5th SIKS/BENAIS Conference on Enterprise Information Systems

Building a Requirements Engineering Methodology for
Software Product Lines

Tom Huysegoms, Monique Snoeck, Guido Dedene

Faculty of Business and Economics, Management Information Systems Group, K.U.Leuven
Naamsestraat 69, 3000 Leuven, Belgium
{Tom.Huysegoms, Monique.Snoeck, Guido.Dedene} @econ.kuleuven.be

Abstract. Software product lines are a great way to achieve reusability when
they are correctly implemented. Theories about the product line paradigm al-
ready exist for multiple decades, but empirical research and reports of real life
success stories are still scarce. Companies often still struggle to implement a
software product line, because they don’t possess the necessary knowledge and
therefore do not sufficiently focus on the most basic aspect of a product line,
namely the variability. Variability is the key to systematic and successful reuse,
and should be considered as soon as possible in any software engineering
project. The goal of the research is to develop a methodology for dealing expli-
citly with variability in software product lines during requirements engineering,
because its impact will be maximal during this phase of software engineering.
The methodology will be developed based on case-study research, in order to
ensure practical relevance.

Keywords: Variability, requirements engineering, case-study research, harmo-
nization.

1 Introduction

The financial crisis has intensified the strive for cost reduction. The software product
line engineering (SPLE) paradigm offers a means to achieve this cost reduction inside
the domain of software engineering through the systematic reuse of product line com-
ponents. SPLE has already been studied for over two decades, software product lines
are first mentioned in 1990 by Kang et al. as a part of their FODA specification [1]. A
good definition of this software product line concept can be found in the work of
Clements et al. [2]: “A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed from a common set of core
assets in a prescribed way”. The SPLE paradigm requires a shift away from thinking
about system development on a system by system basis as in traditional software
engineering towards thinking in terms of development of product families. A product
family is a somehow related group of software systems. SPLE focuses on these

25



Proceedings

groups of related, highly alike software applications, and the concept of variability is
used to situate the differences between these software applications.

Variability is one of the key concepts in SPLE. Without variability, the SPLE pa-
radigm would not be capable to achieve a high level of cost reduction. The variability
in the software product line allows the product line to be reused in similar, yet slightly
different contexts. Although the exact same software system could be used in many
different contexts, this would yield a suboptimal solution. Most of the time the soft-
ware system would not fit its context perfectly, and additional efforts would be re-
quired to use it. In this way the cost benefits achieved by the reuse of a single applica-
tion will be (partly) annihilated by the suboptimal results of the different implementa-
tions of the single system.

Despite the fact that variability is of utmost importance to the successful use of the
SPLE paradigm, the absence of explicit reasoning about variability seems to be one of
the reasons why a software product line project fails in practice. This observation was
made in the exploratory study of some projects at an international bank and insurance
company. The lack of a clear focus on variability during the early phases of SPLE
doomed the projects even before they were fully implemented. The reason behind the
fact that variability is overlooked in practice is not clear, but awareness about varia-
bility must be created in order to improve the results of any future SPLE projects.
This is why we want to develop a methodology about the variability concept in SPLE,
so that when a software product line is created, it will have a chance to succeed.

The paper consists of different parts. Section 2 defines the problem we wish to ad-
dress and investigates related work. In section 3 we define the research plan and the
type of research. In the sections 4 to 7 we then subsequently present the different
aspects of the framework we wish to develop our methodology upon. Section 8 gives
a summary and a conclusion, along with the direction of the future research.

