
FLEXBOX
Zoe Mickley Gillenwater @zomigi Blend Conference

September 2013

PUTTING
INTO

PRACTICE

and I wrote these books on CSS:

I’m a web designer/front-end dev

Stunning CSS3:
A Project-based Guide to
the Latest in CSS
www.stunningcss3.com

Flexible Web Design:
Creating Liquid and Elastic
Layouts with CSS
www.flexiblewebbook.com

http://www.stunningcss3.com/
http://www.stunningcss3.com/

My portfolio site from 2000

My portfolio site from 2000

2003: Introduced to floats

Problems with float layout

 Difficulty with containment
 Wrapping/float drop
 Visual location somewhat tied to HTML order
 No built-in equal-height columns
 No float:center

The nickname for the CSS Flexible Box
Layout Module, a new layout mechanism
and box model.

What is flexbox?

http://www.w3.org/TR/css3-flexbox/
http://www.w3.org/TR/css3-flexbox/

Which is which?

2009 display:box

2011 display:flexbox

Now display:flex

See also http://css-tricks.com/old-flexbox-and-new-flexbox/

* with -webkit- prefix

† with -ms- prefix, 10 only

*

*

†

*

http://css-tricks.com/old-flexbox-and-new-flexbox/

Turn it on

display: flex

flex item flex item

flex container

plain old box

flex-direction
specifies orientation
of flex items’ layout

row
(default)

row-reverse

column

column-reverse

Demo site:

Visit
www.smoresday.us
using Chrome,
Opera, or IE 10 for
full effect

http://www.smoresday.us/

Demo: horizontal navigation

1. Turn into flex container:

.list-nav {
 display: flex;
 flex-direction: row; /* default */
}

2. Children become flex items laid out on
single horizontal line

Demo: horizontal navigation

Before

After

I can do the same thing with display: inline.”

What’s the big deal?

Yes, you can.

We’re just laying the groundwork for the
cool stuff that’s coming.

Baby steps.

“

How the CSS might really look

.list-nav {
 display: -webkit-box;
 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;
 -webkit-box-direction: normal;
 -webkit-box-orient: horizontal;
 -ms-flex-direction: row;
 -webkit-flex-direction: row;
 flex-direction: row;
}

2009
2011

current

Keeping track of variants

 Flexy Boxes code generator shows old and new
syntaxes: www.the-echoplex.net/flexyboxes/

 Let Sass or LESS do it for you, for instance:
 https://github.com/mastastealth/sass-flex-mixin
 https://gist.github.com/cimmanon/4461470

 The -prefix-free script can do some of it for
you: http://leaverou.github.io/prefixfree/

http://www.the-echoplex.net/flexyboxes/
https://github.com/mastastealth/sass-flex-mixin
https://gist.github.com/cimmanon/4461470
http://leaverou.github.io/prefixfree/

But for the sake of readability, I’m omitting
them from the code samples on these
slides. You can see them in the live demo.

Now back to flex-direction.

Use the variants you want.

Setting a point of reference

Main axis

C
ross axis

(for flex-direction: row)

flex-wrap
controls whether flex
items can lay out on
multiple lines and which
direction new lines are
stacked in

wrap
(for row)

wrap
(for column)

nowrap
(default; for row)

wrap-reverse
(for row)

Problems with flex-wrap

 Firefox doesn’t support it yet
 No browser supports 2009 equivalent box-
lines property

 Limited control of where breaks occur without
support for break-before/break-after
properties (only IE 10 and Opera support
them)

Summary: setting the stage

1. Create flex container using display:flex
2. Set its flex-direction to control

orientation (horizontal or vertical)
3. Set its flex-wrap to control whether and in

which direction to wrap
(Or, set flex-flow as shorthand for flex-
direction and flex-wrap)

.builder

.component

.gallery

.gallery-item

Mobile
block
layout

.action

Add flexbox for larger widths

No need to put within media query—it can “kick
in” whenever space allows (auto breakpoints!)

1. Create flex container:

.gallery {
 display: flex;
 flex-wrap: wrap;
 margin-left: -20px;
}

Add flexbox for larger widths

2. Size flex items:
.gallery-item {
 flex: 1 0 200px;
 margin: 0 0 20px 20px;
 padding: 20px;
}

This is where flexbox gets flexible.

And kinda confusing.

