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Abstract. The HeKatE Project aims at providing a complete hierar-
chical design and implementation framework for rules. Principal ideas
of the project include an integrated hierarchical design process covering
stages from conceptual, through logical to physical design. These stages
are supported by speci�c knowledge representation methods: ARD+,
XTT2, and HMR. Practical design and implementation support using
these methods is provided by the HeKatE design environment called
HaDEs. A complete custom rule runtime environment HeaRT is pro-
vided to run XTT2 rule bases. The engine o�ers a number of rule-base
quality analysis plugins.

1 Introduction

Rule-based systems [1] constitute one of the most powerful and most popu-
lar class of intelligent systems. They o�er a relatively easy way of knowledge
encoding and interpretation. Formalization of knowledge within a rule-based
system can be based on mathematical logic or performed on the basis of engi-
neering intuition. Practical design methodologies for intelligent systems remain
a �eld of active development. Developing such a methodology requires an in-
tegration of accurate knowledge representation and processing methods [2], as
well as practical tools supporting them. Some of the important features of such
approaches are: scalable visual design, automatic code generation, support for
existing programming frameworks. At the same time quality issues, as well as a
formalized description of the designed systems should be considered.

In this paper a new rule runtime and design framework is presented. The
HeKatE project (see hekate.ia.agh.edu.pl) aims at providing an integrated
methodology for the design, implementation, and analysis of rule-based sys-
tems [1,3]. An important goal of the project is to allow for an easy integration of
knowledge and software engineering methods, thus providing a Hybrid Knowl-

edge Engineering methodology. The project delivers new knowledge representa-
tion methods and practical tools supporting the design process.
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The main paradigm for rule representation, namely the eXtended Tabular
Trees (XTT) [4], ensures high density and transparency of visual knowledge rep-
resentation. Contrary to traditional, �at rule-based systems, the XTT approach
is focused on groups of similar rules rather than single rules. Such groups form
decision tables which are connected into a network for inference.

A top-down design methodology based on successive re�nement of the project
is introduced. It starts with development of an Attribute Relationship Diagram
(ARD) which describes relationships among process variables. Based on the ARD
model, a scheme of particular XTT tables and links between them are generated.
The tables are �lled with expert-provided de�nitions of constraints over the
values of attributes; they are in fact the rule preconditions. The code for rules
representation is generated and interpreted with provided inference engine. A set
of tools supporting the design and development stages is described.

This paper provides an overview of the project, its objectives and tools in
Sec. 2. The rule formulation with XTT is shortly described in Sec. 3. Then
in Sec. 4 HeKatE design toolchain called HaDEs is introduced. The HeaRT
inference engine described in Sec. 5. Then a short comparison to selected existing
solutions is given in Sec. 6. Concluding remarks are given in the �nal section.

2 HeKatE Project Overview

The main principles of the HeKatE project are based on a critical analysis of
the state-of-the art of the rule-based systems design (see [5]). They are:

� Formal Language for Knowledge Representation. It should have a precise
de�nition of syntax, properties and inference rules. This is crucial for deter-
mining its expressive power, and solving formal analysis issues.

� Internal Knowledge Base Structure. Rules working within a speci�c context,
are grouped together and form the extended decision tables. These tables
are linked together forming a structure which encodes the �ow of inference.

� Systematic Hierarchical Design Procedure. A complete, well-founded design
process that covers the main phases of the system lifecycle, from the initial
conceptual design, through the logical formulation, all the way to the physical
implementation, is proposed. Veri�cation of the system model w.r.t. critical
formal properties, such as determinism and completeness is provided.

In the HeKatE approach the control logic is expressed using forward-chaining
decision rules. They form an intelligent rule-based controller or simply a business
logic core. The controller logic is decomposed into multiple modules represented
by attributive decision tables. The emphasis of the methodology is its possible
application to a wide range of intelligent controllers. In this context two main
areas have been identi�ed in the project: control systems, in the �eld of intelligent
control, and business rules [6] and in the �eld of software engineering.

