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Abstract. The problem of linking entities in heterogeneous and deabnéd
data repositories is the driving force behind the data armviedge integration
effort. In this paper, we describe our probabilistic-laialignment system CODI
(Combinatorial Optimization for Data Integration). Thessym provides a declar-
ative framework for the alignment of individuals, conceptisd properties of two
heterogeneous ontologies. CODI leverages both logica&matinformation and
lexical similarity measures with a well-defined semantmsA-Box and T-Box
matching. The alignments are computed by solving corredipgrcombinatorial
optimization problems.

1 Presentation of the system

1.1 State, purpose, general statement

CODI (CombinatorialOptimization forDatal ntegration) leverages terminological struc-
ture for ontology matching. The current implementationduces mappings between
concepts, properties, and individuals including mapphbefsveen object and data type
properties. The system combines lexical similarity measwith schema information
to reduce or completely avoidcoherencandinconsistencgluring the alignment pro-
cess. The system is based on the syntax and semantics of Wagio [2] and trans-
forms the alignment problem to a maximum-a-posteriorirapation problem.

1.2 Specific techniques used

Markov logic combines first-order logic and undirected @bitistic graphical mod-
els [11]. A Markov logic network (MLN) is a set of first-ordenrfimulae with weights.
Intuitively, the more evidence there is that a formula ietthe higher the weight of
this formula. It has been proposed as a possible approadvévad problems occur-
ring in the context of the semantic web [2]. We have shown teatkov logic provides
a suitable framework for ontology matching as it captureth hard logical axioms
and soft uncertain statements about potential correspondenceséetentities. The
probabilistic-logical framework we propose for ontologwtthing essentially adapts
the syntax and semantics of Markov logic. However, we alwgpe predicates and
we require a strict distinction betwedrard and soft formulae as well aviddenand
observablepredicates. Given a set of constants (the classes and qbjgmerties of



the ontologies) and formulae (the axioms holding betweerothjects and classes), a
Markov logic network defines a probability distribution oyeossible alignments. We

refer the reader to [9, 8] for an in-depth discussion of theragch and some compu-
tational challenges. For generating the Marcov logic netwave used the approach
described in [12].

T-Box Matching Formalization Given two ontologies); and O, and an initial a-
priori similarity measurer we apply the following formalization. First, we introduce
observable predicat&s to model the structure @, andO, with respect to both con-
cepts and properties. For the sake of simplicity we use wagerletterdD, E, R to
refer to individual concepts and properties in the ont@egind lowercase lettedse, r

to refer to the corresponding constants(in In particular, we add ground atoms of
observable predicates %" fori € {1,2} according to the following rulés

O; E D C E > sub;(d,e)
Oi ': D C —-F — disi(d, 6)
O; = 3R.T C D — subj(r,d)
Oi = 3R.T 3 D — supl(r,d)
O; = 3R.T C =D — disi(r,d)
The ground atoms of observable predicates are added tottb&rsrd constraintg”,
forcing them to hold in computed alignments. The hidden jgegdsmn,. andm,,, on the
other hand, model the sought-after concept and propertggpondences, respectively.
Given the state of the observable predicates, we are it¢er@sdetermining the state
of the hidden predicates that maximize the a-posteriob@lpdity of the corresponding
possible world. The ground atoms of these hidden predieateassigned the weights
specified by the a-priori similarity. The higher this value for a correspondence the
more likely the correspondence is corragpriori. Hence, the following ground formu-
lae are added t@*:
(me(c,d), o(C,D)) if C and D are concepts
(mp(p,7), o(P,R)) if P and R are properties

Notice that the distinction betweem. andm,, is required since we use typed predicates
and distinguish between tloenceptandpropertytype.

Cardinality Constraints A method often applied in real-world scenarios is the se-
lection of a functional one-to-one alignment [1]. WithiretML framework, we can
include a set of hard cardinality constraints, restrictimg alignment to be functional
and one-to-one. In the following we write y, = to refer to variables ranging over the
appropriately typed constants and omit the universal dfienst

me(z,y) Ame(z,2) =y =2
me(z,y) Ame(z,y) ==z

Analogously, the same formulae can be included with hiddedipatesn,, restricting
the property alignment to be one-to-one and functional.

! Due to space considerations the list is incomplete. Fomittst, predicates modeling range
restrictions are not included.



Coherence Constraints Incoherence occurs when axioms in ontologies lead to log-
ical contradictions. Clearly, it is desirable to avoid iheoence during the alignment
process. All existing approaches to alignment repair reavemrrespondences after the
computation of the alignment. Within the ML framework we daoorporate incoher-
ence reducing constraindsiringthe alignment process for the first time. This is accom-
plished by adding formulae of the following type ¥d".

dis1(z,x') A suba(z,z') = ~(me(z,y) Ame(z',y"))
disi(z,2") A sub3(y,y") = =(myp(@,y) Ame(',y")

Stability Constraints Several approaches to schema and ontology matching propa-
gate alignment evidence derived from structural relatigrs between concepts and
properties. These methods leverage the fact that existiidigrece for the equivalence

of concepts” and D also makes it more likely that, for example, child conceft€'o

and child concepts ab are equivalent. One such approach to evidence propagation i
similarity flooding[7]. As a reciprocal idea, the general notion of stabilitysviatro-
duced, expressing that an alignment should not introdusestreictural knowledge [5].