2 Problem statement and related work

When we look at the state of the art literature of software engineering in general and
requirements engineering more specifically, we establish the fact that there is a ten-
dency to focus on the more theoretical aspects of research in favor of the empirical
work [3]. This shortage in empirically based research (like e.g. [4]) can be one of the
reasons why it is so difficult for companies to implement the theories developed in
software engineering. It is not so that research results are unavailable or incomplete,
but the fact that it is (perceived) difficult to use the developed theories in practice
leads to reluctance to start up any new software engineering program or project, like
for instance SPLE projects. This reluctance can be strengthened by the fact that most
new software engineering projects require additional investment funds to be gathered.
In the SPLE domain assets need to be developed and this generates extra costs at
startup, while benefits are only achieved when the assets are reused multiple times (at
least more than once). The benefits are uncertain and are located in the future, while
the costs are certain at the starting point. In combination with the fact that the devel-
opment and implementation of a software product line is perceived as difficult, im-
plementing such a line is not an obvious choice.

26



5th SIKS/BENAIS Conference on Enterprise Information Systems

Once the initial investment decision is taken and the company commits itself to the
SPLE paradigm, the product line itself is created and implemented. Also then it is
likely that problems will arise. Due to the lack of sufficient empirical guidelines like
[5] and [6], many of the problems a company can possibly face during the creation or
implementation are not well documented. Without any source of information on how
to solve practical problems, the implementation of the product line is hampered at
best. In the worst case, the problems that arise make the companies put a stop to their
efforts in applying the SPLE paradigm and return back to the single system engineer-
ing approach. One could argue that because SPLE already exists for a long time, there
ought to be solutions somewhere in the large amount of literature about it created over
the years. The fact is however that many companies cannot rely on someone who is
very proficient in SPLE literature, otherwise they would not be having problems with
SPLE in the first place. For people who are less proficient in SPLE in particular or in
software engineering in general, the complicated literature does not offer a suitable
ready-to-use solution which is efficient but at the same time easy enough to grasp by
anyone less than an expert.

The goal of our research is to provide the much needed bridge between the theory
of SPLE and its implementation in practice [7] by offering a methodology that is
usable for and encompasses all stakeholders who have a role in SPLE, from IT staff to
business managers. At the center of this methodology there is the concept of variabili-
ty [8], as this is the foremost driver of a successful SPLE [9]. Decisions about varia-
bility need to be taken with care, as they can impede the reuse of the software assets
later on. In order to minimize the impact of implicit decisions, it is best to start think-
ing about variability as early as during the requirements engineering. Therefore the
methodology will focus itself mainly on the requirements engineering phase of the
software engineering process. How we are planning to create the methodology in
concrete is explained more in detail in the next section.

3 Research method and plan

In order to ensure the practicality of our Variability enabling Software Product line
and Requirements Engineering Methodology (VeSPREM) we create VeSPREM
based on empirical research in the form of case studies. Starting from a theoretically
grounded framework which provides the basic elements that are necessary to reason
about variability, we fill in this framework based on multiple case studies conducted
in two software intensive multinationals. These multinationals either develop their
own information system in house (internal software provider model) or develop soft-
ware in order to sell it to other companies (external software provider model). The
research will focus first on the internal software provider model, because the context
of the internal software provider model is likely to be more controllable than the con-
text of the external software provider model. Most of the time the stakeholders in an
internal software provider context are well known while in the external model future
customers are unknown at design time. The size of the cases is also likely to be small-
er in an internal context because the number of possible customers is limited to the
number of internal departments who may request for software systems.

27



Proceedings

In current research [10] case study research is becoming more and more popular
and is considered as a full-fledged research method. It is a qualitative research me-
thod, based on real life cases. The big advantage of case study research is that it is
always based on the analysis and interpretation of empirical evidence, and therefore
the link with practice is ensured. Other research methods, for instance ethnographic
studies, have the same link with real life, but they are less usable in our research con-
text because they require such long periods of time to be successfully conducted that
conducting several case-studies (which we need) within a reasonable amount of time
is too labor intensive for a single researcher. A drawback to case study research is
claimed to be the lack of possibilities to quantitatively analyze the results of the re-
search. The lack of a formal way to test the developed hypotheses can seem a draw-
back, but there are possibilities to ensure the validity of the research. Multiple case
studies can be conducted, in order to create a form of replication. Yin [11] describes
two forms of replication: literal replication and theoretical replication. Literal replica-
tions predict similar results in order to strengthen the conclusions from the case stu-
dies. Theoretical replications predict other results than the original cases but in such a
way that the differences are anticipated. In our research literal replication will be done
by conducting multiple case studies in an internal software provider context, while
theoretical replications will be done by studying cases in an external software provid-
er context (in contrast to the internal software provider context).

