such ambiguities can easily lead to misinterpre-
tations, especially if users are trained on a particular
language and switch to another one.

Mapping a user interface description language to a for-
mal ontology capturing the semantics of those terms
can avoid such misinterpretations. With the exam-
ple term dialog, a formal ontology can help resolving
the ambiguity by indicating that the languages imply
different top-level categories such as PROCESS, PLAN,
or SOFTWARE COMPONENT as super-category for DIA-
LOG.

Facilitating Extensibility of User Interface Description

Languages

XML based languages usually use a fixed set of tags.
In order not to be too strictly limited for practical use,
many of those languages provide some extension mech-
anisms such as universal general purpose tags that can
be used for user-defined concepts (e.g. the ELEMENT tag
in XIML). These extension slots are then filled with ar-
bitrary strings.

Arbitrary strings, however, are dangerous. They lead
to extensions that are incompatible with each other,
interpreted differently by different people and systems



ontology
engineer

—

develops

Ontology

Modeling
Language

develops
—

modeling language
designer and user

Figure 2. How user interface description languages and
ontologies can benefit from each other

relying on different conventions and external documen-
tations, and, in the end, foil the overall idea of having
a standardized modeling language.

A formal ontology can help here by providing a stan-
dardized vocabulary which can be used to fill such ex-
tension slots. Thus, it can be assured that there is an
unambiguous interpretation of the extensions.

Model Comparison and Conversion

When bringing together different development teams,
information systems, or organizations, it is likely that
models created with different user interface description
languages already exist. Using a mediating ontology for
annotating the models is a common way of establishing
comparability between models, not only user interface
models [4].

Once models are annotated and can be compared using
a common ontology, automatic conversion of models can
be long-term objective. For the moment, a common on-
tology can at least support developers in understanding
each other’s models and assist them in unambiguously
transferring their contents between modeling languages
manually.

Fig. 2 summarizes how modeling languages and a formal
ontology can benefit from each other.

TOWARDS A FORMAL ONTOLOGY OF THE DOMAIN

OF USER INTERFACES AND INTERACTIONS

With these considerations in mind, we have started to
develop a formal ontology of the domain of user inter-
faces and interactions. The goal is to end up with an
ontology that is comprehensive at least with respect to
the expressivity of current user interface definition lan-
guages, that is universal enough to be extendable to
future user interfaces that do not exist at the moment.
Furthermore, to support valuable reasoning on user in-
terfaces and provide meaningful semantics, the ontology
should be highly axiomatized.

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

To end up with a comprehensive ontology, we have an-
alyzed several user interface description languages in
order to collect a maximum set of relevant terms. We
have used UsiXML, XIML, UIML, Maria, XUL, LZX,
WAI ARIA, and XForms as a basis for identifying the
core concepts.

In order to build upon well-acknowledged roots, we have
chosen the top level ontology DOLCE [9] and its exten-
sions as a basis for our ontology. This top level ontology
provides an embracing basic classification of things and
has been used as a basis for building numerous ontolo-
gies. Since the top level provides a complete classifica-
tion, it ensures extensibility of the ontology by design,
as every new concept can be classified in some existing
category. Furthermore, we have reused two core ontolo-
gies of software and software components [11], which
are also built upon the foundations of DOLCE.

The ontology we have developed is divided into two
parts: a top level which captures the semantics of the
basic terms of the domain, such as User Interface Com-
ponent and Interaction, while the detail level classifies
the actual things that exist in the domain, such as types
of user interface components and user tasks that can be
performed with those components. The OWL version of
the top level ontology consists of 15 classes, two object
properties, and 75 axioms, while the detail level consists
of 179 classes, eleven object properties, and 448 axioms.

CONCLUDING REMARKS

This position paper has discussed the differences be-
tween Ul description languages and a formal ontology
of the domain of user interfaces and interactions. Fur-
thermore, We have given insight into the development
of a comprehensive formal ontology of the user inter-
faces and interactions domain. In the long run, we are
confident that formal ontologies and UI definition lan-
guages will both have their places, and that both will
benefit from each other.

We have presented a number of potential improvements
where developers employing user interface description
languages could benefit from those languages being map-
ped to a formal ontology of user interfaces and interac-
tions. Thus, our claim is that organizations providing
user interface description languages could improve the
usability and acceptance of those languages by provid-
ing such a mapping.

As a long-term objective, such a mapping could even fa-
cilitate automatic conversion between models developed
with different user interface description languages. To
that end, more sophisticated mapping approaches than
simply relating elements form a modeling language to a
category in an ontology are needed [13].

A formal ontology will not replace user interface de-
scription languages, but be a valuable enhancement.
Due to the conceptual differences between software mod-



Description of _ Description of
Interactions _ Components

dns:Situtation dolce:Particular / owl:Thing io:Information Object

dolce:Region

A
plan:task-precondition plan:task-postcondition 01 dorm type
csoidentifies cso:Data
plans:componen (¥ dns:Task

cso:Software
(Executable Data)

cso:Abstract Data

cso:Computational Task Representational Data,

cso:identifies

Detail Level: . )
Display, Highlight, Detail Level:
Delete, ... Select, Organize, ...

dolce:part User Interface Component Processing Component Storage Component

dns:realizes

dns:expresses DetaillLevel:

Label, Image,
Button, Text field, ...

