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ABSTRACT

Within the DWH domain, a new architecture known as col-
umn store is emerging especially to improve the performance
of data analyses/aggregations. Column stores offer good
results in performance benchmarks like TPC-H. In recent
years, row stores dominate the data warehousing domain.
We consider application fields for both architectures. We
want to figure out and examine different application fields
for row and column stores. To encourage our assumption, we
perform a case study based on the TPC-H benchmark. To
the best of our knowledge, there is no advisor for selection
of storage architecture for a given application. We present
an idea to overcome the workload analysis problems across
different architectures in the DWH domain.

1. INTRODUCTION

Database management systems (DBMSs) are pervasive in
current applications. With database tuning, practitioners
alm at optimal performance especially for large-scale sys-
tems like a data warechouse (DWH). The administration
and optimization of DBMSs is costly. In recent years, row-
oriented DBMSs (row stores) dominate the DWH domain
but a new approach known as column-oriented DBMSs (col-
umn stores) arises [2]. The column stores should increase the
performance of analyses in the DWH domain [1, 9, 14, 18].
In the DWH domain, the column stores outperform the row
stores lately and offer good results in performance bench-
marks like TPC-H'. Consequently, the complexity of system
design increases through the new available DBMSs because
the design process also implies the selection of a suitable sys-
tem architecture now. To the best of our knowledge, there is
no framework available that advises the optimal architecture
for a given application or workload. Heuristics and stud-
ies show that column stores perform very well on aggrega-
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tions [3, 14]. In contrast, column stores perform worse than
row stores on update and tuple operations, i.e., processing
entire tuples. Operation types and their frequency within
a workload differ from application to application, thus we
have to analyze their workloads to select the most suitable
architecture. In other words, we have to contrast the perfor-
mance of row stores with the performance of column stores
for different applications.

In this paper, we analyze the differences between column
and row stores to show the increased challenge of system de-
sign within the DWH domain. We illustrate new challenges
for workload analyses and introduce a solution. Afterwards,
our study illustrates that there are application fields for both
architectures within the DWH domain.

2. COLUMN VS. ROW STORES

This section gives an overview to the differences in storage
method and functionality between column and row stores.
Due to the differences, we show the increased complexity of
system design and the difficulty of performance estimation
across row and column stores.

First, the storage architecture differs in the type of par-
titioning a (relational) table. Row stores horizontally par-
tition a table, i.e., all attribute values of one tuple are se-
quentially stored. In contrast, column stores sequentially
store the values of an attribute (column). Hence, column
stores have to reconstruct the tuples during the query ex-
ecution if more than one column is affected. In the DWH
domain, we mostly process aggregations over one column.
Column stores reduce the overhead for aggregations, e.g.,
I/0 costs, because the affected column is directly accessed.
However, the vertical partitioning in column stores also im-
plies worse performance on update processing. That means,
caused by the column-oriented architecture, the tuples have
to be reconstructed and partitioned subsequently during up-
date processing. In contrast, row stores perform better on
tuples (operations) and updates that are also important op-
erations within workloads even in the DWH domain. Several
approaches [1, 9, 12, 16] attempt to solve the update prob-
lems of column stores but these approaches do not reach the
performance of row stores. Abadi et al. show that verti-
cal partitioning of relations in row stores is not a suitable
compromise, too [3].

Second, column and row stores also differ in their func-
tionality. Row stores utilize indexes and materialized views
to improve the performance. Therefore, DBMS vendors and
researchers develop a number of self-tuning techniques [5] to
automatically tune the DBMSs. These techniques, e.g., in-



dexes and index self-tuning, do not exist for column stores,
i.e., column stores do not utilize mature frameworks/tools
for self-tuning like row stores according to shifting work-
loads [5]. In contrast, column stores have a better support of
compression techniques than row stores [1]. Column stores
offer a number of compression techniques that can be chosen
for each column concerning its data type. Moreover, some
column stores can directly process on compressed data [1].
Row stores have to use one compression for a tuple or tu-
ple partition [3], i.e., the selected compression techniques is
a compromise to satisfy different data types. Furthermore,
column and row use different query processing techniques
caused by the different storage architectures. On the one
hand, column stores have to reconstruct tuples while query
processing whereby the point of time for reconstruction cru-
cially influence the query processing [4]. On the other hand,
row stores can directly process on several columns (no tuple
reconstruction) but they have to access entire tuples even if
just one column have to be processed. Row store query pro-
cessors are always tuple-oriented no matter how the data is
partitioned. Column stores can utilize a row-oriented query
processor as well as a column-oriented query processor [1],
i.e., the performance of a column store is already affected by
the selection of the query processor.

