Tracking Evolution in Model-based Product Lines

Wolfgang Heider Rick Rabiser
Christian Doppler Laboratory for

Deepak Dramag Paul Grinbacher
Automated Softwamgineering

Johannes Kepler University
Linz, Austria
{heider | rabiser | dhungana | gruenbacher}@asatjku

Abstract— Software product lines are complex and need to be
maintained and evolved over many years. New custome
requirements, new products derived, technology chayes, and
internal enhancements lead to continuous changes thfe artifacts
and models constituting a product line. Managing sth changes
therefore becomes a key issue during a product lireeevolution.
We propose an approach that supports multi-level maitoring of
product line artifacts and models and continuous tacking of
changes. We present tool support for evolution tradng in
Eclipse workspaces and illustrate our approach withexamples
from DOPLER, an existing Eclipse-based product line
environment.

Keywords-product line engineering; evolution; change tracking

. INTRODUCTION

Product lines are typically used for many years anel
inevitably subject to continuous evolution. Managithe
evolution is success-critical for any product liagproach as
engineers need to deal with changes and extensmrike
product line’s assets and the derived products Fdature
models [2], decision models [3], extended UML [df, aspect
oriented approaches [5] are typically applied téngeproduct
lines. Managing the evolution of models therefoeedmes a
major concern.

In particular, our research interest is on (i) nanmg and
tracking changes to models and product line attfaend
(ii) establishing traceability between diverse pred line
artifacts such as product-specific requirementsangk
requests, or bug reports. Numerous research ppastand
commercial tools are available to support the @eatnd
utilization of product line models, e.g., [6, 7]owWever, they
provide only limited support for dealing with praduline
evolution.

A generic approach for tracking the evolution of
heterogeneous artifacts and models is still noflabla. For
instance, existing approaches and tools lack supfmr
managing the evolution of product line models atltiple
levels of granularity and for managing interdeperites
between different product line artifacts. This bees
particularly critical in a multi-team environment $everal
application engineering projects are conductedaialfel. This

can mean that multiple products are derived copatly from
different releases of a product line.

In this paper we propose an approach for evolutacking
which is based on a generic meta-model. The apbrasac
supported by our tool EvoKing. We demonstrate the
capabilities of EvoKing using an example of itsemgation
with the DOPLER product line approach and tools [8]

II. A META-MODEL FORTRACKING PRODUCTLINE

EVOLUTION

Many software tools support change tracking atfifleeor
code level. For instance, version control systemd éle
system journaling mechanisms allow keeping trackhainges
to artifacts at the file level. Development enviments make
use of these tools to support change-trackingeatte level.
However, tracking changes at this level is tedi@igporting
evolution requires change-tracking at a higher lleeé
granularity and abstraction. It is also importamtunderstand
the dependencies between changes. Furthermoregeshan
tracking needs to cover various types of artifastich as
models, model elements, or structured documents.

From a bird’'s eye view, tracking evolution is about
understanding the changes that are made to diffaréfacts of
interest and establishing traceability between ahesifacts
based on dependencies between changes. The evshts a
conditions that lead to a certain change are usuaf
interesting as the change itself. We have devisegkrgeric
meta-model for tracking evolution, which comprisetfacts,
events, and relations (cf. Fig. 1).

An artifact is an element which needs to be monitored to
track and manage its evolution. Examples of prodin
artifacts are meta-models, models, model elemesutigition
space elements (e.g., reusable code assets), myechaquests
(e.q., requirements captured during application
engineering9]). In a product line environment, these artifact
are typically managed in files or parts of filekieThature of the
artifacts is domain-specific and cannot be germzdli Our
evolution meta-model (the top layer in Fig. 1) thiges not
specify concrete artifacts such as feature modelsfiguration
files, or component descriptions. Instead we uskyared
approach: the generic meta-model defines the lasiments
that are then refined to specific domains and telciyies using

custom artifacts. Fig. 1 (middle and bottom layshows
examples of artifacts at multiple levels of abdioay i.e., in
Eclipse-based tools and in product line engineefivgnts and
relations are created and resolved by implementiagiefined
custom artifacts (cf. Section 3).

