
Logic for Modeling Product Structure

Henson Graves

Lockheed Martin Aeronautics Company

Fort Worth Texas, USA
henson.graves@lmco.com

Abstract. A fragment of type theory with OWL class constructions for types
and binary properties is used to formalize SysML Structural Block Diagram
models. A structural SysML block diagram model is a model that does not have
behavior in the sense that values of properties do not change. A structural
model may include properties, variables and operations. Individuals are a
special case of operators with no arguments. Type theory is chosen as the
target semantic formalism as SysML constructions correspond closely to type
theory term constructions. The type theoretic semantics defined in terms of
introduction and elimination fits well with the informal SysML semantics. An
abstract version of a structural model, called an Abstract Block Diagram
(ABD), is introduced. An ABD is a theory closed under specific type, property,
and operator constructions with additional axioms. The ABD corresponding to
the SysML model contains axioms in the form of equations for types, and
properties, and operators. This formalism captures the syntactic constructons
of the SysML models and the type theoretic semantics appears to be in accord
with the informal semantics, as documented in the OMG specification. ABD
theory gives an explicit mechanism for introducing instances for types defined
by property restrictions. This construction is useful for parts decompositions.
ABD theory constructions have a limited kind of property union used to
construct parts decompositions. An ABD determines a Description Logic (DL)
closed under union, intersection, and existential type constructions and
property constructions restricted by typing relations. The ABD constructions
are useful in identifying potential extensions for SysML and may be useful, as
well, for adding operator terms to Description Logic.

Keywords: Description Logic, Ontology, OWL, Product Model, SysML, Type
Theory, UML.

1 Introduction

The systems engineering language SysML [3] is a natural starting point for
developing a formal logic for product modeling. SysML is sufficiently expressive to
represent complex product structure such as occurs in aircraft and automobiles [4],
has a graphical syntax, engineers can use it, and it has good commercial tool support.
There is no other language in this category. The SysML graphical syntax uses several
kinds of diagrams which are all views of a single SysML model. Providing SysML

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

486

with a formal semantics allows engineers to work with the tools they use today and
apply formal reasoning to the results.

A fragment of type theory with OWL class constructions for types and binary
properties is used to formalize SysML Structural Block Diagram models. A structural
SysML block diagram model is a model that does not have behavior in the sense that
values of variables do not change. A structural model may include variables and
operations. Type theory is chosen as the target semantic formalism as SysML
constructions correspond closely to type theory term constructions. The semantics of
a type theory, presented in terms of introduction and elimination rules, is close to the
informal semantics of SysML. An abstract version of a structural model, called an
Abstract Block Diagram (ABD), is introduced. An ABD is a theory closed under
specific type, property, and operator constructions with additional axioms. The ABD
corresponding to the SysML model contains axioms defined in terms of equations for
type, and properties, and operators.

The constructions in an ABD are needed for modeling product structural properties
such as parts decompositions and (horizontal) relationships between product
components. In an ABD each property P is typed with a domain and range type.
ABD properties are closed under composition, inverse, restriction, and union,
provided the typing conditions are met. The use of typed properties enables an
exposition of typed “parts” properties [19,20,21]. The type theory semantics provides
an explication and semantics for the "dot" notation to provide a fully qualified name
for a part whose existence is guaranteed by an existential restriction. For example for
a typed property P(A,B) and an individual a:A, the ABD contains a term a.P which
has type B. Operators while not fully exploited in static models are never the less
useful in that they allow value properties to be defined on a type algebraically. For
example, the weight can be define as the sum as the weight of the product’s
components.

OWL2 [16] has been used as a formalism for capturing the structural part of a
block diagram model [8,9,10]. The correspondence between SysML and OWL
constructions is well known [16]. While SysML does not have all of the type
constructions found in OWL2, these constructions are needed to capture the semantics
of a SysML model. SysML properties are typed with a domain and range types; they
can be represented as OWL2 properties with axioms which express that the domain
and range properties. Information regarding subtype and equality relations between
types implicit in SysML models is translated into OWL2 axioms [10]. A structural
SysML model without operators and variables can be translated into an OWL KB in a
semantics preserving way. However, operators are not included in OWL2. The
translation into OWL KB requires explicit axioms for the domain and range classes
for each property in the SysML model.