In conclusion, we state that the complexity of database de-
sign (and also tuning) has been increased by the appearance
of column stores within the DWH domain. In recent years,
we estimate the performance of row stores for a given work-
load and tune these systems concerning the given workload.
We are able to compare several systems (row stores) because
their core functionality only differs very slightly. Today, we
have to estimate the performance of DBMSs across two ar-
chitectures, i.e., we have to choose the most suitable ar-
chitecture for a given workload. One can argue that column
stores are more suitable for DWH applications in general be-
cause column stores perform better on essential operations
for the DWH domain, e.g., aggregations. We argue there are
application fields for column and row stores because none of
the two architectures is suitable for every workload. Cur-
rent approaches [1, 9, 11, 12, 16] confirm our position, e.g.,
updates in real-time DWHs [17].

3. NEW CHALLENGES FOR WORKLOAD
ANALYSES

New applications demand for performant aggregations in
column stores as well as performant tuple operations in row
stores or at least row store functionality. Hence, we need
new approaches for workload analyses because we have to
compare different DBMSs (row vs. column store) that differ
significantly in their storage, functionality, and query pro-
cessing techniques.

In recent years, we compare different tuning and optimiza-
tion techniques of DBMSs to figure out the most suitable
DBMSs for a given workload. Row stores have only minor
differences in functionality and they often only differ in their
implementation. Therefore, workload analyses based on en-
tire queries are suitable because the queries are processed in
the same way and the comparison of query execution times
is sufficiently.

To compare (systems with) different architectures, we have
to estimate the performance of a given workload for both
architectures. Due to the different performance of both ar-

chitectures on certain operations, it seems to be obvious to
analyze the operations itself. Consequently, current work-
load analysis approaches and estimation tools have to be
adapted because these approaches process on entire queries
and their structure and do not offer the opportunity to ana-
lyze operations of a query. We argue that this step is neces-
sary because certain operations, e.g., tuple reconstructions
in column stores, are not appraisable from a given query
and its structure. Furthermore, a certain operation can di-
rectly influence the overall performance of a query, e.g., tuple
operations. Due to heuristics, column stores will be cho-
sen for workloads that contain an amount of aggregations.
This assumption is often applicable but we cannot gener-
alize it. If the workload contains a huge number of tuple
operations besides the amount of aggregations then column
stores perform poorly because they have reconstruct a lot
of tuples. Tuple reconstructions are not necessary for row
stores, thus we have to analyze the operations of a query to
estimate the overall performance of a query correctly. With
help of workload analyses based on operations, we can ob-
tain weighted comparable estimations according to different
operations even if certain operations only exist for one of
the both architectures, e.g., tuple reconstruction for column
stores.

4. CASE STUDY: TPC-H ON DIFFERENT
ARCHITECTURES

In this section, we present our case study according to the
TPC-H benchmark on a column store and a row store. We
describe our study environment and introduce our assump-
tions for this study. Afterwards, we discuss the results of
the benchmark runs.

4.1 Environment & Assumptions

Our test environment is an Ubuntu 9.10 64bit system run-
ning on Samsung X65 with a 2.2GHz dual core processor,
2GB RAM, and 2GB swap partition. We decide to use In-
fobright ICE? 3.2.2 and MySQL? 5.1.37 for our study.

Thereby, ICE represents the column stores and MySQL
represents the row stores. Our decision is based on two main
reasons. First, both DBMSs are freely available, and second
both DBMSs are relatively similar. Both systems use the
common MySQL kernel/management services except that
they utilize different storage architectures. Of course, In-
fobright adds functionality to the underlying MySQL, e.g.,
another storage manager, but there are no other DBMSs
that utilize different storage architectures and are as similar
as these two DBMSs. To the best of our knowledge, there
are no DBMSs more suitable to compare impacts on column
and row store even if ICE is already a DBMS for DWH ap-
plications and MySQL is implemented for transactional pro-
cessing (OLTP). We adjust both DBMSs configurations to
the MySQL standard configuration to guarantee the com-
parability of the results. For both systems, no additional
indexes or views are created except indexes and views that
are caused by the DDL (primary key) or by the workload
itself.

