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Abstract. The research project MEDICO aims at developing an intelli-
gent, robust and scalable semantic search engine for medical documents.
The search engine of the MEDICO demonstrator RadSem is based on
formal ontologies and is designated for different kinds of users, such as
medical doctors, medical IT professionals, patients, and policy makers.
Since semantic search results are not always self-explanatory, explana-
tions are necessary to support requirements of different user groups. For
this reason, an explanation facility is integrated into RadSem employing
the same ontologies for explanation generation. In this work, we present
a user experiment that evaluates the intelligibility of labels provided by
the used ontologies with respect to different user groups. We discuss
the results for refining our current approach for explanation generation
in order to provide understandable justifications of semantic search re-
sults. Here, we focus on medical experts and laymen, respectively, using
semantic networks as form of depiction.3
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1 Introduction

The research project MEDICO aims (among other things) at developing an in-
telligent semantic search engine for medical documents and addresses different
kinds of users, such as medical doctors, medical IT professionals, patients, and
policy makers. The ultimate goal of the project [1] is to realize a cross-lingual
and modality-independent search for medical documents, such as medical im-
ages, clinical findings or reports. Representational constructs of formal ontologies
3 This research work has been supported in part by the research program THESEUS
in the MEDICO project, funded by the German Federal Ministry of Economics and
Technology (grant number 01MQ07016). The responsibility for this publication lies
with the authors.



are used to annotate and retrieve medical documents. Currently, the MEDICO
demonstrator RadSem [2] employs the Foundational Model of Anatomy (FMA)
[3] and the International Classification of Diseases, Version 10 (ICD-10)4. As
there is no existing ontology of the ICD-10 available we implemented a tool
which parses the English and German online version providing an OWL ontol-
ogy of the ICD-10.

Since semantic search results are not always self-explanatory, explanations
are helpful to support users who have various intensions to use the search en-
gine. Each user group has different requirements and comes with different a priori
knowledge in the medical domain. Medical IT professionals, for instance, may
want to test the search engine. In this context, explanations are interesting when
the system presents unexpected results. It may turn out that the implementa-
tion or the used ontologies are incorrect. Hence, explanations can help to correct
the system or to improve it. In contrast to medical IT professionals, patients
and citizens are not interested in the exact implementation of the search algo-
rithm. Instead, they may want to learn something about the medical domain.
This concerns first of all medical terms but also the connection between medical
concepts.

For addressing these issues, we integrated an explanation facility into Rad-
Sem. The facility is used to justify search results by revealing a connection
between search and annotation concepts. Finding a connection the facility also
exploits the mentioned ontologies. Thus, the connection or justification contains
further concepts of the FMA or ICD-10. Especially the FMA provides several
medical terms for labeling a specific concept. As medical laymen cannot associate
any label with corresponding concepts a justification may not be understandable
to all of them. In contrast, medical experts may prefer explanations that fit their
daily language. In other words, the problem is to select appropriate labels with
respect to different user groups. For this reason, we conduct an experiment and
discuss its results in order to refine the explanation generation specifically to
medical experts and laymen.

This paper is structured as follows. The next section gives a short overview
about relevant research on explanations. Section 3 presents current techniques
of semantic search algorithms and motivates the need for explanations. Section 4
contains our work of justifying semantic search results. Section 5 describes the
user experiment and discusses its results in order to realize a tool that can be
used to tailor explanations to different user groups. We conclude the paper with
a brief summary and outlook.

2 Related Work

The notion of explanation has several aspects when used in daily life [4]. For in-
stance, explanations are used to describe the causality of events or the semantics
of concepts. Explanations help correcting mistakes or serve as justifications.

4 http://www.who.int/classifications/apps/icd/icd10online



Explanations in computer science were introduced in the first generation of
Expert Systems (ES). They were recognized as a key feature explaining solutions
and reasoning processes, especially in the domain of medical expert systems such
as MYCIN [5].

Explanation facilities were an important component supporting the user’s
needs and decisions [6]. In those early systems, explanations were often nothing
more than (badly) paraphrased rules that lacked important aspects or too much
information was given at once [7]. For that reason, Swartout and Moore formu-
lated five desiderata for ES explanations [8] which also apply for knowledge-based
systems, among them Fidelity and Understandability.

Fidelity means that the explanation must be an accurate representation of
what the ES really does. Hence, explanations have to build on the same knowl-
edge the system uses for its reasoning. Understandability comprises various fac-
tors such as User-Sensitivity and Feedback. User-Sensitivity addresses the user’s
goals and preferences but also his knowledge with respect to the system and the
corresponding domain. Feedback is very important because users do not neces-
sarily understand a given explanation. The system should offer certain kinds of
dialog so that users can become clear on parts they do not understand.