However, a type theory with type constructions closely modeled on OWL2 class
constructions and typed property constructions provides SysML with semantics which
is not currently supplied by OWL2. The ABD formalism simplifies the
characterization of those SysML models which represent structural SysML models.
ABD constructions include typed operators and variables as they are used in SysML.
The ABD formalism suggests possible extensions for SysML block diagram models
and a method for adding operators with variables to Description Logics.

Henson Graves. 487

2 Abstract Block Diagrams

An Abstract Block Diagram (ABD) consists of a finite set of basic type, property, and
operator symbols with constructions for each kind of term. Property and operator
terms symbols have type signatures. The syntax of an ABD theory is characterized by
a recursive definition, in which the constructors that can be used to form terms are
stated. The ABD types are closed under intersection, union, finite enumeration types,
existential restriction, and have type constants for top and bottom types. A property
symbol P has a type signature P(A, B) where A and B are types. The ABD properties
are closed under property composition, inverse, restriction, and union, provided the
typing conditions are met. An operator symbol has a signature f(A1,…,An):B where
A1,…,An, B are types; operators may have variables are closed under composition,
and variable substitution. Types are closed under products. An operator f() with no
arguments is identified with an individual. Constructors for forming products, tuples
and case properties are used.

Type, property, and operator terms have rules for determining which equations are
valid. The operator and property terms are recursively constructed the signature using
term constructors introduced below. Formulas within an ABD theory are constructed
from equation, subtype, subproperty, and operator type relations. An ABD may have
as axioms equations and typing assertions.

Each inference rule is depicted as a fraction; the inputs to the rule are listed in the
numerator, and the output in the denominator. The inputs to the rules may be terms or
other theorems. Inference rules state that equality between terms and types is reflexive
and transitive. Rules of inference allow one to substitute new terms for the free
variables in a theorem and allow one to substitute new types for the type variables in a
theorem. The inference rules provide mechanisms for defining new constants and new
types. The usual presentation of introduction rules within logic uses a line to separate
an antecedent condition above a line and the term introduced below the line. In the
following A, B, C, and D are types and P, Q, and R are properties, and lower case letters are
operators.

2.1 Type constructions

ABD types and individuals have a tuple construction. For any types A1,…,An and
any individuals a1,…,an with ai: Ai, the expression (A1,…,An) is a type and
(a1,…an) is an individual with (a1,…an):(A1,…An). We write proji for the projection
constructors defined for products which project an individual t with t:(A1,…An) onto
the ith coordinate. ABD types have a finite union construction with case constructors.
ABD types are closed under finite enumeration types which will be written as {a1,…,
an} including integers. For a finite sequence of types A1,…An, the expression
Union(Ai,0,..n) is a type. We write case for the properties which have typing
case(Union(Ai,0,..n), {0,…,n}). For a property P with P(A,B) and C subtype B, then
(P some C) is a type with (P some C)(A,C). The rules for existential types and
numeric restriction types are accompanied by an individual introduction rule which
uses a “dot” notation. The expression a.P is an individual with a.P:C. ABD provides a
“dot” notation and semantics for ``fully qualified names”. The “dot” constructor is

488 Logic for Modeling Product Structure

used to introduce terms dependent on an individual. When P(A,B) the abbreviation (P
exactly 1) is used for (P exactly 1 A). The inference rule for (P exactly 1) introduces
for an individual a with a:A an individual a.P1. Similarly the notation a.Pk is used for
(P exactly k).

Inference Rules

Thing a: A

a : Thing

NoThing a: NoThing

a: A

Enumeration a1:A, …,an:A

{a1,…an} Subtype A,ai:

b:{a1,…an}

b = ai:A, for some i

A and B a:A, a:B

a: (A and B)

a: (A and B)

a:A, a:B

A Subtype B is
defined as

(A and B) = A

Union(Ai, 0,…n) a: A

a: Union(Ai, 1,…n)

a: Union(Ai, 1,…n),
 <a,i>: case, for some i

a: Ai

case

case:(Union(Ai,1,…n), {0,…,n})

tuple t:(A1,…,An)

Proji(t):Ai, t = (proj1(t),…,projn(t)

a1 :A1,...,an:An

(a1,…,an):(A1,…,An)

P some C P(A,B) C subtype B,
a:A, c:C, (a,b):P

a:(P some C)

P(A,B) C subtype B,
a:(P some C)

a.P1:B, (a, a.P1):P

P exactly k C P(A,B) C subtype B,
a:A, c:C, (a, c):P

a:(P exactly k C)

P(A,B) C subtype B,
a:(P exactly k)

a.Pk:B, (a, a.P):P

A disjoint B
is defined as

A intersection B = NoThing

2.2 Property constructions

ABD properties are closed under composition, inverse, restriction, and union,
provided the typing conditions are met. Properties are used to represent parts
properties as well as properties such as the property that an engine in a vehicle drives
the front wheels of the vehicle that the engine is part of.

