Estimating effective DN A database size via compression *

Martina Visnovska!, Michal Nanasi?
b

, Tom4s Vinai!, and Brona Brejova?

! Department of Applied Informatics, Faculty of Mathematics, Physics, and Informatics
Comenius University, Mlynskd Dolina, 842 48 Bratislava, Slovakia

2 Department of Computer Science, Faculty of Mathematics, Physics, and Informatics
Comenius University, Mlynska Dolina, 842 48 Bratislava, Slovakia

Abstract. Search for sequence similarity in large-scale
databases of DNA and protein sequences is one of the
essential problems in bioinformatics. To distinguish ran-
dom matches from biologically relevant similarities, it is
customary to compute statistical P-value of each discov-
ered match. In this context, P-value is the probability that
a similarity with a given score or higher would appear by
chance in a comparison of a random query and a random
database. Note that P-value is a function of the database
size, since a high-scoring similarity is more likely to exist
by chance in a larger database.

Biological databases often contain redundant, identical, or
very similar sequences. This fact is not taken into account
in P-value estimation, resulting in pessimistic estimates.
One way to address this problem is to use a lower effective
database size instead of its real size. In this work, we pro-
pose to estimate the effective size of a database by its com-
pressed size. An appropriate compression algorithm will ef-
fectively store only a single copy of each repeated string,
resulting in a file whose size roughly corresponds to the
amount of unique sequence in the database. We evaluate
our approach on real and simulated databases.

1 Introduction

Recent progress in genome sequencing technologies led
to rapid increase in the size of DNA sequence data-
bases. Perhaps the most common way of accessing
these databases is through sequence homology search,
where users search in the database for sequences sim-
ilar to their query of interest [1]. Highly similar se-
quences have often evolved from a common ances-
tor and may also share the same function. Homology
search is thus the first step in elucidating the function
and evolutionary history of a newly sequenced genome.

To formally define sequence homology search as
a computational problem, we consider a query @ and
a database D, which are both strings composed of
nucleotides (symbols from the alphabet {A,C,G,T}).
We typically introduce a scoring function that assigns
a positive score to matching nucleotides in the two se-
quences, and negative score to mismatches. Insertion

* This research is funded by European Community
FP7 grants IRG-224885 and IRG-231025, VEGA grant
1/0210/10, and Comenius University grant number
UK/151/2010.

and deletion of nucleotides also invokes penalty. The
goal is then to find a region in the query and a region of
the sequence database with the highest possible score.
This task can be accomplished either by a dynamic
programming algorithm [21], or by fast heuristic meth-
ods, such as BLAST [1]. Regardless of the method, the
result is a set of high scoring pairs (substring of a query
matched to a substring of a database) together with
their similarity scores.

Typical genomic databases are large: human
genome alone has approx. 3.2 GB, and the GenBank
traditional database [4] contains more than 100 GB
of DNA sequences as of April 2010. In these large
databases, many query sequences will have high
scoring matches purely by chance. To distinguish real
matches from spurious ones, we need to assess their
statistical significance.

Traditionally, the statistical significance of a high
scoring pair is assessed by P-value. If the high scor-
ing pair has score s, its P-value is the probability of
a match with score s or better occurring in homology
search of a randomly generated query in a randomly
generated database. The P-value obviously depends
on the sizes of the query and the database, but to
achieve more realistic P-values, we can also take into
account other properties of the sequences, such as fre-
quencies of individual nucleotides [17].

Consider an illustration in Fig.l. For a given
score s, we can visualize the sequence database D as
a set of points in the sequence space with the neigh-
bourhoods that include all sequences with similarity
score s or higher. In this sequence space, the query @
is located at the boundary of one of these neighbour-
hoods. If the neighbourhoods cover a large fraction of
the sequence space, the P-value is high, because a ran-
domly generated query will have a high probability of
falling into one of those neighbourhoods, resulting in
score larger than s.

While for a given database the P-values could be
computed exactly, such a computation would be im-
practical. Instead, one uses various approximations as-
suming that the sequence in the database is randomly
generated by an i.i.d. process or a Markov chain
(e.g., [9]). These assumptions are often violated by real
databases.