The flex property

Defining the flex property

 Makes flex items change their width or height
(whichever is dimension along main axis) to
fit available space

 Shorthand for 3 properties:
 flex-grow
 flex-shrink
 flex-basis

Defining the flex property

flex-grow
how much flex
item will grow
relative to
other items if
extra space is
available
(proportion
of extra space
that it gets)

flex-shrink
how much item
will shrink
relative to
others if there is
not enough
space
(proportion of
overflow that
gets shaved off)

flex-basis
the initial
starting size
before free
space is
distributed
(any standard
width/height
value, including
auto)

Breaking it down

.gallery-item {
 flex: 1 0 200px;

flex-grow
give every
item 1 share
of extra width

flex-shrink
don’t let the
items shrink at
all (but they
wouldn’t
anyway due to
flex-wrap)

flex-basis
start them out
at 200 pixels
wide (basically,
min-width)

Let’s see it flex live

Single-digit flex values

 Common to see flex: 1 in demos
 flex: [number] is equivalent to
flex: [number] 1 0px

 Be sure you really want flex-basis to be 0
 When wrap on, essentially min-width
 0px therefore means items can shrink to 0px
 If everything can get down to 0px, nothing ever

has a reason to wrap

My first attempt

Zoe’s Brain Said:

“Since .action
starts out at 100%,
it won’t have space
to sit on the first
line with the
content preceding
it, and will wrap to
a second line.”

.component {
 flex: 1;
}

.action {
 flex: 1 1 100%;
}

The expected outcome:

Flexbox fail

My first attempt

Reality:

Since it’s fine for
each .component to
shrink to only 0px
wide, a 100% wide
element can and
will sit on the same
line as all the
components.

.component {
 flex: 1 1 0px;
}
.action {
 flex: 1 1 100%;
}

Forcing the wrap

Fixed:

.action will always
wrap to new line,
and .components
will wrap to
additional lines
when there’s less
than their
combined flex-
basis values (plus
margin, etc.).

.component {
 flex: 1 1 200px;
}
.action {
 flex: 1 1 100%;
}

Live demo time again

Why flex is great

Less need for media queries

Layout changes that would previously have been
hardcoded into a media query can now be done
on the fly when browser determines stuff can fit

Flex adjusts for margin

.component {
 width: 25%;
 margin-left: 20px;
}

.component {
 flex: 1 1 200px;
 margin-left: 20px;
}

The boxes won’t all fit Works like a charm

box-sizing only takes care of padding and
border added on to width, not margin

Flex adjusts for quantity of items

 Great for sites with dynamic or frequently
changing content blocks, e.g.:
 News stories on home page vs inner page
 Product or feature tiles
 Pricing page with plans side by side

 Makes HTML/CSS more modular—an item can
move anywhere and adjust in size as needed

Flex can combine different units

Items measured in
different units can
sit side-by-side and
all fit perfectly

Pixels
Ems
Mystery percentage

Flex can combine different units

Set only the text field to flex:
.component li:last-child {
 display: flex;
}
.component .other-name {
 flex: 1;
}

Flex can be proportional

Setting flex-grow/flex-shrink to different
values can make flex items size themselves
relative to each other

flex: 1; flex: 1; flex: 2;

But be careful!

Having widths be in multiples of each other only
works if flex-basis is 0

If all start out 0px, then all the width on the line
is extra, so the flex:2 item gets twice as much
width as the others and is thus twice as wide as
the others

flex: 1 0 0px; flex: 1 0 0px; flex: 2 0 0px;

If flex-basis isn’t 0px…

…the widths may not end up as you expect

The third box gets twice as much of the extra,
but that doesn’t make it twice as wide overall

flex: 1 0 10px; flex: 1 0 10px; flex: 2 0 10px;

10px + 5px extra = 15px 10px + 5px extra = 15px 10px + 10px extra = 20px

if 50px available

While support improves, consider using
flexbox now on small page components as
progressive enhancement.

Here are a few ideas.

You can use it now

Single-line, full-width form

 All items on same line
 Text input(s) stretches to fill remaining space
 All items vertically centered or equal height

Form without flexbox

.action { text-align: center; }

.action * {
 display: inline; /* default */
 vertical-align: middle;
}

Form without flexbox

All items on same line
Text input stretches to take up remaining space
All items vertically centered or equal height




X

Form with flexbox

.action {
 flex: 1 1 100%;
 display: flex;
 align-items: stretch; /* default */
}
.action input {
 flex: 1;
}
.action input, .action label {
 margin-right: 10px;
}

align-items
aligns flex items in
cross axis

flex-start flex-end

center baseline

stretch
(default)

foo foo foo

Form with flexbox

All items on same line
Text input stretches to take up remaining space
All items vertically centered or equal height





Override alignment on label

.action label {
 align-self: center;
}

Combine the two

.action {
 flex: 1 1 100%;
 display: flex;
 text-align: center; /* fallback */
}
.action input {
 flex: 1;
}
.action label {
 align-self: center;
}
.action input, .action label {
 margin-right: 10px;
}