Henson Graves. 489

Property Instances t:P(A,B)
--
first(t):A and second(t):B,
t = (first(t),second(t)):P.

Composition P(A,B), Q(B,C)

QoP(A,C)

(a,b):P, (b,c):Q

 (a,c): QoP

Inverse t:P(A,B)

(second(t),first(t)):P*

Intersection

P(A,B), Q(C,D)

(P and Q)(A and C, B and D)

(a,b):P and (a,b):Q

(a,b):(P and Q)

subproperty is
defined as

(P and Q) = P

Property
Restriction

P(A,B), A1 sub A, B1 sub B

 P|A1,B1(A1,B1)

t:P, first(t):Ai, second(t):Bi

t :P|A1,B1 and conversely

Property Union Pi(A,Bi), i:{0,…n}

 Union(Pi)(A,Union(Bi), i:{0,…n})

t:Pi

t: Union(Pi, i:{0,…n})

Note that any ABD type defined by restriction properties which are unions or
restriction properties does not introduce any new types. For example, consider a
restriction class (P some C) where P = Union(P1,P2) is a union property. Then

 a:Union(P1,P2) some C

and
 a: (P1 some C) or a:(P2 some C)

so
 a: (P1 some C) union (P2 some C).

2.3 Parts decomposition structure

The informal concept of a parts decomposition structure is made precise using a
collection of typed properties called a decomposition structure. In the informal
concept a decomposition structure of a product is specified by a product design. The
design specifies a root class in a parts decomposition and what parts are necessary to
have a product. In this concept specific part instances may be replaced by other
instances of the required type. An individual instance of the root type has a parts
decomposition which determines the type of specific parts and may determine the
number of parts provided the parts properties specify exact cardinality. The existence
of an instance of the root depends on the existence of the parts in its decomposition.
However, individual parts may be replaced, and so extensionality does not in general
hold for a parts decomposition. The individuals in a parts decomposition are
irrefliexive and antisymmetric. Product identity is generally defined in terms of a

490 Logic for Modeling Product Structure

unique identification number. The concept of a detailed design is that any two
individuals of root type, i.e., a1:Root, a2:Root have the same parts decomposition.

A parts decomposition structure for an ABD is defined as a family of (typed)
properties P for which the signature S of the ABD and the family P is an irreflexive,
antisymmetric, acyclic, connected graph. The types that occur in the typing of the P in
P are assumed to be disjoint. If P(A,B) is in P there is no P1 in P with P1(A,A) and
no P1(B,A). Since there is exactly one P(A,B) for each pair of types A and B in the
signature of the ABD, we can, by abuse of notation, use the same symbol for each P
in the family P . If the S and P form a tree with root V, then the ABD is called a
design. The concept of parts decomposition structures can be used to characterize the
ABD theories which describe designs in the sense that they have a well defined parts
decomposition. An ABD may have multiple parts decomposition structures. We use a
decimal index notation P(i…j) for these compositions obtained by starting at the root.
For a design ABD with a parts decomposition S and P we add the axioms that

 Root Subtype (P(1) some B) and (P(1.1) some C1) and ….

A number of questions about parts decompositions while not expressible within an
ABD theory can be answered regarding a parts decomposition structure. For a design
ABD with root V the parts for a design instance v of V are represented as an
enumeration class

{v, v.P(1),…,v.P(i….j),…}

where the P(i….j) are the compositions of are properties in the parts decomposition
structure with V as the root. The parts decomposition is a tree, the cardinality of the
enumeration set is the number of parts in an implementation. Since each part has a
typing, the number of distinct types used by the decomposition can be determined as
can the number of occurrences of a given type. For an arbitrary property the
collection of individuals reachable from a given individual can be determined. A
detailed design is a design ABD which does not use any subclass axioms between the
basic types and all of the parts properties have an exact numeric restriction. All of the
parts decompositions for a detailed design have the same graph structure.