64 Martina Visnovskd et al.

Fig. 1. Illustration of P-value computation. The points
represent sequences in database D and the shaded areas
show their neighbourhoods with scores that are at least as
good as the similarity score of query @Q. Left: Database
with randomly distributed sequences. Right: Database
with clustered sequences.

For instance, the database may contain several se-
quences that are evolutionarily related. Such se-
quences will often contain only a small number of
changes: for example, DNA sequences of human and
chimpanzee are identical in 99% of nucleotides over
most of their lengths. In addition, recently introduced
next generation sequencing technologies made it fi-
nancially viable to sequence multiple individuals from
the same species, leading to various personal human
genome projects [23]. Sequences of different individ-
uals from the same species may differ as little as one
in thousand nucleotides. Consequently, databases may
contain many highly similar sequences, and it is not
appropriate to model them as completely random.

Consider again the example in Fig.1. The illustra-
tion on the right shows a database with clusters of sim-
ilar sequences that have overlapping neighbourhoods,
covering a much smaller fraction of the sequence space
than the database on the left. Consequently, the esti-
mate based on the assumption of random distribution
of sequences in the database will necessarily overes-
timate the P-value, potentially leading to rejection of
high scoring pairs as matches likely to occur by chance.

One of the solutions to this problem proposed in
the literature is to remove the redundancies, such as
closely related sequences, from the sequence data-
base [22]. New query can be first searched against such
non-redundant database, the statistical significance of
resulting matches can be evaluated, and then a sec-
ondary search can be launched against the whole data-
base. In this paper, we propose a different solution.
One of the main parameters used in P-value computa-
tion is the database size n. Instead of the real database
size, we propose to use an effective database size n'
(n' < n) which will account for redundancies in the
database. For example, if we take a random database
of size n, and double its contents by including second
exact copy of each sequence, the effective size of such

new database will still be n’ = n, even though its real
size is 2n.

Note that the notion of effective database size has
been previously used to adjust for border effects in
case of short queries and databases [17], and an option
for setting it to an arbitrary value is included in most
software tools for homology search. Analogously, sta-
tistical models in population genetics use population
size as a parameter, but instead of the actual number
of individuals, one typically uses effective population
size to compensate for various effects that are not con-
sidered by the model, such as population size changing
over time [11].

2 Kolmogorov complexity of DNA
sequences

For our purposes, the effective database size should
be an estimate of the amount of unique sequence in
the database D, taking into account substrings that
may be present in D in many exact or approximate
copies. One way of describing the information content
of a database is its Kolmogorov complezity [16].

Kolmogorov complexity K (D) of a sequence D is
the bit length of the shortest program P for a fixed
universal Turing machine that outputs sequence D.
Kolmogorov complexity can be understood as a lower
bound (up to a constant additive term) of compression
achievable by any general-purpose algorithm. A string
of length n sampled uniformly at random from a fixed
alphabet is on average almost incompressible [16, Sec-
tion 2.8.1]. In particular, a string over a four-letter
alphabet requires on average approximately 2n bits
(with up to an O(logn) additive term). Thus if we
believe that the databases with the same Kolmogorov
complexity will behave similarly, we should use n’ =
K(D)/2 as an estimate of the effective database size
of database D.

At a first glance, Kolmogorov complexity seems
to be an ideal estimator to use in this context. It
accounts for possible major differences between the
real database and a randomly generated one. In par-
ticular, using Kolmogorov complexity would compen-
sate for differences in frequencies of individual nu-
cleotides (database containing only a long stretch of
As will have a small effective size), and redundant
sequence content (sequences that have only few dif-
ferences can be described very efficiently in a small
space). Moreover, the concept of Kolmogorov com-
plexity has been successfully used in similar contexts
before, in applications such as computing distance be-
tween genomes [15] (see also [10, 18] for overview).