In [9], the Reconstructive Explainer is presented producing reconstructive ex-
planations for ES. It transforms a trace, i. e., a line of reasoning, into a plausible
explanation story, i. e., a line of explanation. The transformation is an active,
complex problem-solving process using additional domain knowledge. The de-
gree of coupling between the trace and the explanation is controlled by a filter
which can be set to one of four states regulating the transparency of the filter.
The more information of the trace is let through the filter, the more closely the
line of explanation follows the line of reasoning. This approach enables a disen-
gagement of an explanation component in order to reuse it in other ES. We took
up this theme in our current work.

The Semantic Web community also addresses the issue of explainability. The
Inference Web effort [10] realizes an explanation infrastructure for complex Se-
mantic Web applications. Inference Web includes the Proof Markup Language
for capturing explanation information. It offers constructs to represent where
information came from (provenance)or how it was manipulated (justifications).
Inference Web includes different tools and services in order to manipulate and
present the explanation information. The goal of our research is also to provide
tools and algorithms using formal knowledge such as ontologies for explanation
provision. The focus of our work is to generate understandable and adequate
explanations for knowledge-based systems.

3 Semantic Search

There are diverse definitions of the term semantic search. In general, search pro-
cesses comprise three steps, i. e., query construction, core search process, and
visualization of results [11]. In this work, we refer to the most common defini-
tion and use the term semantic search when formal semantics are used during



any part of the search process [12]. In this context, two main categories of seman-
tic search can be identified: fact and semantic document retrieval. Fact retrieval
engines are employed to retrieve facts (triples in the Semantic Web) from knowl-
edge bases based on formal ontologies. Such approaches apply three kinds of
core search techniques: reasoning, triple based, i. e., structural interpretation of
the query guided by semantic relations, and graph traversal search [12]. Semantic
document retrieval engines search for documents which are enriched with seman-
tic information. They use additional knowledge to find relevant documents by
augmenting traditional keyword search with semantic techniques. Such engines
use various thesauri for query expansion and/or apply graph traversal algorithms
to available ontologies [12, 13]. Analogously, the same semantic techniques are
used to retrieve other kinds of resources, e. g., images, videos, where additional
formal knowledge is used to describe them.

The MEDICO Demonstrator RadSem uses formal ontologies to annotate
medical documents in order to describe their content. The search algorithm
exploits the class structure of these ontologies to retrieve documents that are
annotated with semantically similar concepts with respect to a certain search
concept. For instance, searching for radiographs of the hand, users may obtain
documents that are annotated with the concept index finger or pisiform bone.
Currently, RadSem employs the FMA and ICD-10 ontology.

Users have various intensions to use semantic search engines. For instance, a
user wants to inform himself of a medical concept he do not remember. In this
case, he most probably searches for are similar or superior concept. Imaging,
the user searches for information about the shoulder height but using the term
shoulder for his search. If the user obtains a document and associated text snip-
pet highlighting the term acromion he may not know whether the document is
relevant or not. In this context, a short explanation can provide useful informa-
tion to support the user’s search intention. An explanation expressing that the
term acromion is a synonym for shoulder height and that the shoulder height is
part of the shoulder may help the user to remember.

The explanation has to reveal the connection between the query and the ob-
tained document. In general, users are not interested in the search techniques of
the engine, i. e., how the document is retrieved. In daily tasks users require only
a simple justification of the result. As semantic search algorithms use semantic
techniques such as ontologies this formal knowledge can be leveraged to generate
appropriate explanations.

4 Explanations in RadSem

The explanation facility in RadSem comprises two components: the Justification
Component and the Exploration Component. As its name implies, the first com-
ponent is primarily intended to justify the retrieval of medical documents. The
other component can be used to explore the underlying ontologies and offers
various kinds of interaction.



In general, explanations (like any kind of knowledge) have two different as-
pects: form and content [14]. Explanations are communicated through a certain
form of depiction such as text or semantic networks [15]. With respect to the
Understandability desideratum we chose semantic networks because they are an
intelligible alternative to text [16] representing qualitative connections between
concepts.

Fig. 1. Justification in RadSem

Most probably, a detailed explanation of the search algorithm used in Rad-
Sem is not important for most MEDICO users. Reusing our approach in other
semantic search projects we ignore consciously the desideratum Fidelity. Hence,
the Justification Component performs a kind of reconstructive explanation as
described in Section 2 omitting all process information of the search algorithm.
In this case the search concepts correspond to the input and the annotation
concepts correspond to output in the line of explanation, whereas the story in
between is constructed by the explanation facility using the ontologies FMA and
ICD-10 as knowledge base.