The union construction can be used to define the property which is the union of
composition of parts properties within a parts decomposition whose starting point is
the root. Two parts decompositions of a root can be made disjoint by adding an axiom
that insures that if an individual is in two decompositions then the instances of the
root are equal. The restriction construction can be used to start with a property such as
Drives within a vehicle ABD and define restrictions such as Drives|Vehicle,Engine.
For example, a vehicle ABD may want to represent a drive property for an engine that
represents both driving wheels and driving a generator. Both drivesFrontWheel and
hasFrontWheel are subproperties of Drive.

Henson Graves. 491

2.4 Variables and Operators

Having operators and variables is useful even in the absence of an ABD having
behavior is useful. It enables a type to describe that its instances have properties such
as weight without having to bind the variables. The model theoretic semantics of an
operator term with variables is defined is defined as a function defined on product
domains. An operator symbol f has a type signature f(A1,…,An):B where A1,…,An,
B are types. An operator symbol a():B is written a:B. Operator terms are constructed
using the constructions in the table below.

Operator
Expression
Constructions

Syntax

hasOperator hasOperator(A,B) Parts property structure used to
introduce operators and associate them
with an individual

hasVariable hasVariable(A,B) Parts property structure used to
introduce variables and associate them
with an individual

Variable
declaration

x1: C1,…xn : Cn The symbols x1,…xn are variables and
xi is said to have type Ci

Operator
Declaration

f(x1: C1,…xn : Cn):B The symbols x1,…xn are variables and
xi is said to have type Ci

Composition f(g1,…,gn) Where f has arity n
Substitution t[t1/x1,…,tn/xn] Replaces distinct variables with

operator expressions
Tuple (t1,…,tn) Where t1,…tn are operator expressions

In an ABD theory variables (SysML value properties) and operators are all

introduced using the same dot construction as is used for parts properties. An operator
is always declared as belonging to an individual a. The association of variables to an
individual provides a state description for the individual. For example, the state of a
vehicle, v1, is a list of attributes (variables) of v1 and of its components. The value of
the vehicle state is a substitution or binding of values to variables. Substitution of
values for variables provides the foundation for the concept of ``evaluating” the state
of an individual. Usual rules for substitution of variables by terms, equality, and
typing statement hold. We will write a.x for the term a.hasVariable1. For two
instances a1 and a2 of A, note that a.x and a2.x are distinct variables. The sequence
(x1, x2, f1,f2) of parts of an instance a of A is represented by

 (a.x, a.y, a.f)

which is equivalent to

a.(x:X, y:Y, f(x:X):Y)

using the rules for tuples.

492 Logic for Modeling Product Structure

4 The correspondence between an ABD and a SysML Block
Diagram

The graphical syntax of a SysML block diagram model identifies a collection of basic
symbols sorted into types, properties, and operations, called the signature of the block
diagram. The graphical representation of a SysML block diagram model uses
rectangles for blocks (types). A directed line between P between two blocks, A and B
is a property with domain A and range B. SysML uses properties to represent
connections between blocks. A SysML structural model can be used to construct an
ABD. The ABD starts from the signature of types, properties, and operators in the
structural model. SysML employs several “parts” properties that satisfy the
properties of a parts structure as defined above.

vehicle
«block»

itsEngine:Engine1

itsFuelSystem:FuelSystem1

itsPump:Pump1

pumpPort:

itsTank_1:Tank1

pumpPort:
fuelPort:

itsTank_2:Tank1

pumpPort:

fuelPort:

Vehicle::vehicle.has:Frame1

Fig. 1 The Internal Block Diagram illustrates a simplified specification for a Vehicle. The
diagram uses blocks: Vehicle, Engine, Frame, FuelSystem, Pump, Tank, and properties
itsEngine, itsFrame, itsFuelSystem, itsPump, itsTank1, and itsTank2. This diagram also has
flowports with associations between them. The ports are distinct parts of the blocks that they
are attached to. The diagram specifies that a vehicle has exactly 1 FuelSystem and a
FuelFsystem has exactly two tanks. The tanks are connected through ports with a specific
connection. The itsTank1 and itsTank2 are properties that specify that the fuel system has two
tanks.