————————

1 1 !
Event NE

Artifact -name Relation
obioct -description
Je -timestamp
-attributes .
-relatedArtifacts
AN

-name

Evolution Artifacts in Eclipse

l |

File Project
-extension -type

JAN

Evolution Artifacts in PLE

[\

Variability Model | |Derivation Model

PL Meta-Model Requirement

Figure 1. Evolution meta-model for tracking evolution and exdes of
custom artifacts for product line engineering adi§ in Eclipse.

product line meta-model. Since multiple variability
models and meta-models can be stored in a workspace
it is necessary to establish traceability to easelyct
line evolution.

* Model to model elementA model consists of an
arbitrary number of modeling elements.

* Model element to modeA model element can be
related to different other models. For examplea if
requirement is captured in a derivation mddél or a
requirements document during application engingerin
it is useful to also establish a trace link frone th
requirement to the variability model that must be
evolved to address the new requirement.

* Model element to model elemeiodel elements are
typically related to other model elements. Foransg,
a newly captured requirement can directly refer to
existing model elements like features, decisions, o
assets in a product line model.

lll. EVOKING: TOOL-SUPPORT FORTRACKING EVOLUTION

IN ECLIPSEWORKSPACES

Our approach for tracking and managing evolution of
product lines is supported by our Eclipse-basetl EvoKing.
We intentionally didnot use Eclipse libraries to implement the
evolution meta-model to keep the core of our apghoa
independent from Eclipse. We describe the refinemérour

An event causes one or more changes to artifacts. Thgeneric evolution meta-model and the extensionseveloped

generic evolution meta-model allows defining aebijrevents
for the specified artifacts. Events relevant in duct line
engineering can typically be derived from existprgduct line
process models and workflows. For example, thetiaddof a
new variation point to a variability model constits an event
that creates a new version of this model. Eventshtavever
also be defined at a much higher level of abstact.g., if a
user decides to derive a product using an existarability
model, a new application engineering project wal created,
that is e.g., stored in a new model that needs todzked.

to support tracking of artifact changes in Eclipse.

A. Refining the Meta-model for Eclipse

The artifacts tracked by EvoKing are Eclipse workspace
entities like I Fil e, | Project or | Wrkbench. They are
defined in a refined evolution meta-model as shawkig. 1.
Users configure EvoKing for an Eclipse-based maodgeli
environment by specifying the artifacts of interasta higher
level of abstraction (the lower level implementatietails like
| Proj ect orlFil e are transparent to the user). For example,

A relation between artifacts is established by an evenhsers Specify the types of Edipse projects theana be

tracked for specific artifacts. It describes hoedh artifacts are
related with each other. Such links can be strattur
temporal in nature. Structural relations betweetifaats
describe how the artifacts are organized, e.g.o@ehmight be
part of another model or a component might be desdby a
certain document. Temporal relationships are cdeateertain
times during the artifact life-cycle to track theawolution
history, e.g., a derivation model is created befoygroduct is
derived based on a variability model.

When refining our evolution meta-model to a paftcu
product line development environment, users defiifierent
types of trace links as relations. Examples ofti@la (not
shown in Fig. 1) between product line elements are:

» Project to modelA specific model (stored for example
in a file) becomes part of a project and is marfard
change tracking after its creation.

* Model to modelA model is related to another model.
For instance, a variability model is based on aager

tracked (e.g., “Java Project” or “Product Line Radf) or the
file types (e.g., “Java source files” or “XY Mod8ls

Low-level eventsfired by the Eclipse framework (e.g., file
change notifications) are automatically capturedBypKing.
EvoKing complements the existing notification maukens of
Eclipse by adding an explicit meaning to events. é&@ample,
users can define in the evolution meta-model tHagngver a
new file of type “feature configuration” is added the
workspace, this shall be interpreted as the stpproduct
derivation and a relation to a feature model shddccreated
(see Section 4). This wayralation from a derivation project
(i.e., stored in a feature configuration file) tovariability
model (i.e., stored in a feature model file) isabEshed.