The exact Kolmogorov complexity of database D
is not computable. Yet in practice, we can use vari-
ous compression algorithms instead of computing the

Kolmogorov complexity. For a fixed compression algo-
rithm, the compressed size ¢(D) of database D is an
upper bound on the Kolmogorov complexity K (D),
and we can use value n’ = ¢(D)/2 as an estimate of
the effective database size. Several efficient algorithms
specifically tuned to compression of DNA sequences
are available (see [6, 7,14, 3]).

As we will see in the next section, the upper bounds
on P-values (or conservative estimates) are generally
desirable in cases where exact P-values cannot be com-
puted. Since the P-values increase monotonically with
the database size, using an upper bound on the effec-
tive database size should not by itself lead to non-
conservative bounds.

Unfortunately, using Kolmogorov complexity may
not necessarily lead to conservative bounds in all in-
stances. As an extreme case, base-4 expansion of many
fundamental constants, such as m, can be generated
by a constant-size program. First n bits generated by
such a program can be used as a sequence database of
size n, replacing digits 0, ..., 3 with nucleotides. Kol-
mogorov complexity of such database is O(logn) (we
need a constant number of bits to represent the pro-
gram, and logn bits to represent the real size of the
database), yet for all practical purposes, this database
behaves as a random database of size n [2].

Thus using a Kolmogorov complexity and compres-
sion-based estimates of effective database size does not
necessarily lead to conservative estimates of P-values
in homology search. In the next section, we explore
practical issues of using these compression-based esti-
mates in an experimental setting.

3 Estimating effective database size
through compression

Here, motivated by the discussion in the previous sec-
tion, we explore the use of compression software for es-
timating the effective database size. The methodology
is very simple. First, we compress the database and
measure the size of the resulting file in bytes. Then,
we multiply this size by four to account for the fact
that in a uniformly random database, we need two
bits to encode each nucleotide. In this way, we obtain
an estimate of the effective database size which can
be used in any formula or algorithm for estimating
P-values on uniformly distributed databases.

The P-values are used to reject high scoring pairs
that have a high probability of occurring by chance. In
a typical search there will be many spurious matches
with high P-values, and only a few top-scoring
matches will represent genuine similarities with com-
mon evolutionary origins. Since our main task is to
separate these few good matches from many spuri-
ous matches, we would like the P-value estimator to

Estimating effective DNA database size ... 65

be conservative, i.e., the estimates should be strictly
higher than the exact P-values, so that the estimated
P-value represents an upper bound on the probability
of a particular match being a false positive.

We have decided to experimentally evaluate the
accuracy of the P-values obtained by the compression
method in a simple scenario motivated by the next
generation sequencing technologies. In this scenario,
a sequencing machine generates many short sequences
(reads). These reads need to be mapped as substrings
to previously known reference genomes. In most cases,
the reads will match the reference sequence exactly,
but sometimes we will see one or two mismatches.
These mismatches can be either due to sequencing er-
rors, or (more interestingly) due to differences between
individuals.

In our simplified scenario, the database D is a sin-
gle string of length n, the query @) is a string of
length m, and we are searching in D for a substring of
length m with the smallest Hamming distance from Q.
In contrast to the full homology search problem, we al-
ways consider the whole query (each read has to map
completely to the reference), and we also disallow in-
sertions and deletions.

We will say that the distance of query) from
database D is the minimum Hamming distance
between @ and some substring of length m from data-
base D. This Hamming distance will represent our
score. P-value for a particular Hamming distance h
is then the number of all m-tuples that are at a dis-
tance of at most i from D, divided by 4™ (the number
of all possible m-tuples). Note that in this definition
of P-value, we keep the database fixed, and only the
query is random, chosen uniformly from all possible
queries of length m. In contrast, most methods con-
sider both query and database as random.

The main advantage of this simplified model is that
we can compute these P-values exactly in a reasonable
amount of time, and compare them to the P-values es-
timated based on the randomly generated database of
corresponding effective size, thus evaluating the accu-
racy of our concept. The rest of this section is orga-
nized as follows. First, we introduce the algorithm for
exact computation of P-values in our simplified sce-
nario. Then we explore several cases of generated and
real databases.