To start with, an initial theory needs to be developed in order to achieve the right
focus for the case studies [11]. In our research, this starting theory takes the form of a
framework that will then be systematically enriched with the results of the case stu-
dies in order to create a complete methodology. The initial framework that we will
use as starting point of our research is presented in the following sections (section 4 to
section 7). It combines the results of a survey of existing theoretical research and an
exploratory observational case study in a multinational banking and insurance com-
pany. The framework represents the basic ideas and assumptions about variability in
SPLE taken from literature, and extends them with findings from the observational
case study. The planned case studies will provide substantial material to enrich this
framework with the necessary details, so that the framework can grow organically
into a full-fledged methodology. A feedback loop will then trigger a revision of any
previous cases against the altered/extended framework. By forming a feedback loop
the construct validity of the research will be guarded. The next four sections represent
the pillars of the framework: the structure of the IT department providing the product
line, the decision process concerning variability in requirements, the representation of
variability in goals, features and architectural specifications and the engineering
process in SPLE as a whole.

4 An multi-organizational context for IT

SPLE can be applied in many contexts. The methodology we will develop aims at
developing management information systems for software intensive organizations.
This setting is very different from a setting of e.g. developing a product line for em-
bedded software for cars or cell-phones. The need for variability arises from the mul-

28



5th SIKS/BENAIS Conference on Enterprise Information Systems

tinational, multi-divisional or multi-institutional property of the organization (a ‘mul-
ti- organization or ‘multi-° company). Each business unit has very similar but never-
theless also very particular needs. As a result of this, the IT department needs both
centralization and decentralization.

Central guidance is needed in order to obtain an overview of the total IT portfolio.
This overview is needed if opportunities for reuse are to be spotted. These opportuni-
ties are marked by a significant overlap of functionality between different applica-
tions. This overlap is what is called the commonality of a product family.

Simultaneously, the decentralized view on the IT department is required to cope
with the variability issues of the SPLE. Each of the geographically (or logically) di-
vided regions has its own specific properties and domain assets need to be adjusted
accordingly in order to obtain a usable implementation. The combination of both
centralization and decentralization can be achieved if we assume that the IT depart-
ment is structured according to the blueprint described below. The proposed blueprint
is based on the Integrated Architecture Framework (IAF) of Capgemini and the Asset
and Solution Framework (ASF) of KBC ICT Services studied in the exploratory case
study. The proposed IT blueprint is described in Fig. 1 and represents the structure for
the whole IT department of a software intensive ‘multi-‘company.

LOCAL SERVICE DEPARTMENT X CUSTOMER X

SHARED SERVICE
DEPARTMENT

LOCAL SERVICE DEPARTMENT Y CUSTOMERY

Fig. 1. The ‘multi-* company IT department

On the left side of the figure we see the shared service department (or central IT de-
partment) which coordinates the whole IT structure and has an overview over all the
IT projects in the different local service departments (or local IT departments). These
local departments each provide software for their specific customer (or group of cus-
tomers). Depending on the type of ‘multi-‘ company, the customer can be a business
line, a business unit, a market segment,... Each local department is thus coupled with
a customer(group). The task of the local departments is to provide customized soft-
ware systems to the customer they have been assigned to. The division between the
central and the local departments on the one side, and the division between the local
departments on the other side are both necessary in order to ensure the scalability of
the department. If the different tasks for the different parts of the IT department are
not clearly defined, it will become difficult to increase the size of the IT department.