B. Tool Architecture

EvoKing works as a consumer and recipient of event
notifications coming from Eclipse or other custonzermt
providers (cf. Fig. 3). Based on the incoming esemtd the

[£(Problems | @ Javadoc | [, Declaration | g EvoKing Evolution View & & Progress
Modified

Variability model changed to kybyytdy

m

Attribute (id) from requirement (PL Req. Management) changed from 4735cc0b to PL Req. Management |

SVM Revision: 5908, Status: normal
A valid referenced variability model was found. Timestamp is set to last modification of gen file.

SVM Revision: 5908, Status: normal
Corresponding meta model for var model: Timestamp is set to last modification of var file.

Artifact User Details
+ [/Models/DOPLER/DOPLERFS.var 03.06.0912:28 wh wvar
4§z /Models/DOPLER/DOPLERFS.gen 03.06.0912:28 wh gen
= changed 03.06.0912:28 wh Revision: 5908, Status: modified
=+ Var.Model changed 03.06.0912:28 wh
= changed 29.05.0911:33 wh Revision: 5908, Status: modified
4 [Requ. added 29,05.0911:32 wh Requirement 4795cclb added
a =7 PL Reg. Management 29.05.08 11:32 Requirernent
= id changed 29.,05.0811:32
{z¢ from Deriv.Model 29.05.0911:32 wh Requirement 4795cclb added
=% Role added 2905.0811:32 wh Role Role_fibbGaaf added
=b SVN status 250908 14:30 rr
4 @ uses 25.09.0814:30 rr
4 [B: /Models/DOPLER/DOPLERFS.var 03.06.0912:28 wh wvar
=% changed 03.06.0912:28 wh Revisicn: 5908, Status: normal
= SVN status 250008 14:30 rr
4 [&, uses 25.09.0814:30 T
b [&, /Models/DOPLER/DOPLER.meta 25.03.0911:07 7 meta
oy used for 2509.0814:30

A valid referenced variability model was found. Timestamp is set to last modification of gen file. -

Figure 2. EvoKing Evolution View showing the chardstory of a DOPLER derivation model (.gen file)daa related requirement, variability model (.var
file) and meta-model (.meta file).

defined artifacts, new events with more detailefbrimation

Custom event providers for models can send specific

regarding context and semantics can be generatadh S events to EvoKing. For example, if listeners haveerb
evolution eventare then stored for each artifact and can bémplemented for a certain model type, they caniensled to

browsed using the EvoKing evolution view (cf. F&). Other
tools implementing a specific interface can alsodggstered as
an observer to retrieve evolution events if theyphwio be
informed about changes and their meaning.

EvoKing supports the user in further refining thvelation
meta-model. This includes support for the modelexdd code
for resolving relations, to interpret events froralifse for
specific models, and to enrich change events withtext-
specific, semantic information. Product line engiise can
thereby customize EvoKing to support evolution iitaary
Eclipse-based product line environments.

. Evolution
Eclipse - °) . View
T/Change\vr = EvoKing ° T/Evolutiow
Custom [.Events o & [~ Bvents 5 Gther
Event ____ _ | use tools

Providers | observe T) G B S ¢

Refined Meta-
Model for Eclipse

Relations

Figure 3. EvoKing's event architecture.

EvoKing recognizes change events based on infoomati
from two sources:

Eclipse resource change eventsuchasfile added or

file changed and their sources are analyzed. EvoKing for

example parses files representing models so thiarned
changes to models can be recognized using existiadel
APIs. Such changes are then mapped to artifactsemadts
defined in a refined evolution meta-model (seeiSeat).

explicitly fire change natifications. EvoKing iseh registered
as a listener for these models and can track ckargjag made
to a model internally (e.g., model elements beimgleal,
deleted, or changed). Notifications are automdyical
transformed tcevol uti on events according to the artifact
and event definitions found in the evolution metadel
refined for a particular environment (cf. Sectign 4

The EvoKing evolution view depicted in Fig. 2 shoals
tracked artifacts of a project currently openecEniipse. The
hierarchically organized representation of depeaoidsn to
other artifacts and all corresponding events allawsrs to
quickly get an overview of the changes that havenbe
occurring. Users can display details of a speeiftifact at any
time by expanding the tree, browsing through edemails and
related artifacts, and open editors for the elemém artifacts
represent.