The softformula below, for instance, decreases the probabilityighanents that map
conceptsX toY and X’ to Y if X’ subsumes\ butY’ doesnotsubsumé’.

,7 yl)v wl)

/ ’

(subi(z,") A —subl(y,y') = mp(z,y) Ame(,y), w2)

(subs (2,2) A ~suba(y,y') = me(z,y) Ame(a

Here,w; andw, arenegativereal-valued weights, rendering alignments that satisfy th
formulae possible but less likely.

The presented list of cardinality, coherence, and stghsliinstraints could be ex-
tended by additional soft and hard formulae. Other congsatould, for example,
model known correct correspondences or generalize theaomoae alignment to m-
to-n alignments.

A-Box Matching The current instance matching configuration of CODI levesagr-
minological structure and combines it with lexical simifgmeasures. The approach
is presented in more detail in [10]. It uses one T-Bbxbut two different A-Boxes
A1 € 01 and A, € O,. In cases with two different T-Boxes the T-Box matching ap-
proach is applied as a preprocessing step, merge the tweedliBoxes and then use
our instance matching algorithm. CODI offers complete d¢ondllimination meaning
that the resulting alignment is always coherent for OWL Dltabwgies. This compo-
nent is based on the work of Meilicke et al. [6]. CODI enfortlessinstance alignment
to be consistent. To this end, we need to introduce obsexyabkdicate$) to model
conflicts, that is, a positive assertion of one instance ia ontology and a negative
assertion of the same instance in the other ontology. Thiene for both property and
concept assertions.

Analogous to the concept and property alignment before niveduce the hidden
predicatem; representing instance correspondences.(.éie a concept an® be a
property of T-Box7 . Further, letA € A; andB € A, be individuals in the respective
A-Boxes. Then, using a reasoner, ground atoms are addee setlofhard constraints



Fh according to the following rules:

TUA | C(A) AT UA; = -C(B) s —mi(a,b)
TUA | ~C(A) AT UA; = C(B) s —mi(a,b)
TUA | P(A,A)ATUAs = =P(B,B) > —ma(a,b)V —mi(a’,b)
TUA | -P(A,A)ANTUA; = P(B,B) > —mi(a,b) V —mi(a’,b')

In addition to these formulae we included cardinality coamists analogous to those
used in the concept and property matching of Section 1.2diristance matching for-
mulation, the a-priori similarity. ando, measures theormalized overlapf concept
and property assertions, respectively. For more detaithese measures, we refer the
reader to [10]. The following formulae are added to the seodf formulaeF*:

(mi(a,b), oc(A,B)) if A and B are instances
(mi(a,b) Ami(c,d), op(A,B,C,D)) if A, B, C, and D are instances

1.3 Adaptations made for the evaluation

The strength of the system is its modularity allowing theiporation of different simi-
larity measures. The system can be optimized in two majosway Inclusion of novel
formulae enforcing the logical consistency and (b) thetisidn of additional similarity
measures. There is room for improvement since we used a wepjeslexical similar-
ity measure based on the Levenshtein distance [4] for owraxents. It is possible to
apply different aggregation functions like average or maxin and to include specific
properties of an ontology like URIs, labels, and comments.

In all OAEI test cases Algorithm 1 was used for computing tkgriari similarity
o(entity, entitys2). In the case of concept and property alignments, the aisiroi-
larity is computed by taking the maximal similarity betwetbe URIs, labels an@BO
to OWL constructs. In case of instance matching the algorithm gmesigh all data
properties and takes the average of the similarity scores.

1.4 Link to the System and Parameters File

CODI can be downloaded froit t p: / / codi - mat cher . googl ecode. com

1.5 Linkto the Set of Provided Alignments

The alignments for the trackBenchmarkand Conferencehas been made with the
SEALS platform. ForAnatomy IIMB, and Restauranthe alignments can be found
athtt p:// code. googl e. com p/ codi - mat cher/ downl oads/ | i st

2 Results

In the following section, we present the results of the CO@itam for the individual
OAEI tracks. Due to space considerations, we do not expferifferent benchmarks
in more detail.



Algorithm 1 o(entitys, entitys)

if entityr andentity. are either concepts or propertiteen
value < 0
for all Valuess; of URI, labels, and OBOtoOWL constructsdntity; do
for all Valuess: of URI, labels, and OBOtoOWL constructsdntity; do
value <+ Max(value, sim(s1, s2))
end for
end for
return value
end if
if entity, andentity. are individualghen
Map(URI, double) similarities < null
for all datapropertiedp: of entity, do
uriy < URI of dpy
for all datapropertiedp- of entitys do
if uri; equals URI ofdp» then
value < sim(valueofdp1,valueofdps)
if uriy is entailed insimilarities then
update entryurii, old_value) to (urii, Minimum (old_value + value, 1)) in
similarities
else
add new entry paituril, value) in similarities
end if
end if
end for
end for
return (sum of all values isimilarities)/(length ofsimilarities)
end if




Benchmark Track While our system'’s strength is its modularity and adapttytid
different ontologies we used thexact same settinfpr all ontology matching tracks.
Hence, the performance on thenchmarkrack is rather poor. This is primarily due
to the high threshold of 0.85 for the Levenshtein similanitgasure that we applied in
each of the ontology matching tracks. The results are showable 1.