Although other organizational blueprints are definitely possible, we opt for this
construct because it is used by both existing companies and suggested by consulting
firms. The most important aspects of the blueprint are the actors and their responsibil-
ity. In the next section we will elaborate our framework based on the organizational
actors presented here.

29



Proceedings

5 Variability in software product line requirements

The second part of our framework concerns the variability of software product line
requirements. As mentioned before, variability is a central concept in SPLE and there-
fore central to our starting framework. Reasoning explicitly about variability is some-
thing that really needs to be done if you want a SPLE project to have any chance on
success. The earlier in the software engineering lifecycle decisions about variability
are made explicit, the more effect they will have. Ignoring variability altogether
makes it likely that implicitly some decisions concerning variability are already made.
These decisions may not always be optimal, the risk of taking suboptimal decisions
increases if variability is not explicitly dealt with. Besides the fact that wrong deci-
sions will be made and extra costs will incur to correct these mistaken decisions, the
total cost amount will also rise if the mistakes are only corrected later on in the
process. Correcting the architecture of a domain asset before it is created is much
cheaper than correcting all the implementations that are already built upon a faulty
domain asset separately.

Our methodology will support making decisions about variability explicitly and as
early as possible. During the requirements negotiation with the different stakeholders
of a product line, it is easy to explicitly interact about variability. When multiple
stakeholders have different demands and requirements for the information systems to
be developed, these differences can be identified and reasoned upon. Reasoning about
variability during requirements engineering is split up into two phases.

The first phase is the phase during which all stakeholders define their requirements
and based on these requirements it is decided which requirements are common for all
stakeholders (the commonality of the requirements) and which ones are different (the
variability of the requirements). During this decision process differences between
requirements can be discussed, in an attempt to slightly alter the requirements so they
will possess more commonality and less variability. The drive for this harmonization
step is the fact that the commonality part can be reused without making extra costs.

During the second phase it is decided which parts of the variable requirements will
be implemented in the domain asset as variability (that is supported by the domain
asset) and which variable requirements are left to the local service departments to
implement themselves on a customer by customer basis. Supported variable require-
ments are those requirements that the central (shared service) department agrees to
support. The shared service department implements these variable requirements as
variation points [8] in the architecture of the domain assets. These variation points can
be filled in by any of the variants that are offered by the central department. Therefore
it can be said that the variable requirements that are supported in the domain asset are
available for every implementation, and that that part of the variability is shared by all
implementations. The other part of the variable requirements is specific to some
stakeholders and therefore these are not supported centrally. The reason for support-
ing some variability centrally is once again for cost reduction purposes. The second
phase is called variabilization, because this part of the decision process concerns
defining up to what point variability is supported by the shared service department.

30



5th SIKS/BENAIS Conference on Enterprise Information Systems

The following figure (Fig. 2) visualizes the variability decision process during re-
quirements engineering for a product line. Each phase is visualized by its respective
arrow next to the octagonal, which represents the total collection of requirements. On
the left, with arrow number 1, we have the harmonization phase which decides on the
amount of commonality and variability in the requirements. On the right we have the
variabilization phase, labeled number 2. It is during this phase we decide which part
of the variable requirements is shared in the form of variation points in the domain
asset, and which part of the variable requirements is specific for certain stakeholders
and left to be implemented by the local service departments.

SHARED
VARIABILITY

COMMONALITY VARIABILITY COMMONALITY

SPECIFIC
VARIABILITY

&

1
Fig. 2. Requirements harmonization (1) and variabilization (2)

6 Variability in model specifications

In the previous section we made explicit decisions about variability, but the results of
these decisions need to be written down. Different modelling techniques available in
literature describe the requirements of a software product line. These modelling tech-
niques all represent variability in their own way. The problem however is linking
these different kinds of representations correctly so that they represent the same va-
riability. Common to the techniques is the fact that they represent some kind of de-
composition possibility and that the variability is incorporated in it. We focus on
feature and goal models, as they are the most popular requirements modelling tech-
niques in early requirements engineering.