To exclude impacts from a poor chosen workload, we use
the standardized TPC-H (2.8.0) benchmark with scale fac-
tor 1 (1GB). This benchmark is representative for the DWH

Zhttp://www.infobright.org
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domain. The data (1GB) does not fit completely into RAM
for MySQL standard configuration, e.g., 16MB key buffer
size is much less than 1GB. We run two series of tests with
the TPC-H benchmark to show that there are still applica-
tion fields for row stores in the DWH domain, thus column
stores do not outperform row stores at each query.

We run one series of tests with the standard TPC-H bench-
mark to obtain reference values. The second series of tests
run with an adjusted TPC-H benchmark. We adjusted the
TPC-H benchmark in the following way. We want to show
that a storage architecture decision can be easily shifted by
changing workloads. We modify the TPC-H benchmark,
i.e., we change the number of returned attributes for each
query. Hence, each query returns the result without pro-
jection (in the SELECT-statement). Listing 1 shows an ex-
emplary adjusted TPC-H query. We have to add a GROUP
BY-statements to the queries Q6, Q14, Q17, and Q19 to create
valid SQL statements because more than one attribute has
to be processed now. We decide to group all four queries by
the same attribute (Lshipdate), i.e., each query is extended
by GROUP BY Lshipdate. We also apply these changes
to the series of tests with standard TPC-H benchmark to
guarantee the comparability.

Finally, we state that we exclude three queries from our
test series. First, Q13 is not executable on MySQL-syntax.
Second, we remove Q18 from our test series because MySQL
is not able to finish the query. We abort the execution after
over 21 hours. In contrast, the execution time on ICE is
only 8 seconds. Third, Q21 has an extreme execution time
of 6 hours on ICE that indicates optimizer problems for this
query. MySQL executes Q21 in only 2 minutes and 48 sec-
onds.

Our results of the two test series are shown in Table 1 and
will be discussed in the following section.

4.2 Discussion

Our study shows different impacts on the query execution
time of the queries. We determine three different impacts
within our study.

First, we cannot figure out an impact of our adjustments
on the query execution of MySQL. There are only some
queries that show a negligible impact, e.g., the query ex-
ecution times of Q2 and Q5 are only increased by 3 seconds
with respect to the overall query execution time above 1
minute. We expect this behavior because row stores do not
have drawbacks while processing entire tuples. We assume,
the final projection within a query plan has no impact on
query execution time for row stores because unnecessary at-
tribute will only be cropped from the result sets. We assume,
this fact does not refer to projections on intermediate result
sets during the optimization process.

Second, ICE shows an obvious impact on several queries,
e.g., Q3 and Q19. The increased costs for these queries show
the influence of the size of processed tuples to the perfor-
mance of column stores. We assume, these costs are caused
by the necessary tuple reconstruction during the query ex-
ecution. Hence, analyses on larger tuples within result sets
can corrupt the performance of column stores. We state
that large tuple sizes within a result set cannot disregarded
for storage architecture decision, especially not for analyzing
and reporting tools that process on huge data sets.

Third, some queries do not show an impact according to
our adjustments of the TPC-H benchmark e.g., Q7 or Q15.

Standard TPC-H Adjusted TPC-H
Query # ICE MySQL ICE MySQL
TPC-H Q1 | 00:00:25 | 00:00:26 00:01:18 | 00:00:28
TPC-H Q2 | 00:00:45 | 00:01:31 || 00:01:09 | 00:01:34
TPC-H Q3 00:00:03 | 00:00:28 00:01:11 | 00:00:27
TPC-H Q4 | 00:02:32 | 00:00:05 00:02:42 | 00:00:05
TPC-H Q5 00:00:03 00:01:25 || 00:01:06 00:01:31
TPC-H Q6 | 00:00:00 | 00:00:03 00:00:40 | 00:00:04
TPC-H Q7 00:00:03 | 00:00:30 || 00:00:04 | 00:00:30
TPC-H Q8 | 00:00:02 | 00:00:05 00:00:02 | 00:00:05
TPC-H Q9 | 00:00:05 | 00:00:50 00:01:09 | 00:00:48
TPC-H Q10 | 00:00:08 | 00:00:10 00:02:06 | 00:00:12
TPC-H Q11 | 00:00:01 | 00:00:00 00:00:22 | 00:00:01
TPC-H Q12 | 00:00:02 | 00:00:04 00:01:00 | 00:00:04
TPC-H Q14 | 00:00:01 | 00:00:32 00:00:43 | 00:00:31
TPC-H Q15 | 00:00:01 | 00:00:08 || 00:00:02 | 00:00:08
TPC-H Q16 | 00:00:01 | 00:00:09 00:00:24 | 00:00:12
TPC-H Q17 | 00:24:15 00:00:01 00:24:41 00:00:01
TPC-H Q19 | 00:00:03 | 00:00:00 00:00:31 | 00:00:00
TPC-H Q20 | 00:10:48 | 00:00:01 00:10:51 | 00:00:00
TPC-H Q22 | 00:19:21 | 00:00:01 00:19:23 | 00:00:01