Design Time

Run Time
A

dns:sequences makes use of.

dolce:Non Agentive
Physical Object

T P

Non-peripherical Hardware

dolce:Non-Physical Object

dolce:accomplishment dolce:specifically

constantly depends on

cso:Computational Object

fp:performs

tr:causally follows involves as tool

= fpiinstrument

Visual Computational
Object

cso:Computational Activity dolce:has quality

provides

Detail Level:
Click, Type,
Scroll...

dolce:spatial-location-quality

Position on Screen dolce:q-location

Figure 3. The top level of the ontology of the user interfaces and interactions domain. In the upper part, the design time concepts are shown, the lower
part contains the run time concepts. The left part deals with interactions, the right part with components. The white ellipses denote concepts from the
reused ontologies (with the following namespace conventions: DOLCE (dolce), Descriptions and Situations (dns), Plans (plans), Functional Participation
(fp), Temporal relations (tr), Core Ontology of Software (cos), Core Ontology of Software Components (cosc)), the grey ellipses denote concepts from the
top level ontology of the user interfaces and interactions domain. The grey triangles denote definitions carried out in the detail ontology.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA



els and ontologies, user interface description languages
do a better job, e.g., when developing user interfaces
in model based approaches. Although there have been
attempts for UI code generation from ontologies [8, 17],
the latter even claiming that ontologies should entirely
replace existing user interface description languages, we
believe that a co-existence of both is more beneficial.

Acknowledgements

The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Re-
search under grants no. 01IA08006 and 13N10711.

REFERENCES
1. U. ABmann, S. Zschaler, and G. Wagner.
Ontologies, Meta-models, and the Model-Driven
Paradigm. In Calero et al. [3], chapter 9, pages
249-273.

2. C. Atkinson, M. Gutheil, and K. Kiko. On the
Relationship of Ontologies and Models. In
S. Brockmans, J. Jung, and Y. Sure, editors,
WoMM, volume 96 of LNI, pages 47-60. GI, 2006.

3. C. Calero, F. Ruiz, and M. Piattini, editors.
Ontologies for Software Engineering and Software
Technology. Springer, 2006.

4. J. Fengel and M. Rebstock. Linking Heterogeneous
Conceptual Models through a Unifying Modeling
Concepts Ontology. In N. Stojanovic and
B. Norton, editors, Proceedings of the 5th
International Workshop on Semantic Business
Process Management (SBPM 2010), volume 682 of
CEUR-WS, pages 1-4, 2010.

5. M. Ferndndez, A. Gémez-Pérez, and N. Juristo.
METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. In Proceedings
of the AAAI97T Spring Symposium, pages 33—40,
1997.

6. T. R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199-220, Juni 1993.

7. J. Guerrero-Garcia, J. M. Gonzalez-Calleros,
J. Vanderdonckt, and J. Munoz-Arteaga. A
Theoretical Survey of User Interface Description
Languages: Preliminary Results. In LA-WEB ’09:
Proceedings of the 2009 Latin American Web
Congress (la-web 2009), pages 36-43, Washington,
DC, USA, 2009. IEEE Computer Society.

8. B. Liu, H. Chen, and W. He. Deriving User
Interface from Ontologies: A Model-Based
Approach. In ICTAI ’05: Proceedings of the 17th
IEEE International Conference on Tools with
Artificial Intelligence, pages 254-259, Washington,
DC, USA, 2005. IEEE Computer Society.

9. C. Masolo, S. Borgo, A. Gangemi, N. Guarino,
and A. Oltramari. WonderWeb Deliverable D18 —

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ontology Library (final), 2003.
http://wonderweb.semanticweb.org/
deliverables/documents/D18.pdf. Accessed
August 2nd, 2010.

Mozilla. XUL.
https://developer.mozilla.org/en/XUL, 2010.
Accessed August 4th, 2010.

D. Oberle, S. Grimm, and S. Staab. An Ontology
for Software. In S. Staab and R. Studer, editors,
Handbook on Ontologies, International Handbooks
on Information Systems, chapter 18, pages
383-402. Springer, 2nd edition edition, 2009.

F. Paterno, C. Santoro, and L. D. Spano. XML
Languages for User Interface Models - Deliverable
D2.1 of the ServFace Project. http://141.76.40.
158/Servface/index.php7option=com_
docman&task=doc_download&gid=5&Itemid=61,
August 2008. Accessed August 9th, 2010.

H. Paulheim, R. Plendl, F. Probst, and D. Oberle.
Mapping Pragmatic Class Models to Reference
Ontologies. In 2nd International Workshop on

Data Engineering meets the Semantic Web
(DESWeb), 2011. to appear.

H. Paulheim and F. Probst. Ontology-Enhanced
User Interfaces: A Survey. International Journal

on Semantic Web and Information Systems,
6(2):36-59, 2010.

RedWhale Software. The XIML Specification.
Available as part of the XIML Starter Kit version
1, available at
http://www.ximl.org/download/stepl.asp,
2000. Accessed August 3rd, 2010.

F. Ruiz and J. R. Hilera. Using Ontologies in
Software Engineering and Technology. In Calero
et al. [3], chapter 2, pages 49-102.

K. A. Sergevich and G. V. Viktorovna. From an
Ontology-Oriented Approach Conception to User
Interface Development. International Journal

" Information Theories and Applications”,

10(1):89-98, 2003.

P. Spyns, R. Meersmanand, and M. Jarrar. Data
modelling versus ontology engineering. SIGMOD
Rec., 31(4):12-17, 2002.

M. Uschold and M. Gruninger. Ontologies:
Principles, Methods and Applications. Knowledge
FEngineering Review, 11:93-136, 1996.