The file compression algorithms typically detect
symbols or small groups of symbols that occur in the
text more frequently than the others, and encode them
by shorter codewords. Thus, the size of the compressed
database is related to the entropy of the source gener-
ating the database. In addition to that, some methods
try to detect longer strings that are repeated exactly
or with mismatches multiple times, and to store only

66 Martina Visnovskd et al.

one copy of each such string as well as differences be-
tween the approximate copies.

In our experiments, we first try to separate these
two phenomena by using artificially generated data-
bases, and in the end, we apply compression software
to real DNA sequences, where both of these issues are
at play.

3.1 Algorithm to compute exact P-values

We have implemented an algorithm that simulta-
neously computes P-values for a given database D
and all of its prefixes, and for all distances h =
0,1,..., hmax. In experiments we use values hyax = 3
and m = 15.

The algorithm proceeds along the database D and
at each position updates two arrays M and H.
Array M of size 4™ stores for each m-tuple Q' its
distance to the current prefix of the database, pro-
vided that this distance is at most hmax (otherwise it
uses a special co value). The second array H stores
for each distance h < hpax the number of m-tuples
with distance exactly h from the current prefix of the
database D.

When we read a new nucleotide of the database,
we need to consider the last m-tuple of the current
prefix. We enumerate all m-tuples at a distance of at
most Amax from this new m-tuple, and for each we
update arrays M and H as appropriate. Values in H
can be easily converted to the desired P-values for the
current prefix at different distance thresholds. Note
that this algorithm is feasible only for small values
of m, because it requires ©(4™) memory.

The algorithm can be used to compute exact
P-value for a given real sequence database, which we
consider as a reference value. It can also be applied to
randomly generated databases, leading to estimates
of P-values that would be obtained in a model, where
both the database and the query are random. To em-
ulate the proposed method, we compress a sequence
database, compute its effective size, and then use the
P-value estimates obtained from random databases of
the matching size.

Finally, we also consider a simple method, where
we use random databases of the same size as the orig-
inal database, without compression. P-values com-
puted in this way correspond to the commonly used
techniques for P-value estimation without using the
effective database size mechanism.

3.2 Entropy

The four nucleotides do not occur in genomes equally
frequently. A commonly used measure of DNA com-
position is GC-content: the percentage of Cs and Gs

in the given sequence. GC-content varies widely in
different genomes, or even between segments of the
same genome. An i.i.d. database with GC-content g
has entropy H(g) = —glg(g/2) — (1 —g)1g((1—9)/2),
and therefore can be encoded by approximately H(g)n
bits, for example by the arithmetic encoding [20].

Following our general approach, we can try to use
the formulas for the uniform nucleotide frequencies
and effective database size E(n,g) = H(g)n/2 to es-
timate the P-values for the actual database of size n
and GC-content g.

We have tested the performance of such estimates
on randomly generated databases with GC-contents
75% and 90%, averaging values for five randomly gen-
erated databases. Table 1 shows the real P-values,
P-values predicted by our compression method, and
P-values obtained by the simple method of consid-
ering a database of length n and GC-content 50%
(disregarding the real GC-content in the P-value es-
timate). All estimates were computed by our algo-
rithm from Section 3.1. For real P-values the algorithm
was applied to the generated database with a skewed
GC-content, for simple and predicted estimates to five
random databases of appropriate size with
GC-content 50%.

For small P-values the real and simple estimates
are quite similar, which is expected since in a short
database very few m-tuples occur multiple times, even
if the composition of the database is skewed. As a re-
sult, the compression method gives non-conservative
estimates, because it uses a much smaller database
size. For larger P-values, the compression estimates
become conservative, and are closer to the true
P-value than the simple estimates. This is because
a database with high GC-content is less likely to con-
tain m-tuples with low GC-content, and thus a larger
database size is required to achieve the same P-value.
For example, among estimates for GC-content 75%
shown in Table 1, compression estimates become con-
servative for databases larger than 107 and 10° nu-
cleotides for h = 0 and h = 2, respectively.