Since search and annotation concepts belong to ontologies the construction
is very simple. In general, ontologies can be transformed into a semantic network
representing a mathematical graph. Thus, the construction of the line of explana-
tion for semantic search in MEDICO can be reduced to a shortest path problem.
We chose the Dijkstra Algorithm [17] to solve this problem. The algorithm can
only be performed on non-negative edge path costs, so the question which costs
to choose for properties of the ontologies arises. In our first implementation we



assume an equal distribution, i. e., all properties have the same cost. Figure 1
depicts an example search in RadSem and according justification.

This simple approach already reveals two general problems. The first issue is
with the generation itself. The Dijkstra Algorithm determines only one shortest
path. Hence, potential alternative explanations are not found which may be
better in a certain context with respect to different user groups. In addition, the
number of concepts and thus, the amount of information is preset. Potentially,
the explanation path contains too much or too few information. The second
problem concerns the adequacy of a justification. In particular the FMA provides
several synonyms to label a concept. Currently, the explanation facility uses the
preferred label to name a certain concept in the explanation path. Most probably,
not all users can associate the preferred label with a corresponding concept.

Intelligibility is an important aspect of the quality of an explanation and
mainly applies for medical layman. In contrast, medical experts may prefer terms
which they use in their daily work. For instance, the term shoulder girdle may
be better for laymen in contrast to pectoral girdle which is more appropriate for
experts. To conclude, the difficulty is to determine the best label for different
user groups such as medical experts and medical laymen. In this work, we focus
on the second problem. Our goal is provide a simple approach to evaluate labels
with respect to the different user groups. This approach may be extended not
only to evaluate single labels but also to evaluate alternative explanation paths
or justifications.

Beyond question, the degree of knowledge about medical terms has a sig-
nificant effect on adequacy and intelligibility. Hence, a method is required to
determine the degree of knowledge of different user groups with respect to the
terms or labels used in an explanation path. Therefore, an inherent constant
must be considered.

An intuitive assumption is that the degree of knowledge can be correlated
with the frequency of terms in natural language. A useful statistical measure are
frequency classes. According to [18], the frequency class of a term t is defined
as follows: Let C be a text corpus and let f(t) denote the frequency of a term
t ∈ C. The frequency class c(t) of a term t ∈ C is defined as blog2(f(t∗)/f(t))c,
where t∗ denotes the most frequently used term in C. In many English corpora,
t∗ denotes the term the that corresponds to frequency class 0. Thus, a more
uncommonly used term has a higher frequency class. In the following, we refer
to any frequency class c(t) = i as ci.

5 Experiment

We assume that the degree of knowledge of medical terms can be correlated
with frequency classes. The more often a term is used in natural language the
more users know about that term. In order to verify the applicability of this
assumption we conducted a user experiment. In this experiment the test persons
should estimate their knowledge concerning several medical terms.



5.1 Experiment Setup

For evaluating the personal estimation of medical knowledge 200 medical terms
of the FMA and ICD-10 were selected consisting of one or two tokens. As German
is the mother tongue of the test persons, only German terms were considered in
order to avoid a distortion of the evaluation with respect to language problems.
We randomly selected ten terms for each frequency class c10, ..., c13 and 15 terms
for each frequency class c14, ..., c21. The frequency classes were determined with
the help of a service of the University of Leipzig.5 The first group of terms
contains well known terms such as Schulter (shoulder), Grippe (influenza), or
Zeigefinger (index finger), which all test persons typically know. In contrast,
the second group contains terms that are typically unknown to medical laymen.
In addition, we randomly selected 40 terms of the FMA and ICD-10 where a
frequency class could not be determined in order to have a greater probability
that at least some terms were unknown to medical experts. We refer to the
corresponding frequency class as c22.

Table 1. Personal Knowledge Estimation

(1) the term is completely unknown;
(2) the term has been heard of, but cannot be properly integrated

into a medical context;
(3) the meaning of the term is known or it can be derived. In

addition, the term can be vaguely integrated into a medical
context;

(4) the meaning of the term is known and it can be associated with
further medical terms;

(5) the term is completely clear and comprehensive knowledge can
be associated.

The 200 medical terms were randomly subdivided into four tests each con-
taining a varying number of frequency classes. Every test person was allowed
to do only one test. Thus, we had to take care that each of the four tests was
done as often as any other one. All test persons had to estimate their knowledge
about each term of a test on a scale from 1 to 5 (see Table 1) indicating their
Personal Knowledge Estimation (PKE).