Another option: stack, center

.action {

 flex: 1 1 100%;

 display: flex;

 flex-wrap: wrap;

 align-items: center;

 text-align: center; /* fallback */

}

.action input {

 flex: 1;

 display: block; /* fallback */

 width: 100%; /* fallback */

 box-sizing: border-box; /* fallback */

}

.action button {

 flex: 1 1 100%;

 margin-top: 10px;

}

Narrow version

Non-flexbox fallback version Flexbox version

Add Modernizr as needed

 Flexbox and fallback styles can often co-exist,
but sometimes need to isolate them

 Modernizr can add flexbox, no-flexbox,
and flexbox-legacy classes to do this

 Example: add margin between label and input
only if flexbox is on:
.flexbox .action label {
 margin-right: 10px;
}

http://modernizr.com/

Full-width nav bar

 Requirements:
 All links on same line
 First link flush left, last link flush right
 Equal spaces between all links

 Using display:table-cell can do full-
width but not equal spaces

Nav with flexbox

.list-nav {
 display: flex;
 justify-content: space-between;
 margin: 0;
 padding: 0;
 list-style: none;
}
.list-nav li {
 /* no flex & no width = shrinkwrap */
 text-align: center;
}

justify-content
aligns flex items along
main axis

space-around

flex-end center

flex-start
(default)

space-between

Combine with inline-block

.list-nav {

 display: flex;

 justify-content: space-between;

 margin: 0;

 padding: 0;

 list-style: none;

 text-align: center; /* fallback */

}

.list-nav li {

 display: inline-block; /* fallback */

 padding: 0 .5em; /* fallback */

 text-align: center;

}

.list-nav li:first-child { padding-left: 0; }

.list-nav li:last-child { padding-right: 0; }

Non-flexbox
fallback version

Flexbox version

Combine with inline-block

Combine with table-cell

.list-nav {

 width: 100%; /* fallback */

 display: table; /* fallback */

 display: flex; /* override display:table for flexbox browsers */

 justify-content: space-between;

}

.list-nav li {

 display: table-cell; /* fallback */

 padding: 0 .5em;

 text-align: center;

}

.list-nav li:first-child {

 padding-left: 0;

 text-align: left; /* fallback */

}

.list-nav li:last-child {

 padding-right: 0;

 text-align: right;

}

Variation: pagination

 Wide view: all links on same line, centered
 Set justify-content:center

 Medium view: all links on same line, full-
width, equal spacing
 Set justify-content:space-between

Variation: pagination

 Narrow view: two lines with “previous” and
“next” links on first row, full-width
 Set flex-wrap:wrap
 Set justify-content:space-between
 Use order property to move “next” link up

Visual reordering with flexbox

1. Make “previous” link come first visually,
“next” link second, and all the rest third
.pagination li {
 order: 2;
 display: inline-block; /* fallback */
}
.pagination li:first-child { /* “Previous” link */
 order: 0;
 text-align: left;
}
.pagination li:last-child { /* “Next” link */
 order: 1;
 text-align: right;
}

Visual reordering with flexbox

2. Force links to wrap after “next” link by
making it and “previous” link take up 100%
of the first line together
.flexbox .pagination li:first-child,
.flexbox .pagination li:last-child {
 width: 50%;
}
.pagination {
 display: flex;
 flex-wrap: wrap;
 justify-content: space-between;
 text-align: center; /* fallback */
}

Accessibility implications

Pro
Keep content in
logical order in HTML
instead of structuring
HTML to achieve
visual layout

Con
Focus/tab order won’t
always match
expected order, may
jump around
seemingly randomly

Tab order = HTML order

1

2

10

“Next” won’t be second link tabbed to after
“Previous” since it doesn’t follow it in HTML

Limitations of order property

 Potential to create confusing tab order
 Can only rearrange sibling elements
 Flexbox rows/cols can’t overlap, so content

may not always slide into the spot left by the
re-ordered content

So: reserve flexbox order property for small
moves that don’t hurt accessibility, and use CSS3
Grid Layout, etc., for bigger re-ordering

Pinned item at bottom

 All boxes equal
in height

 Final item in
each box pinned
to the bottom so
that all final
items across grid
appear to align

Pinned item at bottom

 Without flexbox, “other” fields disconnected from
each other and thus can’t align

 With flexbox, they’re still disconnected, but their
parents aren’t and can be equal height, plus…