Table 1: Comparison of Query Execution Times for
ICE and MySQL on TPC-H and adjusted TPC-H

We assume that the costs for tuple reconstructions for these
queries do not have a major share of total costs. The result
sets and the interim results are comparatively small. Hence,
there are other operations within these queries that cause
the major part of the costs. Consequently, we cannot figure
out general decision rules. We have to analyze the influence
of single operations to the total costs of a query.

Queries Q4, Q17, Q19, and Q22 have to be separately con-
sidered. The long query execution times for ICE indicate
the same issue with respect to the query structure. We as-
sume that the ICE optimizer or the ICE query processor
has an issue while processing nested queries. However, our
results also show that there is only a negligible impact for
both systems by our adjustments for these queries.

Our assumption is confirmed that column stores cannot
outperform row stores at each query, i.e., there are applica-
tion fields for row and column stores in the DWH domain.

S. RELATED WORK

Several open- and closed-source column stores have been
released [1, 8, 13, 18] but all systems are pure column stores
and do not support any row store functionality. We state
that all application fields in the DWH domain cannot be
satisfied by systems that support only one architecture.

Regarding the solutions for architectural problems, there
are several approaches [1, 12] available which try to reduce
the drawbacks caused by the architecture, i.e., these ap-
proaches replicate data to overcome the drawbacks. We
want to figure out the most suitable architecture for a given
application/workload without replication mechanisms.

We need to analyze all workloads to figure out the appli-
cations fields for row and column stores. Therefore, we can
utilize, adapt and extend existing approaches such as Turby-
fill [15] who considers mixed workloads or Raatikainen [10]
considers workload clustering analysis. In contrast, our ap-
proach needs to classify and analyze database operations
itself. The approaches of Favre et al. [6] and Holze et al. [7]
step in the direction of self-tuning databases, i.e., they con-




FROM partsupp, part
AND p_size IN (3, 12, 14, 45, 42, 21, 13,

GROUP BY p_brand, p_type, p_size

~ O U WO N

SELECT *, COUNT(DISTINCT ps_suppkey) AS supplier_cnt

WHERE p_partkey=ps_partkey AND p_brand<>’Brand#51’ AND p_type NOT LIKE °’SMALL_,PLATEDY’
37) AND ps_suppkey NOT IN (

SELECT s_suppkey FROM supplier WHERE s_comment LIKE ’%Customer%Complaints?%’)

ORDER BY supplier_cnt DESC, p_brand, p_type,

p_size;

Listing 1: Adjusted TPC-H Query Q16

sider analyses on changing workload. We could adopt these
approaches to develop an alerter in architectural manner to
advice the redesign of a system.

The current research reflects new approaches to solve the
update problems of OLAP applications, e.g., dimension up-
dates [16]. Moreover, the update problem is increased ac-
cording to new demands like real-time DWH [11, 17]. Thus,
solutions are needed to overcome update processing prob-
lems.

6. CONCLUSION

We illustrated the major differences in storage form and
functionality between column and row stores. Therefrom,
we showed the difficulty to compare the performances of
the two architectures or systems with different architectures.
Consequently, we discussed the increased complexity of the
physical design process for DWH applications, e.g., distinc-
tion between two architectures. We mentioned several ap-
proaches that show the necessity of column stores as well
as row stores or at least row store functionality within the
DWH domain. Afterwards, we analyzed the impact of cer-
tain operations on both architectures and figured out that
current workload analysis approaches are not sufficient. The
current analysis approaches cannot analyze workloads for
both architectures sufficiently because we proposed that work-
load analysis should analyze workloads based on operations
instead of entire queries. We argued that this approach
can satisfy the necessity to evaluate performance of systems
across different architectures.

Our study with ICE and MySQL shows that column stores
cannot outperform row stores for every workload even ICE is
implemented for DWH applications and vice versa MySQL
is not. Hence, we confirm our assumption that there are ap-
plication fields for column and row stores within the DWH
domain. Thus, a framework for the selection of optimal ar-
chitecture is necessary. Our study shows the necessity to
adopt current approaches for more significant performance
estimations. Finally, we discuss the impact of certain oper-
ations on the overall performance of a query.
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