We can study the situation analytically for the case
when the query appears in the database without a mis-
match. Let X; be the event that query @ has an oc-
currence with distance at most h at position ¢ in the
random database of GC-content g, and let X be the
total number of occurrences of query Q with at most
h mismatches in the whole database. For g = 0.5, we
can compute the probability of X; by summing over
the number of mismatches

ran-on-$(2) () ()

k=0

For general g we have to distinguish between mis-
matches on G/C positions and mismatches on A/T

Estimating effective DNA database size ... 67

Database size 10* 10° 10° 107 10* 10° 10° 107
Real (GC 75%) 9.3-107° 93.107° 92-107% 84-107° 88-107° 7.0-107% 3.2-107% 7.2-10'
Predicted (GC 75%) 8.4-107°% 8.5.107° 84.107* 84-107% 83-107% 81-107% 5.7-107' 1.0
Simple (GC 75%) 9.3-107% 9.3-107° 9.3.107* 9.3-107% 9.2.107® 88-1072 6.0-107' 1.0
Real (GC 90%) 9.2-107% 87-107° 6.7-107* 3.9-100* 6.5-107% 3.3-107% 1.1-107' 26-107"
Predicted (GC 90%) 6.5-107° 6.8-107° 6.8-107% 6.8-107% 6.4-107% 6.5-1072 4.9-107' 1.0
Simple (GC 90%) 9.3-107° 9.3-107° 9.3-107* 9.3-107% 9.2.107® 88-1072 6.0-107' 1.0

Table 1. P-values for random databases of various lengths n, GC-content 75% or 90% and the query distance h = 0 or
h = 2. Real P-values are computed by the algorithm described in Section 3.1. Predicted P-values take into account the
entropy of the database, using effective database size H(g)n/2. The simple method for computing P-values disregards
the GC-content and considers a random database of size n and 50% GC-content.

positions in the query. Let z be the number of Gs and

Cs in @, then
Y-y

=0 j=0)
m—z 1+g J 1—g\" "
(")E) &)
The expected number of occurrences can be computed
by linearity of expectation (for simplicity, we ignore
the edge effect at positions n — m + 2,...,n, which is
negligible for large n):

P(Xi|Q,9)

_ ZE(X7|Q) =nP(X;|Q, 9).

i=1

E(X|Q,9)

We will approximate the distribution of variable X by
a Poisson distribution with the mean A = E(X|Q, g).
This commonly used approximation [17] disregards de-
pendencies between occurrences at adjacent positions
and also assumes that n is large and A relatively small.
In our simulations it led to very good estimates of
P-values (data not shown). If X is from Poisson dis-
tribution, the probability of at least one occurrence of
a given query Q is P(X > 0/Q, g) = 1—e~*. To obtain
the final P-value, we have to consider this expression
for different queries, or more precisely, for groups of
queries with the same number Gs and Cs, of which @,
is one representative:

m

>

z=0

P = P(X > 0]g) = <TZ> 27"P(X > 0|Q.,9).
The compression estimate Peg; uses the same formula
but ¢ = 0.5 and E(n,g) instead of n. For h = 0,
E(X|Q, g) simplifies to n2~™g*(1—¢g)™ #, and in par-
ticular E(X|Q,0.5) = nd4~™ does not depend on z,
and therefore Py = 1 — e 947 For small x,
function 1 — e™® can be well approximated by « [8].
Using this approximation, we obtain

P E(n,g)4™™

Preal - Z;n 0()2 mp2-mg (1 *g)m*'z ZH(g)/Z.

Therefore for small P-values, where the approximation
of 1 — e™% is sufficiently accurate, the estimate Py is
lower by approximately a factor of H(g)/2 than the
real P-value. This implies that no correction for en-
tropy is in fact necessary for small P-values.