5.2 Evaluation

In total, thirty-six persons participated in the experiment: twenty-eight laymen
and eight medical experts. The two groups were differentiated as follows. Test
persons with a profound medical qualification were classified as experts. For
instance, this concerns medical staff, students and doctors. All other test persons
were classified as laymen. Figures 2 and 3 depict the result of the evaluation.



Fig. 2. Experiment results: average values for experts (black) and laymen (gray)

Figure 2 depicts an average value of the PKE as function of the frequency
classes for experts (upper curve) and laymen (lower curve) as well. Figure 3
depicts the corresponding standard deviation.

Figure 2 contains two outliers for medical laymen: c13 and c19. The first one
can be traced to the term Atlas. It is an ambiguous term whose meaning in
a geological context is quite common. In contrast, its meaning as first cervi-
cal vertebra is relatively unknown. The second outlier can be traced to some
compounds which are quite common for the German language. The meaning of
those terms can easily be derived but their occurrence in daily language is rare.
In contrast to laymen, the curve of medical experts is without any irregularity.
Merely the estimation of general terms is very interesting because experts seem
to consider what they do not know with respect to the general term. The stan-
dard deviation for both groups is quite interesting. From frequency class c18 on
the values jump up. A possible reason for that may be that people have more
knowledge in subfields of the medical domain than in others, i. e., when they
have a certain disease.

The main objective of the experiment was not to verify a correlation between
users’ degree of knowledge and frequency classes. In fact, the intention is pri-
marily to denote intervals of frequency classes as a means of prognosis whether
user groups probably know a term or require supporting information. For this
purpose, we introduce three Boolean functions: k(t) for known terms, s(t) for
support requiring terms, and u(t) for unknown terms. With respect to average
PKE of medical laymen, we identified three suitable intervals, and defined the
functions as follows (index l indicates laymen):

1. kl(t) is true iff c(t) ∈ [c11, ..., c15]
2. sl(t) is true iff c(t) ∈ [c16, ..., c19]

5 http://wortschatz.uni-leipzig.de/



Fig. 3. Experiment results: standard deviation for experts (black) and laymen (gray)

3. ul(t) is true iff c(t) ∈ [c20, ..., cn] and n > 20

The proposed functions do not apply to medical experts. The average PKE
of all concepts indicates that medical experts generally know terms used in the
FMA and ICD-10. Thus, only the function ke(t) can be defined which is always
true (index e indicates experts).

As mentioned before, the functions allow evaluating a justification as pre-
sented in Section 4. For instance, there are two justifications A and B of the
same search result whereas both comprise three terms. If the middle term of A
is a known term and if the middle term of B is a support requiring term, prob-
ably justification A is the better one. The concepts can also be used to tailor
justifications. Let a justification represent a path in class hierarchy and comprise
four terms. If one of the mid terms is an unknown term and the one is known,
the unknown term can be removed.

In many cases, labels of the FMA or ICD-10 contain other concept labels.
For instance, distal phalanx of left index finger includes the concept labels distal
phalanx, left and index finger. All labels have different frequency classes and
thus, a prediction whether a user knows such a concept cannot be made (this
applies for all non lexical labels). But this may not be necessary in order to select
the most suitable label for a concept with respect to medical laymen or experts.
Using the kl(t) and ke(t) it is possible to define two sets of labels. These sets can
be generalized with respect to various attributes of the labels such as average
frequency class of sub labels, label length or token count. The most prominent
member of one class can be used to solve a label selection problem. A label
with minimal distance to that member may be the most appropriate label for a
concept concerning different user groups.

The presented experiment and proposed method may only be seen as a first
approach to improve the current explanation generation. We ignored some im-
portant aspects of the experiment, such as compounds or ambiguous terms. In



addition, users probably may not estimate their knowledge hundred per cent
correctly. For this reason, the presented approach can only be regarded as initial
point to evaluate terms or complete explanation paths which can be improved
by using further methods such as user interactions.

6 Summary and Outlook

In this paper we presented the explanation facility of the MEDICO Demonstra-
tor RadSem. The semantic search engine of RadSem uses formal ontologies to
annotate and retrieve medical documents. The explanation facility employs the
same ontologies and uses reconstructive explanations as a means of justifying
semantic search results. Improving the justifications we conduct an experiment
with medical experts and laymen. The objective of the experiment was to deter-
mine a correlation between users’ degree of knowledge and medical terms. We
discussed the results and proposed a method which can be used to determine
which terms of the used ontologies should be used in an explanation with respect
to medical experts and laymen as initial start. The overall approach can be used
to justify various semantic search algorithms using formal ontologies.

The next step of our research is to refine the method for tailoring and evalu-
ating terms and explanations. In addition, we will consider various kinds of user
interactions to improve this method.
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