In an internal block diagram, such as Figure 1, the number and kind of parts of a
block are described by the parts decomposition structure. itsFuelSystem is one of the
part properties in this structure. The range type of itsFuelsystem is the type
Fuelsystem, and the number of instances that satisfy itsFuelsystem for a vehicle
instance is 1. Multiple occurrences of a rectangle with a given block are used to
specify multiple occurrences for a part of an individual instance of the enclosing
block. In Figure 1 the block containment relationships are defined using part
properties. In the header of a block on the diagram such as itsEngine:Engine,
itsEngine is a property with domain Vehicle and range Engine.

The semantics of the vehicle system block diagram model is defined in terms of its
parts and their connections. The informal notion of a vehicle implementation is a parts
decomposition and a description of how the parts fit together. In Figure 1 a vehicle

Henson Graves. 493

instance v has a parts decomposition consisting of an engine, a frame, a fuel system,
where the fuel system has three parts.

If a SysML structural model has an arrow P connecting A to B then the ABD has a
property P(A,B) with a numeric restriction k. While SysML does not have a
restriction type construction the ABD restriction constructions is used to capture the
meaning of the property within the context of a SysML model. The meaning of a
block diagram arrow P drawn from A to B with a restriction of 1 on B is that any
instance of A has only one P connection to B. this can be represented using the axiom

 A SubType (P exactly 1)

In this approach block diagrams translate directly into subtype relations. The axiom
that A is a subtype of the restriction (P exactly k) captures the meaning that for any a:
A then there are k instances of B implied by the property with (a,bi):P, for i:{1,..,k}.
The restriction construction can be used to represent user defined relations. The
explicit interpretation of ABD type and properties captures the informal, semantics of
a SysML structural block diagram model.

5 The Correspondence between an ABD, Description Logics, and
axiomatizations of higher order logic in FOL

ABD type constructions correspond directly to DL constructions while not all DL
class constructions are used. The property constructions contain standard DL
property constructions which are restricted by property typing rules. However, the
use of ABD property construction in defining types does not add any new types to the
DL. As with Description Logics in general not all of the constructions are logical
constructions in FOL. Some constructors are related to logical constructors in first-
order logic (FOL) such as intersection or conjunction of concepts, union or
disjunction of concepts, negation or complement of concepts, universal restriction and
existential restriction. Other constructors have no corresponding construction in FOL
including restrictions on roles for example, inverse, transitivity and functionality.
However, the full set of constructions can be axiomatized within a multi-sorted FOL
where the sorts are type of the ABD theory. The FOL axiomatization of ABD is
similar to a FOL axiomatization of Cartesian closed category.

For each type A and each Property P of the ABD the FOL generated by the ABD
contains a unary predicate and a binary predicate. By abuse of notation we use the
same symbol for both the type and predicate. The context of use will make the usage
clear.

A For any a. A(a)
P For any a,b. P(a,b)
a:A There exists x. A(x)
a:(A and B) (A(a) and B(a))
A = B For any a. A(a) implies B(a) and for any a. B(a) implies A(a)
a:(P exactly 1) For any a. there exists a unique b with P(a.b) and B(b)
t:P(A,B) P(first(t),second(t)) and A(first(t)) and B(second(t))

494 Logic for Modeling Product Structure

In the correspondence all judgments derivable from the ABD axioms are provable

in the generated FOL theory. Conversely, any theorem provable in the FOL using the
logical axioms is a derivable judgment in the ABD. However, the ABD theory
provides an explicit term constructions for restriction types rather than just an
existence statements. A model for an ABD is defined in the same way as a model for
the FOL theory using the axioms for the term constructions. Any non-empty model
of a design ABD will contain an implementation of the root in the sense that any
model will contain a parts decomposition of the root.

6 Conclusions

The ABD term constructions represent constructions needed for structural modeling
of products. These constructions are used within SysML block diagrams. An ABD is
an abstraction of SysML structural block diagrams. An ABD can be generated from
the signature of the SysML model. ABD has both a type theoretic semantics defined
in terms of the inference rules that appear to be in accord with the informal SysML
semantics. A model theoretic semantics can be defined as well. The importance of
establishing a logical formalism for SysML is that the reasoning required in
engineering tasks for design and analysis can be formalized. Automated reasoning
techniques can be employed or at least arguments can be automatically checked. The
translation of a restricted SysML Block Diagram model into an ABD which preserves
the intended semantics is a first step toward integrating product development with
formal reasoning. The result provides a formal semantics for a fragment of SysML.
Conversely, SysML graphical syntax can be used to develop ABDs.