On the other hand, when i = 0 but n is sufficiently
large, the compression estimates become conservative.
In particular, let us assume that

m2-™ In(2)
H(g)2=m=1 —(1—g)™

1.386

= H) m4A™ + o(m4™).

n >

T geme—n2 M (1-g)™

This implies e~ F(m9)4 . The

right-hand side is one of the terms of the sum

Z m 2777167712 Mg (1—g)™*
P)

z=0

and therefore the left-hand side is upper-bounded by
the whole sum as well. This implies Pest > Preal-

This simple bound is not very interesting, since it
works only for very large n, where P-values are very
close to one. Nonetheless, it agrees with our observa-
tion that the compression estimate is appropriate for
sufficiently large n. Perhaps a tighter bound on n can
be obtained by considering additional elements of the
sum.

3.3 Redundancy

Next, we consider artificial databases that are con-
catenation of many mutually similar sequences of the
same length k. In the experiments we use k = 10%.
To generate the database, we first sample a string
S = s189...58 of length &k uniformly at random. This
string will be the center of the cluster of similar se-
quences.

The i-th sequence in the concatenated database is
obtained from S by randomly mutating several nu-
cleotides of S so that the nucleotide j is the same

68 Martina Visnovskd et al.

h=0 h=2
Database size 10% 10° 10° 107 10* 10° 10° 107
Real 93.10° 81-10° 6.5-1007 43.-100° 9.2-10° 6.8-10 2 3.4-10 ' 88-10!
GenCompress 9.3-107% 7.7-107° 6.8-107* 6.5-107> 92.107% 7.3-107% 4.9-107' 1.0
bzip2 1.0-107® 9.2-107° 8.1-107* 8.0-107° 1.0-1072 8.7-1072 5.5-107% 1.0
Simple 9.3-107% 9.3-107° 9.3-107* 9.3-107% 9.2-107% 88-1072 6.0-107! 1.0

Table 2. P-values for the artificial clustered database. Real P-values were computed by the algorithm from Section 3.1
applied directly to the clustered database. GenCompress and bzip2 estimates use different compression tools to compute
effective database size. The simple method for computing P-values considers a uniformly generated random database

of size n.

h=0 h=2
Database size 1.6 -10* 2.1-10° 1.5-10° 1.1-107 1.6-10* 2.1-10° 1.5-10° 1.1-107
Real 11-107° 1.4-100% 9.4-100% 6.0-107° 1.0-1077 1.1-107" 46-107" 9.1-107°1
GenCompress 9.3-107% 1.2.107% 85-107* 6.0-1073 9.2-107% 1.1-107! 57-107' 1.0
GC corrected 1.1-107°> 14-107* 9.6-107* 6.8-1073 1.1-107? 1.3-107* 6.1-107' 1.0
bzip2 1.5-107° 1.9-107* 1.3-107% 9.4.1073 1.5-1072 1.7-107' 7.2.107% 1.0
Simple 1.5-107° 1.9.107* 14-107% 1.1-1072 1.5-1072 1.8-107* 74-107' 1.0

Table 3. P-values for genomic data from human, chimpanzee, and rhesus. Real P-values were computed by the
algorithm from Section 3.1 applied directly to the genomic sequences. GenCompress and bzip2 estimates use different
compression tools to compute effective database size. GC corrected shows the GenCompress estimate corrected for the
average database entropy. The simple method for computing P-values considers a uniformly generated random database

of size n.

as s; with the probability of 90%, and with the prob-
ability of 10% it changes to another nucleotide chosen
randomly from the remaining three. This way, we get
a clustered database of sequences that differ from the
center of the cluster on 10% positions on average.

For clustered databases of various sizes, we com-
pute the real P-value simple estimate, which uses ef-
fective size equal to the real size of the database with-
out compression, and two estimates based on two dif-
ferent lossless compression programs GenCompress [6]
and bzip2. The results are shown in Table 2.

Bzip2 is based on Burrows—Wheeler transform [5]
which tends to create blocks of identical symbols if the
input contains repeated substrings. The transformed
text is then encoded by other compression techniques,
such as Huffman encoding. To save memory, bzip2 di-
vides a file into blocks and processes each block sep-
arately, which may have negative effect on the com-
pressed size.