HeKatE introduces a formalized language for rule representation [5]. Instead
of simple propositional formulas, the language uses expressions in the so-called



attributive logic [3]. This calculus has stronger expressiveness than the proposi-
tional logic, while providing tractable inference procedures for extended decision
tables [7]. The current version of the rule language is called XTT2 [8]. The cur-
rent version of the logic, adopted for the XTT2 language, is called ALSV(FD)
(Attributive Logic with Set Values over Finite Domains).

HeKatE also provides a complete hierarchical design process for the creation
of the XTT-based rules.

� The main phase of the XTT rule design is called the logical design. This
phase is supported by a CASE tool called HQed.

� The logical rule design process may be supported by a preceding conceptual

design phase. In this phase the rule prototypes are built with the use of
ARD. The principal idea is to build a graph, modelling functional depen-
dencies between attributes on which the XTT rules are built. The version
used in HeKatE is called ARD+ as discussed in [9,10]. The ARD+ design is
supported by two visual tools, VARDA and HJed.

� The practical implementation on the XTT rule base is performed in the
physical design phase. In this stage the visual XTT model is transformed into
an algebraic presentation syntax called HMR. A custom inference engine,
HeaRT, runs the XTT model.

Let us now shortly describe the main aspects of the XTT rule formalization.

3 Main Aspects of the XTT Rule Language Formalization

The so-called ALSV(FD) attributive logic [3,5] has been introduced with prac-
tical applications for rule languages in mind. In fact, the primary aim of the
presented language is to extend the notational possibilities and expressive power
of the XTT-based tabular rule-based systems [8,5]. Some main concepts of the
logic are: attribute, atomic formulae, state representation and rule formulation.

After [3] it is assumed that an attribute Ai is a function (or partial function)
of the form Ai : O → 2Di . Here O is a set of objects and Di is the domain
of attribute Ai. As we consider dynamic systems, the values of attributes can
change over time (or state of the system). We consider both simple attributes
of the form Ai : T → Di (i.e. taking a single value at any instant of time) and
generalized ones of the form Ai : T → 2Di (i.e. taking a set of values at a time);
here T denotes the time domain of discourse.

The atomic formulae can have the following four forms: Ai = d, Ai = t,
Ai ∈ t, and Ai ⊆ t, where d ∈ D is an atomic value from the domain D of the
attribute and t ⊆ D, t = {d1, d2, . . . , dk}, is a (�nite) set of such values. The
semantics of Ai = d is straightforward � the attribute takes a single value. The
semantics of Ai = t is that the attribute takes all the values of t (see [5]).

An important extension in ALSV(FD) over previous versions of the logic [3]
consists in allowing for explicit speci�cation of one of the relational symbols
=,6=,∈, 6∈, ⊆, ⊇, ∼ and 6∼ with an argument in the table.



From the logical point of view the state is represented by the current values of
all attributes speci�ed within the contents of the knowledge-base, as a formula:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn) (1)

where Ai are the attributes and Si are their current values; note that Si = di

(di ∈ Di) for simple attributes and Si = Vi, (Vi ⊆ Di) for generalised ones,
where Di is the domain for attribute Ai, i = 1, 2, . . . , n.

Now, consider a set of n attributes A = {A1, A2, . . . , An}. Any XTT rule is
assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in ALSV(FD), and RHS is
the right-hand side of the rule covering conclusions. In practise the conclusions
are restricted to assigning new attribute values, thus changing the system state.
State changes trigger external callbacks that allow for communication with the
environment. The values that are no longer valid are removed from the state.

Based on the ALSV(FD) logic the XTT rule language is provided [4,8,5]. The
language is focused not only on providing an extended syntax for single rules, but
also allows for an explicit structurization of the rule base. XTT introduces ex-
plicit inference control solutions, allowing for a �ne grained and more optimized
rule inference than in the classic Rete-like [11] solutions. The representation has
a compact and transparent visual representation suitable for visual editors.

Knowledge representation with XTT incorporates extended attributive table
format. Similar rules are grouped within separated tables, and the whole sys-
tem is split into such tables linked by arrows representing the control strategy.
Consider a set of m rules incorporating the same attributes A1, A2, . . . , An: the
preconditions can be grouped together and form a regular matrix, as in Table 1.