New “auto” margin behavior

 Margins set to auto get all the free space left
 So, to pin flex item to bottom of its flex

container:
 set flex-direction:column on flex container

so items can fill its height
 set margin-top:auto on item you want to pin

Pin the “other” fields

1. Make each .component match in height by
making parent .builder a flex container
(already done)
.builder {
 display: flex;
 align-items: stretch; /* default */
 flex-wrap: wrap;
 justify-content: space-between;
 margin: 0 0 40px -20px;
}

Pin the “other” fields

2. Make each a flex item and stretch to
full height, then make it a flex container with
vertical direction so its will stack
.component {
 flex: 1 1 200px;
 display: flex;
 flex-direction: column;
}

.component ul {
 flex: 1;
 display: flex;
 flex-direction: column;
 margin: 0;
 padding: 0;
 list-style: none;
}

Pin the “other” fields

3. Give “other” an auto top margin so all
free space left in is put above that
, pushing it to bottom of
.component li:last-child {
 margin-top: auto;
}

Pinning without flexbox

 Use display:table-cell for equal height
boxes

 Add bottom padding in ems to each box
 Use absolute positioning to pin “other” row in

space left by padding

Variation: two-piece main nav

.flexbox .list-nav {

 justify-content: flex-start;

 position: relative;

 top: -70px;

}

.flexbox #link-home { margin-right:20px; }

.flexbox #link-tumblr { margin-left:20px; }

.flexbox #link-party {

 margin-left: auto;

}

Why go to the trouble to use flexbox as
progressive enhancement now?”

I can use it, but why should I? “

Develop it as a career skill

 Essential layout tool in the future, especially
with responsive web design

 Syntax is not going to change much, so what
you learn now will still work later

 Better to learn something before it’s needed in
a project rather than during

when I can do the same thing with tags?”

Why should I do it with CSS “
–Zoe, circa 2002

when I can do the same thing with floats?”

Why should I do it with flexbox “

We all learn best by doing

 I learned a lot more about flexbox by building
demo site for this presentation—a lot

 Have to try it to learn it
 Using it for small cosmetic enhancements is

low-risk way to try it

It’s fun

 Great user experience is important, but great
developer experience is worthwhile too

 Enjoy your job to get better at your job
 Sometimes the little extra time is worth the

fun challenge and reward at the end

Learn more

Download slides and get links at
www.zomigi.com/blog/flexbox-presentation

Thanks!
Zoe Mickley Gillenwater
@zomigi
design@zomigi.com
zomigi.com | stunningcss3.com | flexiblewebbook.com

http://zomigi.com/blog/flexbox-presentation

	Flexbox
	I’m a web designer/front-end dev
	My portfolio site from 2000
	My portfolio site from 2000
	2003: Introduced to floats
	Problems with float layout
	What is flexbox?
	Which is which?
	Turn it on
	flex-direction
	Demo site:
	Demo: horizontal navigation
	Demo: horizontal navigation
	What’s the big deal?
	How the CSS might really look
	Keeping track of variants
	Use the variants you want.
	Setting a point of reference
	flex-wrap
	Problems with flex-wrap
	Summary: setting the stage
	Slide Number 22
	Add flexbox for larger widths
	Add flexbox for larger widths
	The flex property
	Defining the flex property
	Defining the flex property
	Breaking it down
	Let’s see it flex live
	Single-digit flex values
	My first attempt
	Flexbox fail
	My first attempt
	Forcing the wrap
	Live demo time again
	Why flex is great
	Less need for media queries
	Flex adjusts for margin
	Flex adjusts for quantity of items
	Flex can combine different units
	Flex can combine different units
	Flex can be proportional
	But be careful!
	If flex-basis isn’t 0px…
	You can use it now
	Single-line, full-width form
	Form without flexbox
	Form without flexbox
	Form with flexbox
	align-items
	Form with flexbox
	Override alignment on label
	Combine the two
	Another option: stack, center
	Narrow version
	Add Modernizr as needed
	Full-width nav bar
	Nav with flexbox
	justify-content
	Combine with inline-block
	Combine with inline-block
	Combine with table-cell
	Variation: pagination
	Variation: pagination
	Visual reordering with flexbox
	Visual reordering with flexbox
	Accessibility implications
	Tab order = HTML order
	Limitations of order property
	Pinned item at bottom
	Pinned item at bottom
	New “auto” margin behavior
	Pin the “other” fields
	Pin the “other” fields
	Pin the “other” fields
	Pinning without flexbox
	Variation: two-piece main nav
	I can use it, but why should I?
	Develop it as a career skill
	Why should I do it with CSS
	Why should I do it with flexbox
	We all learn best by doing
	It’s fun
	Learn more