IV. EXAMPLE APPLICATION OFEVOKING:
EvOLUTION MANAGEMENT IN DOPLER

Our testbed for EvoKing is the DOPLER product line
engineering approach and tool suite [8]. We havenbe
developing DOPLER in ongoing research collaboratigth
industry. The model-based, decision-oriented amroa
supports variability modeling and product derivati@and
provides tool support for creating, using, and ngamgdiverse
types of product line artifacts and models.

The product line artifacts (cf. Fig. 4) in DOPLERea
product line meta-models, variability models, dation
models, and diverse model elements (e.g., assatisichs, and
product-specific requirements). The relevant depeoiks
between these artifacts are as follows: A varigbiinodel
(.var file in Eclipse) uses a particular meta-modelk(ta file);

a derivation model.@gen file) is based on a specific variability

/ User Actions \ 6ontent of ,,Refined Evolution Meta-Model“ for DOPLER\

. Notifications ' Elements || Artifacts ¥ Relations Events
o e ' @sanotooman |
: N » .meta : PL Meta- . 7 Engineering :
: : : File i Model @ : :
Do Create 1 5 uses)€—i— Variability 3
DR File /i : T odeling—y Asset
c 2 var : Variabilty o Decision :
-0 Ammmme- P> changed :
o File ; Model @ : 3
: : Change : : 3
: : File : based on)<« Derivation Decision -
: : : — . Project taken
: : : .| -gen ; Derivation T % started
: : File . Model % : @
eee :. from 4 Requirement 3
: : New . _| Requirementin : . - assigned l . 3
H % : Requirement P gen File 2 Requirement : Requirement:
: : : : : : addressed :
PR ® @ : :
HOR . : L 4 : :
e Model-Listener | ey 1 :

:'k :__ Notifications _~ : j \ s .. efc. /
C Affects: ----- > References: &—— Related to: ——> Creates: —»)

Figure 4. EvoKing customized for DOPLER. The léftesshows elements and notifications we see witienworkspace and editors. The right side shows
artifacts, relations and events that represeniefhside enriched with information taken from tledined evolution meta-model for DOPLER.

model; a requirement comes from a particular dégma held with their own evolution history (8) and réteis to their
model. origin (9).

Evolution in DOPLER s for instance triggered byguct- EvoKing allows users to track the evolution of DGR
specific requirements captured during applicateguirements product line meta-models, variability models, dation
engineering. Requirements are captured in the attsivmodel models, and of the elements these models compfike.
representing a particular product derivation prbjec customization of EvoKing to a different (Eclipseskd)
Implementing a requirement typically causes a chanfgthe product line environment would be pretty straightfard as
variability model (and thereby its elements like,,iassets and most Eclipse-based product line environments stawdels in
decisions). files in Eclipse projects and different model eletsesuch as

Fig. 4 shows a simplified overview of how we cusized features or requirements are contained in the reodel

EvoKing for DOPLER. Operations on files defined rasdel

containers (meta, .var, and .gen files) are captured and V. CONCLUSIONS ANDFUTURE WORK

processed in the corresponding artifact implemamst For We presented a tool-supported approach for muléte
instance, for the creation of.aeta file (1) the artifact for the monitoring and tracking of changes to facilitateletion in
contained product line meta-model (2) is creatdds Teads to model-based product line engineering. Based on rerge

an evolution event indicating the start of domainmeta-model for tracking evolution our tool EvoKisgpports
engineering (3). This procedure works similar fohes files evolution management in Eclipse-based product line
and models. Starting variability modeling or stegtia new environments. We illustrated the applicability afr @pproach
derivation project additionally creates trace liidetween (4) by customizing EvoKing for the DOPLER product litol

the product line meta-model or variability modetpectively. suite.