Table 1. A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

In Table 1 the symbol ∝ij∈ {=, 6=,∈, 6∈} for simple attributes and ∝ij∈ {=
, 6=,⊆,⊇,∼, 6∼} for the generalized ones. In practical applications, however, the
most frequent relations are =, ∈, and ⊆, i.e. the current values of attributes are
restricted to belong to some speci�c subsets of the domain.

E�cient inference is assured thanks to �ring only rules necessary for achieving
the goal. It is achieved by selecting the desired output tables and identifying the



tables necessary to be �red �rst. The links representing the partial order assure
that when passing from a table to another one, the latter can be �red since the
former one prepares an appropriate context knowledge. Hence, only rules working
in the current context of inference are explored. The partial order between tables
allows to avoid examining rules which should be �red later. The details of the
complete inference solution for XTT are given in [5].

Let us now move to practical issues concerning both the design and the
implementation of XTT-based systems.

4 HaDEs Design Framework

The HeKatE design process is supported by a number of tools. They help
with the visual design and the automated implementation of rule-based systems
(see https://ai.ia.agh.edu.pl/wiki/hekate:hades). The complete frame-
work including the previously discussed methods and tools is depicted in Fig. 1.
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Fig. 1. The complete design and runtime framework

The ARD+ design process is supported by the HJEd visual editor. It is a
cross-platform tool implemented in Java. Its main features include the ARD+
diagram creation with on-line design history available through the TPH diagram.
An example of a design capturing functional dependencies between system at-
tributes is shown in Fig. 2. Once created, the ARD+ model can be saved in
a XML-based HML (HeKatE Markup Language) �le. The �le can be then im-
ported by the HQEd design tools supporting the logical design.

VARDA is a prototype semivisual editor for the ARD+ diagrams imple-
mented in Prolog, with an on-line model visualization with Graphviz. The tool
also supports prototyping of the XTT model, where table headers including a de-



Fig. 2. ARD+ design in HJEd

fault inference structure are created, see Fig. 3. The ARD+ design is described
in Prolog, and the resulting model can be stored in HML.

HealthCare

Medication

[[creatinineLevel], [medication], [creatinineClearance], [age]] [[dose]]

[[diagnosis], [age], [allergic]] [[medication]]

[[weight], [creatinineLevel], [age]] [[creatinineClearance]]

Fig. 3. XTT model generation in VARDA

HQEd provides support for the logical design with XTT, see Fig. 4. It is able
to import a HML �le with the ARD+ model and generate the XTT prototype.
It is also possible to import the prototype generated by VARDA. HQEd allows
to edit the XTT structure with on-line support for syntax checking on the table
level. Attribute values entered are checked against domains and some possible
anomalies are eliminated.

The editor is integrated with a custom inference engine for XTT2 called
HeaRT. The role of the engine is twofold: run the rule logic designed with the



use of the editor, as well as provide on-line formal analysis of the rulebase. The
communication uses a custom TCP-based protocol.

Fig. 4. XTT model edition in HQEd with anomalies detected

HaThoR is the HeKatE rule translation framework. Its goal is to provide
rule import and export modules for other languages including RDF and OWL
for ARD and RIF and SWRL (possibly R2ML) for XTT. It is mainly imple-
mented in XSLT with some extra plugins integrated with HeaRT implemented
in Prolog. An experimental module allows to translate visual XTT representa-
tion to a dedicated UML representation using an XMI-based serialization.

5 HeaRT Rule Runtime

HeKatE RunTime (HeaRT) is a dedicated inference engine for the XTT2 rule
bases, (see https://ai.ia.agh.edu.pl/wiki/hekate:heart). It is implemented
in Prolog in order to directly interpret the HMR representation which is gener-
ated by HQEd. HMR (HeKatE Meta Representation) is a textual representation
of the XTT2 logic designed by HQEd. It is a human readable form, as opposed
to the machine readable HML format. HeaRT allows to: store and export models
in HMR �les, and verify HMR syntax and logic. An example excerpt of HMR is:



xschm th: [today,hour] ==> [operation].

xrule th/1:

[today eq workday, hour gt 17] ==> [operation set not_bizhours].

xrule th/4:

[today eq workday, hour in [9 to 17]] ==> [operation set bizhours].