Probably the best known product line modelling technique is the feature model
[12]. A feature model visualizes all possible feature combinations for one product
line. A feature is a logical grouping of requirements which represent a certain aspect
of a software system. The visualization of the features is done by a feature diagram
[12]. This is an acyclic graph, and most of the times even a hierarchical tree. Features
can be classified into groups in different ways. A first classification can be done based
on the functionality which is represented. A feature can represent a group of require-
ments which are either functional or non-functional [13]. Functional requirements and
features demand the development of some functionality of the information system.
Non-functional requirements and features represent demands that link to certain per-
formance or service levels, but do not demand any functionality.

The second manner of feature classification is more interesting in the context of

31



Proceedings

variability and is based on the necessity of the feature in its context of the software
product line. There are three different categories of features in a feature model based
on their necessity: mandatory features, optional features and alternative features.
These different kinds of features all have a distinct visualization in the feature dia-
grams so that they are easy to identify. The optional and the alternative features are
the ones that represent the variability in a software product line, and the link with
variability is exactly what we are looking for.

The second technique which is gaining more and more interest in current research
on requirements engineering is goal modelling. According to van Lamsweerde [14], a
goal is a prescriptive statement of intent that the system should satisfy through the
cooperation of its agents. A goal is thus something that needs to be attained by certain
system components in order to be fulfilled. A system component can be a human
actor with a specific role, a software component, a measuring device (e.g. a sensor),...
Variability in goal models is represented by alternative refinements.

The difference between a requirement and a goal is the following: a requirement is
a prescriptive statement that needs to be enforced by the software system being devel-
oped, a goal is a prescriptive statement that can be enforced by any system compo-
nent. Goals are therefore useful in a context where there are business stakeholders (or
other non IT stakeholders) present, while requirements present the possibility for IT
stakeholders to focus on the software system which needs to be developed. In a SPLE
project both modelling techniques have their advantages, so both should be used.
When using both modelling techniques, one should be careful that both techniques
represent the same variability. Research about linking goal models and feature models
is thus needed in order to ensure that when variability is explicitly dealt with, it is
being represented correctly. Even during negotiations before decisions are taken, it is
beneficial to link feature and goal models, to facilitate the negotiation process, hence
the inclusion in our initial framework.

7 Software product line engineering with explicit variability

The last theoretical pillar of the initialframework concerns the total engineering
process of a software product line. In the previous section we stressed the importance
of requirements engineering, but all other phases in the engineering process need to
cope with the identified variability. Typically SPLE is divided into two process
cycles, namely domain engineering and application engineering [15]. The domain
engineering cycle is concerned with the development of domain assets. Once the
domain assets are developed, these assets can then be reused in the application engi-
neering cycle each time an instance of the product family needs to be developed.

The VeSPREM framework slightly alters the traditional 2 cycle development by ex-
tending it with one extra cycle. The first cycle is the same as the domain engineering
cycle, during which the assets are developed with special attention devoted to varia-
bility. The second cycle is the application instantiation cycle. This cycle roughly
matches the traditional application engineering cycle. The variability points in the
domain asset are bound with specific variants and the asset is then localized (or im-
plemented specifically) for the customer in question. The third and last cycle is an

32



5th SIKS/BENAIS Conference on Enterprise Information Systems

SHARED SERVICE LOCAL SERVICE DEPARTMENT X CUSTOMER X
DEPARTMENT
LOCALIZED LOCAL
REQ.
@ LOCAL SERVICE DEPARTMENT Y CUSTOMERY
DOMAIN LOCALIZED LOCAL
ASSET ASSET I 3 SOLUTION

7

Fig. 3. Product line engineering cycles

additional cycle not included in the traditional bi-cycle process which deals with the
customer specific extension of the now localized asset by the local departments. In
traditional SPLE this last cycle is (implicitly) part of the application engineering
cycle, but we suggest making this distinction because the extending activity clearly
differs from the localizing activity. Localizing is done in the same way with the same
set of possible variants for all product line members, while extensions are de facto
member specific. Because different rules and forces can apply in both phases they
should be split up instead of being considered as one application engineering step.

