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Abstract 

The demand for improving the energy performance of buildings located in the historic districts of cities is 

as high as the current demand in other city districts. The need to reduce energy consumption and improve 

the comfort of inhabitants is compounded by the need to preserve an environment of heritage value. The 

selection of rehabilitation strategies at urban scale offers significant benefits, but makes the process long 

and costly. Therefore, methods or tools are necessary to establish a rapid assessment that facilitates 

strategic decision making and a deeper analysis of a reduced number of alternatives. 

This paper describes a method that supports decision making regarding the suitability of Energy 

Conservation Measures (ECMs) in historic districts at early stages. The method considers the 

improvement of the energy performance of buildings as a positive impact, balanced with the negative 

impacts that the implementation of ECMs could produce. A CityGML-based urban model allows the 

automation of a multi-scale assessment for different ECMs and provides possible global energy demand 

reductions. This method, combined with an economic evaluation, can be used by decision makers for 

large-scale energy retrofitting. The applicability of the method is demonstrated through implementation in 

the historic city of Santiago de Compostela.  
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1. Introduction 

The interest in improving the energy efficiency and thermal comfort of historic built environments arises 

from a double demand: the sociocultural need to preserve historic cities and the environmental need to 

reduce the global energy demand of buildings. The cultural heritage of a city has proven to be an 

important feature for the wellbeing of citizens and historic buildings are highly appreciated [1][2], but 

city dwellers frequently choose more modern buildings since they are perceived as more comfortable than 

historic ones.  



Buildings that are not used are rarely conserved, thus making the abandonment of historic cities a major 

urban conservation problem. The Council of Europe, in the Amsterdam Declaration of 1975, promoted 

the concept of integrated conservation establishing the improvement of the liveability and quality of life 

of their citizens as one of the main objectives of urban conservation [3]. Since then, the protection of the 

social context of historic urban environments has been seen as necessary as the preservation of the 

authenticity and integrity of their fabrics for urban conservation.  

There is a close relation between liveability and energy efficiency. The objective of Energy Conservation 

Measures (ECM) is to provide suitable environmental conditions to the inhabitants and minimize the used 

energy [4]. The improvement of the energy efficiency of historic districts in general and their housing 

stock in particular reduces the energy demand required to reach comfort standards, enhancing the quality 

of life of their habitants in an affordable way.  

Energy upgrading of historic buildings is not only a cultural issue but also important in terms of global 

environmental objectives in Europe since over 40% of the European housing stock was built before 1960 

[5]. The Housing Statistics in the EU show that 24% of residential buildings of the European building 

stock are pre 1945 [6] and that a significant percentage have some kind of heritage significance [7], 

requiring specific solutions to conserve and promote these values. 

Recent literature reviews regarding energy efficiency and thermal comfort in historic buildings highlight 

the importance of carefully balancing the improvement of energy efficiency measures and the integrity 

and authenticity inherent to historic buildings [8]. As recent research concludes, “there is a lack of a 

specific protocols aimed at providing well-balanced solutions for the energy efficiency improvement in 

historic and historical buildings” [9]. This lack is even more noticeable if we address the problem at the 

urban scale. 

Studies at the urban scale can consume large amounts of energy and money due to the amount of 

information that is required, often as a result of field work. 3D models are an increasingly accepted 

solution for storing and displaying information at both the building and urban scales. They offer the same 

benefits as 2D GIS but provide further functionality through the third dimension [10]. This paper 

describes an early-stage suitability assessment (ESSA) method of ECM in urban historic areas supported 

by 3D models. The method balances the benefits of a given ECM with its negative impact on heritage 

significance. The applicability and economic feasibility of ECMs at the urban scale complement the 



assessments. The method is tested in Santiago de Compostela (Spain). 

The rest of this paper is structured as follows: section 2 reviews the related work; section 3 describes the 

ESSA method and the multiscale data model that supports its automation; section 4 explains the 

implementation in the case of Santiago the Compostela; and, finally, the conclusions and future work 

section closes the paper. 

2. Related work 

The Heritage Impact Assessment (HIA), which originated in the framework of environmental impact 

assessments, is a tool to assess the acceptability of impacts caused by new interventions on cultural 

heritage assets. In this framework, the evaluation of the overall impact of an intervention is a function of 

the magnitude of the heritage value and the magnitude of the changes produced by the intervention. 

ICOMOS has developed guidance to implement the HIA specifically for World Heritage properties [11] . 

In this method, the positive and negative effects of new interventions are systematically assessed in 

contrast to the heritage significance values. This approach has been recently applied to urban 

development projects not only to reduce its negative potential impacts on cultural heritage but also to 

balance them with socio-cultural and economic benefits as beneficial impacts  [12]. 