The �rst line de�nes an XTT table scheme, or header, de�ning all of the
attributes used in the table. Its semantics is as follows: �the XTT table th has
two conditional attributes: today and hour and one decision attribute: operation�.
Then two examples of rules are given. The second rule can be read as: �Rule with
ID 4 in the XTT table called th: if value of the attribute today equals (=) value
workday and the value of the attribute hour belongs to the range (∈) < 9, 17 >
then set the value of the attribute operation to the value bizhours�.

The engine implements the inference based on ALSV(FD). It supports four
types of inference process, Data and Goal Driven, Fixed Order, and Token
Driven [5]. Inference is based on assumption, that the system is deterministic.
Con�icts should be handled during design process or detected by veri�cation.

HeaRT also provides a modularized veri�cation framework, also known as
HalVA (HeKatE Veri�cation and Analysis). Veri�cation and analysis module
implements: simple debugging mechanism that allows tracking system's work,
logical veri�cation of models (several plugins are available, including complete-
ness, determinism and redundancy checks), and syntactic analysis of HMR �les
using a DCG grammar of HMR. The veri�cation plugins can be run from the
interpreter or indirectly from HQEd using the communication protocol.

The engine has communication and integration facilities. HeaRT supports
Java integration based on callbacks mechanism and Prolog JPL library. It allows
for a direct interaction via Prolog console based on callbacks mechanism. HeaRT
can operate in two modes, stand-alone and as TCP/IP server, o�ering TCP/IP
integration mechanism with other applications. It is possible to create console
or graphical user interface build on Model-View-Controler design pattern.

There are two types of callbacks related to attributes in HMR �les. 1) input
used to get attribute value from user. This can be done by console or graphical
user interface. 2) output used to present an attribute value to user. Callbacks
can be use to create GUI with JPL and SWING in Java.

To make HeaRT integration easier, there are three integration libraries, JHeroic,
PHeroic or YHeroic. JHeroic library was written in Java. Based on JHeroic one
can build applets, desktop application or even JSP services. It is also possible to
integrate HeaRT with database using ODBC, or Hibernate. YHeroic is a library
created in Python. It has the same functionality as JHeroic but is easier to use
because of Python language nature. PHeroic is the same library but created in
PHP5. It can be used in a dynamic web page based on PHP.

6 Related Solutions

Here, the focus is on two important solutions: CLIPS and its Java-based incar-
nation � Jess, as well as Drools, which inherits some of the important CLIPS



features, while providing a number of high-level integration features. Other en-
vironments include LPA VisiRule.

XTT provides an expressive, formally de�ned language to describe rules.
The language allows for formally described inference, property analysis, and
code generation. Additional callbacks in rule decision provide means to invoke
external functions or methods in any language. This feature is superior to those
found in both CLIPS/Jess and Drools. On the other hand, the main limitation
of the HeKatE approach is the state-base description of the system, where the
state is understood as the set of attribute values.

The implicit rule base structure is another feature of XTT. Rules are grouped
into decision tables during the design, and the inference control is designed dur-
ing the conceptual design, and later on re�ned during the logical design. There-
fore, the XTT representation is highly optimized towards rulebase structuriza-
tion. This feature makes the visual design much more transparent and scalable.

In fact all the Rete-based solutions seek some kind of structurization. In the
case of CLIPS it is possible to modularize the rulebase (see chapter 9 in [1]).
It is possible to group rules in modules operating in given contexts, and then
provide a context switching logic. Drools 5 o�ers Drools Flow that allows to
de�ne rule set and simple control structure determining their execution. In fact
this is similar to the XTT-based solution. However, it is a weaker mechanism
that does not correspond to table-based solution.