In Fig. 3 the three cycles are represented by numbered arrows. Number 1 is the do-
main asset cycle where the common part and the supported variability part are
created, number 2 is the localizing cycle where the supported variability is filled in
depending of the context and number 3 represents the extension cycle where local
additions are made. The cycles are mapped against the IT department structure of
section 4 in order to show the natural mapping of it on the cycles.

8 VeSPREM: a conclusion and look at the future

In the previous sections we have described each pillar of our framework. As presented
in this paper, the framework only serves as a starting point for the case studies we
plan to conduct and by no means yet fixed nor claimed to be complete. One possible
extension of the framework which will be studied during the case studies is the possi-
bility to create a formal method for transformations between goal models and re-
quirement models. Another addition to the framework currently under study is the
extension from traditional SPLE towards Service Oriented Product Line Engineering
(SOPLE). Further extensions will also definitely arise when we are coupling the case
study results back to the framework. The longer term objective of our research is to
enhance and fill the framework to such a level we obtain a solid and complete metho-
dology concerning variability inside software product lines.

As made clear by the explanation of the pillars of the framework, the theory for
successful SPLE is available in research, but the link towards practice still lacks

33



Proceedings

strength, and this is where VeSPREM will ultimately prove useful. Once the metho-
dology is completed, the following step will be to introduce VeSPREM into compa-
nies and in that way create new opportunities for further explorations in empirical
research.

Acknowledgements

We gratefully acknowledge KBC Global Services NV (member of the KBC Group)
for funding this research through the KBC research chair "Developing and Managing
Business Services as Shared Assets".

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA): feasibility study. Software Engineering Institute, Carnegie Mellon
University (1990)

2. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-Wesley
Longman Publishing, Boston (2001)

3. Alves, V., Niu, N., Alves, C., Valenca, G.: Requirements engineering for software product
lines: A systematic literature review. Information and Software Technology 52, pp. 806 --
820 (2010)

4. Hubaux, A., Heymans, P., Benavides, D.: Variability Modelling Challenges from the
Trenches of an Open Source Product Line Re-Engineering Project. In International Confe-
rence on Software Product Lines, pp. 55 -- 64, IEEE Computer Society, Limerick (2008)

5. Linden, F. J., Schmid K., Rommes, E.: Software Product Lines in Action: The Best Industri-
al Practice in Product Line Engineering. Springer-Verlag, Berlin (2007)

6. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In International Conference on Software Reuse, pp. 62 — 77, Sprin-
ger-Verlag, Austin (2002)

7. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: a syste-
matic review. In: Proceedings of the 13th international Software Product Line Conference,
pp- 81 -- 90, Carnegie Mellon University, San Francisco (2009)

8. Kim, S.D., Her, J.S., Chang, S.H.: A Theoretical Foundation of Variability in Component-
Based Development. Information and Software Technology. 47, pp. 663 -- 673 (2005)

9. Svahnberg, M., van Gurp, J., Bosch, J.: A Taxonomy of Variability Realization Techniques.
Software Practice & Experience 35, pp. 705 — 754 (2005)

10.Travers, M.: Qualitative research through case studies. Sage Publications Inc., Los Angeles
(2001)

11.Yin, R.K.: Case Study Research: Design and Methods. Sage Publications Inc., Los Angeles
(2009)

12.Czarnecki, K., Eisenecker, U. W.: Generative Programming: Methods, Tools, and Applica-
tions. ACM Press/Addison-Wesley Publishing Co., New York (2000)

13.Robertson, S.,Robertson, J.: Mastering the Requirements Process. ACM Press/Addison-
Wesley Publishing Co., New York (1999)

14.van Lamsweerde A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, Chichester (2009)

15.Pohl, K., Béckle, G., Linden, F. J.: Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag, New York (2005)

34





