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1 Problem Description and Motivation

One of the central themes in software language engineering is the specification
of programming languages, and domain-specific languages, using a metamodel.
This metamodel provides a greater degree of abstraction than a context-free
grammar, since it can ignore syntactic details. However, its main benefit is in
providing for the specification of the abstract syntax graph of a language, and
this can then be used for the construction or generation of language processing
tools.

One problem associated with the use of programming language metamodels,
and metamodels in general, is determining whether or not they are correct. Of
course, one approach is to forward engineer code and test this, but it should
also be possible to test the metamodel directly. In this context, the question
addressed by our research is: given a programming language metamodel, how
can we generate an appropriate test suite to show that it is valid?

Being able to generate such a test suite would have two main benefits. First,
examining the automatically-generated test cases would help to develop the mod-
eller’s understanding of the metamodel, and help to increase confidence in its
validity. Second, since the metamodel specifies a programming language, the
generated test cases should be valid programs from that language, and these can
be used as test inputs for tools that process the language.

2 Related work

Testing a programming language specifications, at least at the syntactic level,
has a long history, dating back at least to the work of Purdom on generating test
cases from grammars [1]. However, a naive application of Purdom’s approach to
a programming language grammar produces programs that may not be syntac-
tically correct (since the grammar may under-specify), and is certainly unlikely
to produce semantically valid (let alone meaningful) programs [2].
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Incorporating at least a language’s static semantics into test suite generation
must go beyond simple context-free grammars. One possible approach is to use
attribute grammars, and to seek to exploit the attribute equations to constrain
or even direct the generation of test cases [3, 4]. Despite this research, it is still
not a trivial task to directly extend this work to a metamodelling environment
that uses, for example, OCL-like constraints for describing the static semantics.

It is possible to borrow some ideas from software modelling, and there is a
great deal of existing research dealing with model-based testing strategies [5,
6]. However, much of this work focuses on the behavioural elements of software
models (such as state machines), rather than the structural aspects which might
be more relevant to metamodelling.

In the context of testing structural models, two tools strike us as being par-
ticularly noteworthy:
– USE (a UML-Based Specification Environment) which allows the user to

specify a UML (Unified Modeling Language) class diagram with OCL con-
straints [7]. From these we can manually generate corresponding object di-
agrams, and the USE environment will check that these are valid instances,
satisfying the relevant class invariants.

– Alloy which has its own logical specification language, corresponding roughly
to the elements found in a class diagram, and automatically generates object
diagrams that correspond to this specification [8]. One of the useful aspects
of the Alloy tool is that it is designed to work with a number of different
SAT solvers in order to test constraints and generate counter-examples.
As part of an earlier project, we have previously exploited the close rela-

tionship between the Alloy notation and UML class diagrams to generate in-
stances of a metamodel for software metrics [9]. One of the drawbacks of this
earlier approach is that it did not control the strategy used to generate instances.
Faced with the impossibility of manually validating several hundred thousand
instances, we exploited test-suite reduction techniques to narrow the set of test
cases.

3 Proposed Solution

It is clearly inefficient to generate test cases that are not used, and an ideal
solution would be to generate an appropriate set of test cases in the first place. Of
course, this immediately raises two questions: what do we mean by an appropriate
set of test cases, and how do we generate these test cases?

One way of measuring the adequacy of a set of test cases for a piece of
software is to use coverage criteria. Typically, a test suite can be judged in terms
of the percentage of statements, decisions, branches etc. in the source code that
are executed when the software is run. It seems natural therefore to attempt to
seek to assemble a test suite for a metamodel along similar lines, i.e. to form a
set of models that cover the features of the metamodel. In terms of programming
language metamodels, this would involve creating a set of programs that exercise
the features of the language.



Since most metamodels, including programming language metamodels, are
described using UML, it is possible to use UML techniques to compute their
coverage. Many coverage criteria for the various UML diagrams have been pro-
posed [10–13]. However, we restrict our attention to UML structural diagrams,
since metamodels are often presented in the form of UML class diagrams.

Our recent work has focused on coverage criteria for UML class diagrams
initially proposed by Andrews et al. [14], specifically:
– Generalisation coverage which describes how to measure inheritance rela-

tionships.
– Association-end multiplicity coverage which measures association relation-

ships defined between classes.
– Class attribute coverage which measures the set of representative attribute

value combinations in each instance of class.
It is unlikely that these alone will provide sufficient granularity to determine

the adequacy of a test suite, and previous work has already determined that
there is a poor correlation between coverage of syntactic and semantic features
[15]. However, our immediate work has centred on constructing an extensible,
modular system that can at least measure these levels of coverage, and which
can be used as a basis for further studies.

4 Research Method

Our research can be broken down into three phases:
Phase I: calculating coverage measures for programming language metamodels,
Phase II: generating valid models that satisfy coverage criteria,
Phase III: generating models satisfying criteria not based on coverage.

In our work to date we have constructed a tool-chain which, when given a
UML class diagram and a set of UML object diagrams, will calculate the three
coverage measures described above [16]. The tool chain uses the USE tool as
a parser and validator for the class and object diagrams, and uses the Eclipse
Modeling Framework (EMF) to represent these as instances of the UML meta-
model. To represent the output we have built a coverage metamodel in EMF
which is essentially an extension of an existing metrics metamodel [17]. Finally,
we have written a transformation to calculate the coverage measures using ATL
(ATLAS Transformation Language).

In order to complete the first phase we intend to extend the coverage measures
for class diagrams to deal with the associated OCL constraints. We intend to
use (OCL) decision coverage as our initial measure, and to extend our tool chain
to implement this coverage.

In the next phase, we hope to generate valid models that satisfy coverage
criteria for at least one programming language metamodel. We are currently
studying Alloy’s approach as a model of exploiting third-party SAT solvers to
control model generation.

At the final phase of our research we hope to expand this approach to other
language-based criteria. To do this, we intend to use OCL-based queries across



the metamodel to specify the kind of model to be generated. Ideally, this would
allow a user to specify the kind of programs that would be generated in the test
suite for a given language metamodel.
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