GenCompress [6] is an algorithm developed specifi-
cally for compressing DNA sequences. It finds approx-
imate repeats in the compressed sequence and encodes
them by a sequence of edit operations. GenCompress
is a single-pass algorithm that proceed along the in-
put sequence and in each step it finds the best prefix
that can be encoded as an approximate repeat of some
substring of already encoded input sequence.

In this experiment, estimates based on data com-
pression are mostly conservative and better than the
estimates obtained by the simple methods.

3.4 Real data

Finally, we have applied the compression method of
estimating the effective database size to real genomic
data from human, chimpanzee, and rhesus macaque.
Our set consisted of a portion of human chromo-
some 22 and corresponding portions of genome from
the two other primates. We have omitted larger blocks
that did not have counterparts in neither chimpanzee,
nor macaque. The sequence data and the genome
alignments were obtained from the UCSC genome
browser [13].

The database contains a short block of the human
sequence followed by the corresponding block in the
two other genomes, followed by another block in hu-
man, etc. Therefore, similar sequences are close to each
other which improves compression with algorithms
such as bzip2 that always consider only a block of the
whole file.

The results of the test for different input sizes are
shown in Table 3. As we can see, with GenCompress
we often underestimate real P-values, while bzip2
achieves only a very small improvement compared to
the simple method without compression.

Earlier, we have reached a conclusion that skewed
GC-content should not automatically imply lower ef-
fective database sizes since this would lead to under-
estimation of small P-values. However, compression
algorithms estimate the effective database size based
on both sequence redundancy and lower sequence en-
tropy in case of locally high or low GC-contents. That
could be the reason why GenCompress estimates are
non-conservative.

We have attempted to further correct for this issue
by computing an average database entropy H’'. The ef-
fective database size estimated by GenCompress was
then multiplied by the correction factor of 2/H’. This
approach leads to surprisingly good P-value estimates
that were also conservative in our experiments (Ta-
ble 3, line GC corrected).

To estimate the value H' for this experiment, we
have computed entropy separately for non-overlapping
windows of size 1000 to capture different properties of
individual genomic regions. We have estimated
a Markov chain of second order from each window of
the sequence and computed an entropy of this Markov
chain, that is, entropy where the probability of each
nucleotide is conditioned on the two previous nucleo-
tides to capture local dependencies in DNA sequences.
The average entropy H’ of the whole database was
then computed as an average of entropy values from
all windows.

4 Conclusion

In this paper, we have considered methods for more
accurate estimation of P-values in the context of se-
quence homology search. In particular, we propose to
adjust the size of the database to compensate for the
structure present in the database due to the fact that
individual sequences are related by evolution.

We have explored the idea of using compression
to estimate the effective database size, and we have
demonstrated by experiments that the use of the com-
pression algorithms leads to non-conservative P-value
estimates for small P-values. This is at least partially
caused by the fact that besides identifying longer re-
peated substrings, compression algorithms also com-
pensate for sequences with low entropy. We have
shown that such compensation should not be consid-
ered, at least in the case of small P-values. We have
suggested a simple way to disentangle the portion of
the compression coming from locally low entropy and
shown that the correction leads to better P-value es-
timates.

The compression would be a fast and efficient way
of estimating the effective database size. Even though
most of the general purpose compression algorithms
(such as bzip2) cannot handle distant large blocks of

Estimating effective DNA database size ... 69

similarity common in DNA sequence databases,
one could use fast methods for identifying such
blocks [12,19] to speed up the algorithms developed
specifically for compression of DNA sequences [6,7,
14, 3].

Finally, we would like to extend our work to more
complex scenarios of homology search. Longer query
sequences will require handling of insertions, deletions,
and matches that involve only portions of the query
sequence. More complex scoring schemes on both nu-
cleotide and protein sequences also need to be exam-
ined.

References

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and
D.J. Lipman: Basic local alignment search tool. Jour-
nal of Molecular Biology, 215 (3), 1990, 403—410.