Independent of file changes, DOPLER-specific nadifions , . I .
are processed by the EvoKing artifacts. For insiaribe EvoKing automatically maintains a development histo

DOPLER tool suite notifies EvoKing about model opem Showing what and when was done by whom during
(5)like new model elements (ie., assets, decision development. There are, however, more advancedeusag
requirements) being added. EvoKing st’ores ever,mamjng scenarios for the tool which we plan to explorahia future.

this information (6) or, according to the refinadkition meta- FOr instance, we will use of the refined evolutiogta-model
model, new artifacts, (7) e.g., representing reguénts, are and evolution information tracked by EvoKing to iassisers
' ’ ' ' with their workflow of modeling and creating product line

artifacts. We will also use the relations captusgdEvoKing as
trace links for the purpose afonsistency checkingn and

between product line models and artifacts. Thid hélp to

point out potential update leaks or inconsistenafées changes
to specified artifacts. We plan to improve supgortfurther

development of artifacts and relatiorkhis way, for example,
changes to configuration files, custom service igométions,

and component interface definition files can bekea to ease
maintenance tasks. Finally, the information co#dctby

EvoKing allows deriving product and process metrics
facilitate benchmarking, to monitor development gasses,
and to track variability shifts in product lines.

ACKNOWLEDGMENT

This work has been conducted in cooperation wign®ns
VAl Metals Technologies and has been supported Hey t
Christian Doppler Forschungsgesellschaft, Austria.

REFERENCES

[1] D. Dhungana, T. Neumayer, P. Grinbacher, and RsBalSupporting
Evolution in Model-based Product Line Engineeritigroc. of thel2th
International Software Product Line Conference (S8PL2008)

Limerick, Ireland, IEEE Computer Society, 2008, Bfp9-328.

K. Czarnecki and C. H. P. Kim, "Cardinality-Baseeakure Modeling
and Constraints: A Progress Report, "Proc. of theernational
Workshop on Software Factories at OOPSLA'@&an Diego, USA,
ACM Press, 2005, pp. 1-9.

(2

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(20]

K. Schmid and I. John, "A Customizable ApproachFtdl-Life Cycle
Variability Management,” Journal of the Science of Computer
Programming, Special Issue on Variability Manageteal. 53(3), pp.
259-284, 2004.

H. Gomaa,Designing Software Product Lines with UMAddison-
Wesley, 2005.

M. Voelter and I. Groher, "Product Line Implemerdgatusing Aspect-
Oriented and Model-Driven Software Development,otProf thellth
International Software Product Line Conference (S8P2007) Kyoto,
Japan, IEEE CS, 2007, pp. 233-242.

A. Pasetti and O. Rohlik, "Technical Note on a Ggptidor the xFeature
Tool," P&P Software GmbH / ETH Zurich, PP-TN-XFT@D2005.

C. Krueger, "BigLever software gears and the 3etler SPL

methodology, "Proc. of theConference on Object Oriented
Programming Systems Languages and Applications @@R7)

Montreal, Quebec, Canada, ACM, 2007, pp. 844-845.

D. Dhungana, R. Rabiser, P. Gruinbacher, and T. ldgem"Integrated
tool support for software product line engineeritigroc. of the22nd
IEEE/ACM International Conference on Automated \garfe
Engineering (ASE'O7)Atlanta, Georgia, USA, ACM, 2007, pp. 533-
534.

R. Rabiser and D. Dhungana, "Integrated Support Rwoduct
Configuration and Requirements Engineering in PcbdDerivation,
"Proc. of the33rd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO-SEAA07) lbeck,
Germany, IEEE Computer Society, 2007, pp. 219-228.

R. Rabiser, P. Grunbacher, and D. Dhungana, "StipgoProduct
Derivation by Adapting and Augmenting Variabilityddels, "Proc. of
the 11th International Software Product Line Confere(8®LC 2007)
Kyoto, Japan, IEEE Computer Society, 2007, pp. 130-