ABDs can be used to represent parts and connectivity structure. An ABD with a
root class under a part decomposition structure has a parts decomposition graph. The
parts decomposition structure does not depend on restricting the models as is done in
the Description Graph extension to OWL2. An ABD can be used to answer questions
such as what parts two designs have in common, and what kinds of transformations
and parts replacements to an implementation produce a valid implementation. For
product development one would like to characterize ABDs (SysML models) all of
whose models have some predetermined similarities. The realization of these goals
requires a much richer logical system than has been presented here. However, in
order to assess the impact of changing a part in a design on the properties of the
design, one needs to be able to define value properties using variables which are
recomputed as the value of the variables change. For example, one wants to define the
total weight of a product as the sum of the weights of its components and have the
total weight change as the parts are changed. An extended version of the type theory
presented is a candidate formalism for SysML. Further, an ABD can be viewed as a
DL which is sufficient for representing product structure. The next step in the
development of the ABD formalism is to add behavior in the form of state charts.

Henson Graves. 495

References

1. Bock, C., UML Composition Model, Journal of Object Technology, vol. 3, no.
10, November-December 2004, pp 47-73.

2. Barendregt, H., Handbook of Logic in Computer Science, volume 2, Oxford
University Press, 1992.

3. Friedenthal, S., Moore, A., and Steiner. F., OMG Systems Modeling Language
(OMG SysML™) Tutorial, INCOSE Intl. Symp, 2006.

4. Graves, H., Guest, S., Vermette, J., and Bijan, Y., Air Vehicle Model-Based
Design and Simulation Pilot, Spring 2009 Simulation Interoperability Workshop
(SIW)

5. Graves, H. Design refinement and requirements satisfaction, Proceedings of 9th
NASA-ESA Workshop on Product Data Exchange, 2007.

6. Graves, H., Ontology engineering for product development, Proceedings of the
Third OWL Experiences and Directions Workshop, 2007. Available at
www.webont.org/owled/2007/PapersPDF/submission_3.pdf

7. Graves, H., Horrocks, I., Application of OWL 1.1 to Systems Engineering, OWL
Experiences and Directions April Workshop, 2008.

8. Graves, H., Representing Product Designs Using a Description Graph Extension
to OWL 2. OWL Experiences and Directions October Workshop, 2008.

9. Graves, H., Leal, D., Using OWL 2 For Product Modeling, Proceedings of 11th
NASA-ESA Workshop on Product Data Exchange, 2009.

10. Graves, H. Integrating SysML and OWL. OWL Experiences and Directions
October Workshop, 2009.

11. Haley, T., Friedenthal, S., Assessing the application of SysML to systems of
systems simulations, Proceedings of the Spring Simulation Interoperability
Workshop, September, 2008.

12. Harrison, J. Formal Verification at In tel, presentation June 2002.
13. Howard, W., To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism. Academic Press, 1980.
14. Martin-Lof, P., constructive mathematics and computer programming. Logic,

Methodology and Philosophy of Science, 1982.
15. OMG Systems Modeling Language (OMG SysML™), V1.1, November 2008.
16. OMG Formal Ontology Definition Metamodel
17. OWL 2 Web Ontology Language, W3C Working Draft 11 June 2009.
18. Sattler, U., A concept language for an engineering application with part-whole

relations. Proceedings of the International Workshop on Description Logics,
1995.

19. Artale, A., Franconi, E., Guarino, N., Pazzi, L., Part-Whole Relations in Object-
Centered Systems: An Overview, Data and Knowledge Engineering 20, North-
Holland, Elsevier, 1996.

20. Barbier, F., Henderson-Sellers, B., Parc-Lacayrelle, A., Bruel, J., Formalization
of the Whole-Part Relationship in the Unified Modeling Language, IEEE
Transactions on Software Engineering, Vol. 29. No. 5, May 2003.

496 Logic for Modeling Product Structure