Table 1.Benchmark results

1xx 2XX 3Xx Average
Precision 1 0.70 0.92 0.72
Recall 0.99 0.42 043 0.44
F score 1 0.49 0.56 0.51

Conference Track On the real-world conference dataset CODI achieves veryl goo
results since it employs logical reasoning to avoid incehees. The execution time is
between 2 and 4 minutes per test adable 2 summarizes the overall results.

Table 2. Conference results

Average
Precision 0.87
Recall 0.51
Fy score 0.64

Anatomy Track The results on the anatomy track are also convincing. Thatses
shown in Table 3 are en par with the 2009 results of statd&@fatrt matching applica-
tions. TheF scores are between 0.79 and 0.73 for all subtasks, evendtwthtasks
Focus on PrecisiomndFocus on RecallThus, our algorithm achieves satisfiable pre-
cision and recall values without sacrifices on fhescore. For the last task, where a
partial reference alignment was given, we could gain alridgton theF; score. This

is because incorporating a partial reference alignmentirsgstem is straight-forward.
The reference alignment becomes a direct part of the omtimiz problem, enforcing
good correspondences while ruling out contradicting ohlesvever, since our algo-
rithm uses logical reasoning and has to solve an NP-hardnatiion problem, the
execution times are quite high

Table 3. Anatomy results

Focus on Focus on Focus on Partial
F score Precision Recall Alignment
Precision 0.954 0.964 0.782 0.969
Recall 0.680 0.663 0.695 0.742
Fi score 0.794 0.784 0.736 0.840
Execution Time (min) |88 60 157 95

2 All experiments are executed on a Desktop PC with 2 GB RAM aintel Core2 Duo 2.4
GHz processor.

8 This forces us to submit the solutions without the sealdqiat because of a timeout after 45
minutes.



IIMB Track The instance matching benchmark IIMB consists of 80 tramsé&tions
divided in four transformation categories containing Zdhsformations each. We ap-
plied the full A-Box matching functionality described aleowith a threshold on the
a-priori similarity of 0.1. The average execution time oa tiMB small (large) dataset
is 2.6 (35.1) minutes. Table 4 summarizes the differentltesd the CODI system.
The values without brackets are the results for the smalBlidtaset and the values in
brackets for the large one.

Table 4.1IMB results

Transformations |0-20 21-40 41-60 61-80 overall

Precision 0.99(0.98) 0.95(0.94) 0.96(0.99) 0.86 (0.86)0.94 (0.95)
Recall 0.93(0.87) 0.83(0.79) 0.97(0.99) 0.54 (0.53)0.83 (0.80)
Fy score 0.96 (0.91) 0.88(0.85) 0.97 (0.99) 0.65 (0.63]0.87 (0.85)

PR Track For this track consisting of small files about persons anthoeants, we

used a simple one to one alignment only based on lexical ailtyilscores since no
significant structural information is available. Thus, th@time was with less than 5
seconds per test case very short. The results of the CO@myaEe depicted in Table 5.

Table 5. PR results

Personl Person2 Restaurant
Precision 0.87 0.83 0.71
Recall 0.96 0.22 0.72
Fi-score 0.91 0.36 0.72

3 General comments

3.1 Discussions on the way to improve the proposed system

CODI is a very young system and does not yet provide a useffact Hence, im-
provements in usability by designing a suitable user iat&fwill be one of the next
steps. In case of the quality of the alignments, more saphtsd lexical similarity mea-
sures will be tested and integrated. We are also working eal@bgorithms solving the
optimization problems more efficiently.

3.2 Comments on the OAEI 2010 procedure
The SEALS evaluation campaign is very beneficial since ihisfirst time that the
matchers must have a standardized interface which coukitgpbe used by everyone.

3.3 Comments on the OAEI 2010 measures

We encorage the organizers to use semantic precision aalilmezasures as described
in [3].



4 Conclusion

CODI performs concept, property, and instance alignméhtsombines logical and
structural information with a-priori similarity measuriesa well-defined way by using
the syntax and semantics of Markov logic. The system thesefot only aligns the en-
tities with the highest lexical similarity but also enfost@e coherence and consistency
of the resulting alignment.

The overall results of the young system are very promisirsgegially when con-
sidering the fact that there are many optimization possaslwith respect to the lexical
similarity measures that have not yet been investigated.stiength of the CODI sys-
tem is the combination of lexical and structural informatand the declarative nature
that allows easy experimentation. We will continue the ttgwment of the CODI sys-
tem and hope that our approach inspires other researchérget@mge terminological
structure for ontology matching.
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