2. D. Bailey and R. Crandall: Random generators and
normal numbers. Experimental Mathematics, 11 (4),
2002, 527-546.

3. B. Behzadi and F. Le Fessant: DNA compression
challenge revisited: a dynamic programming approach.
In: Combinatorial Pattern Matching (CPM 2005),
Springer, 2005, 190-200.

4. D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Os-
tell, and E.W. Sayers: GenBank. Nucleic Acids Re-
search, 37 (Database issue), 2009, D26-31.

5. M. Burrows and D.J. Wheeler: A block-sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, Palo Alto, California,
1994.

6. X. Chen, S. Kwong, and M. Li: A compression
algorithm for DNA sequences and its applications
in genome comparison. In: Genome Informatics
(GIW’99), Universal Academy Press, 1999, 51-61.

7. X. Chen, M. Li, B. Ma, and J. Tromp: DNACompress:
fast and effective DNA sequence compression. Bioin-
formatics, 18 (12), 2002, 1696-1698.

8. T.H. Cormen, C.E. Leiserson, and R.L. Rivest: Intro-
duction to algorithms. MIT Press, 1990.

9. A. Dembo, S. Karlin, and O. Zeitouni: (1994). Limit
distribution of maximal non-aligned two-sequence seg-
mental score. The Annals of Probability, 22 (4), 1994,
2022-2039.

10. R. Giancarlo, D. Scaturro, and F. Utro: Textual
data compression in computational biology: a synop-
sis. Bioinformatics, 25 (13), 2009, 1575-1576.

11. D.L. Hartl and A.G. Clark: Principles of population
genetics, Fourth Edition. Sinauer Associates, 2006.
12. W.J. Kent, R. Baertsch, A. Hinrichs, W. Miller, and
D. Haussler: D. FEwvolution’s cauldron: duplication,
deletion, and rearrangement in the mouse and human
genomes. Proceedings of the National Academy of Sci-
ences of the United States of America, 100 (20), 2003,

11484-9.

13. W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin,
T.H. Pringle, A.M. Zahler, and D. Haussler: The hu-
man genome browser at UCSC. Genome Research, 12
(6), 2002, 996-1006.

70

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Martina Visnovskd et al.

G. Korodi and I. Tabus: An efficient normalized max-
imum likelihood algorithm for dna sequence compres-
sion. ACM Transactions on Information Systems, 23
(1), 2005, 3-34.

M. Li, J.H. Badger, C. Xin, S. Kwong, P. Kearney,
and H. Zhang: An information based sequence distance
and its application to whole mitochondrial genome phy-
logeny. Bioinformatics, 17 (2), 2001, 149-154.

M. Li and P. Vitanyi: An introduction to Kolmogorov
complexity and its applications. Springer, 2008.

AY. Mitrophanov and M. Borodovsky: (2006). Statis-
tical significance in biological sequence analysis. Brief-
ings in Bioinformatics, 7(1), 2006, 2-24.

0.U. Nalbantoglu, D.J. Russell, and K. Sayood: Data
compression concepts and algorithms and their appli-
cations to bioinformatics. FEntropy (Basel, Switzer-
land), 12 (1), 2010, 34.

B. Paten, J. Herrero, S. Fitzgerald, K. Beal, P. Flicek,
I. Holmes, and E. Birney: Genome-wide nucleotide-
level mammalian ancestor reconstruction. Genome Re-
search, 18 (11), 2008, 1829-1833.

Rissanen, J. and Langdon, G. (1979). Arithmetic
coding. IBM Journal of Research and Development,
23(2):149-162.

T.F. Smith and M.S. Waterman: Identification of com-
mon molecular subsequences. Journal of Molecular Bi-
ology, 147 (1), 1981, 195-197.

B.E. Suzek, H. Huang, P. McGarvey, R. Mazumder,
and C.H. Wu: UniRef: comprehensive and mnon-
redundant UniProt reference clusters. Bioinformatics,
23 (10), 2007, 1282-1288.

J.C. Venter: Multiple personal genomes await. Nature,
464 (7289), 2010, 676-677.