A complete design process seems to be in practice the most important issue.
Both CLIPS and Jess are classic expert system shells, providing rule languages,
and runtimes. They are not directly connected to any design methodology. The
rule language does not have any visual representation, so no complete visual
editors are available. Implementation for these systems can be supported by a
number of external environments (e.g. Eclipse). However, it is worth emphasiz-
ing, that these tools do not visualize the knowledge contained in the rule base.

Drools 5 is decomposed into four main parts: Guvnor, Expert, Flow, Fusion.
It o�ers several support tools, including an Eclipse-based environment. A �design
support� feature, is the ability to read Excel �les with simple decision tables.
While this is a valuable feature, it does not provide constant syntax checking.

It is crucial to emphasize, that there is a fundamental di�erence between a
graphical user interface like the one provided by generic Eclipse-based solutions,
and visual design support and speci�cation provided by languages such as XTT
for rules, and in software engineering by UML. Other dedicated visual rule design
languages include URML [12] that provides a UML-based representation for
rules. Here focus is on single rules, not on decision tables, like in XTT.

7 Conclusions

The primary area of interest of this paper is to introduce the main concepts
of the HeKatE project, its methods and tools. The main motivation behind
the project is to speed up and simplify the rule-based systems design process,
while assuring the formal quality of the model. The HeKatE design process



is practically supported by a number of tools presented in the paper. These
include the HeKatE design environment called HaDEs and the rule runtime
called HeaRT. The up-to-date results of the project, as well all the relevant
papers are available at the project website see http://hekate.ia.agh.edu.pl.

HeKatE project ends in November 2009. Therefore, future work includes a
tighter tool integration, as well as modeling complex cases in order to identify
possible limitations of the methodology. Providing a comparative studies mod-
elling the same cases in XTT, CLIPS and Drools is planned.

References

1. Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson (2005)
2. van Harmelen, F., Lifschitz, V., Porter, B., eds.: Handbook of Knowledge Repre-

sentation. Elsevier Science (2007)
3. Lig¦za, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,

Heidelberg (2006)
4. Nalepa, G.J., Lig¦za, A.: A graphical tabular model for rule-based logic program-

ming and veri�cation. Systems Science 31(2) (2005) 89�95
5. Nalepa, G.J., Lig¦za, A.: Hekate methodology, hybrid engineering of intelligent

systems. International Journal of Applied Mathematics and Computer Science
(2009) accepted for publication.

6. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

7. Lig¦za, A., Nalepa, G.J.: Knowledge representation with granular attributive logic
for XTT-based expert systems. In Wilson, D.C., Sutcli�e, G.C.J., FLAIRS, eds.:
FLAIRS-20 : Proceedings of the 20th International Florida Arti�cial Intelligence
Research Society Conference : Key West, Florida, May 7-9, 2007, Menlo Park,
California, Florida Arti�cial Intelligence Research Society, AAAI Press (may 2007)
530�535

8. Nalepa, G.J., Lig¦za, A.: Xtt+ rule design using the alsv(fd). In Giurca, A., Ana-
lyti, A., Wagner, G., eds.: ECAI 2008: 18th European Conference on Arti�cial Intel-
ligence: 2nd East European Workshop on Rule-based applications, RuleApps2008:
Patras, 22 July 2008, Patras, University of Patras (2008) 11�15

9. Nalepa, G.J., Lig¦za, A.: Conceptual modelling and automated implementation of
rule-based systems. In: Software engineering : evolution and emerging technologies.
Volume 130 of Frontiers in Arti�cial Intelligence and Applications. IOS Press,
Amsterdam (2005) 330�340

10. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
re�nement method. In Wilson, D.C., Lane, H.C., eds.: FLAIRS-21: Proceedings
of the twenty-�rst international Florida Arti�cial Intelligence Research Society
conference: 15�17 may 2008, Coconut Grove, Florida, USA, Menlo Park, California,
AAAI Press (2008) 353�358

11. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1) (1982) 17�37

12. Lukichev, S., Wagner, G.: Visual rules modeling. In: Sixth International Andrei
Ershov Memorial Conference Perspectives of System Informatics, Novosibirsk, Rus-
sia, June 2006. LNCS, Springer (2005)