Industrialisation brought mechanical systems to modern architecture, decisively changing the relationship 

between our cities and the environment. Preindustrial architecture was built in a time when the comfort 

could not rely on mechanical systems. This traditional architecture takes into account the constraints that 

the climate and the local material impose [13] and consequently has an instinctive care to the whole life 

cycle of building materials [14]. Pre-industrial buildings are different from an energy behaviour 

perspective to modern ones, and they are not necessarily worse [15]. The way that historic buildings 

address environmental conditions to provide comfort conditions to their inhabitants must be considered 

part of their cultural value and technical heritage. Moreover, affordable comfort makes easier to keep the 

historic buildings inhabited thus facilitating their conservation. Therefore, improving energy performance 

can be considered to have a positive impact on the heritage significance of the historic buildings, as long 

as it is aligned with the conservation of the other components of this heritage significance.  

Suitability of ECMs can be evaluated by balancing the positive impact to the preservation of cultural 

values (improvement of the energy efficiency and thermal comfort) with their negative values (impact on 

the authenticity and integrity of the building elements). From the cultural point of view, historic urban 



areas are information-rich environments, with multi-scale heritage values that envisage from urban 

landscape to building elements (such as windows, walls or chimneys) where a unitary and multi-level 

approach is required [16]. Although the district scale is the operative scale for the implementation of 

ECMs [17], the spatial decision processes for their implementation has to be addressed with a multi-scalar 

approach [18]. The implementation of ECMs in historic urban areas may thus benefit from information 

management strategies and tools, such as multi-scale and semantically enriched 3D city models [19]. 

Ross et al. defined a 3D city model as a georeferenced digital representation of objects, structures and 

phenomena that correspond to a real city [20]. The same authors identified CityGML as a very powerful 

interchange format for official 3D city models. CityGML is a multi-scale data model format that falls 

between the traditional 2D GIS and Building Information Modelling (BIM) scales [21]. Covering 

different levels of CityGML allows the reuse of the same data in different fields of application [22], and it 

was designed to store semantic and 3D multi-scale geometric information, considering urban and building 

scales [23]). In the comparison between different 3D exchange standards made by Vandysheva et al. [24], 

CityGML is the most complete standard, being the only one that supports different Levels of Detail 

(LoDs) and one of the most complete regarding the inclusion of both semantic and geometric information. 

The widespread use of CityGML across Europe is another advantage [25]. 

In energy modelling, the heating, cooling and ventilation demands of buildings, and therefore districts, 

are strongly dependent of the geometry of those buildings and their construction characteristics (semantic 

information). Consequently, the combination of spatial analysis with thematic data structuration offers an 

excellent way to calculate the energy demand at the urban level  [26] [27] [28] [29] [30], to estimate the 

energetic rehabilitation state of the buildings in a city [31] or to represent the energy-related key 

indicators of buildings and neighbourhoods within 3D building models  [32] [33]. The prediction of the 

energy demand of urban districts can be used as basis for simulating energy refurbishment scenarios, as in 

Eicker et al. [34], and thus for decision making regarding energy interventions [35].   

In the field of cultural heritage, the energy performance of heritage buildings has been mapped using 2D 

GIS [36], and 3D models have been widely used for the documentation of cultural heritage assets 

especially at object, building or archaeological site scales [37] [38]. However, as far as we are aware, 3D 

models have not been used for the suitability assessment of ECM in historic environments. 

3.    Method for suitability assessment of ECMs in historic urban areas 

Our objective is to develop an early-stage suitability assessment (ESSA) method that facilitates the rapid 



feasibility and suitability assessment of ECM at the urban level in historic urban areas using open data or 

public sources. A multi-scale model based on CityGML is used to structure the information necessary for 

the assessment of negative and positive impacts at urban level of each ECM and their applicability.  

The developed method adapts the ICOMOS guidance on HIA to be implemented with a multi-scale 

perspective. The urban interventions in valuable and vulnerable environments such as historic districts 

have to be carefully planned and managed to ensure that the new interventions are respectful with the 

heritage values in all the scales. It is possible to systematically link the impact of one ECM with the 

heritage value of the specific element that is affected (and not with the whole building) for an effective 

urban assessment. Then, interventions that were initially considered unacceptable at the building scale 

could be considered suitable at the component scale (e.g., window upgrading in highly protected 

buildings without their original windows). Therefore, the smaller the scale of the elements under 

assessment that is considered, the larger the obtained impact of the interventions.  

The elements with heritage values (officially listed or not) in cities can be grouped into seven key 

elements types: historic urban area (HUA), building, windows, roofs, external wall, internal wall and 

installations. These key elements comprise the important heritage and energy values of the historic 

buildings, as shown in Table 1. 

 

Table 1: Multi-scalarity of heritage and energy significances 

Although the façade works as a unitary construction element from an energy perspective, it has been 

divided in two elements (internal and external wall) because they usually comprise different heritage 

values, and specific retrofitting solutions can be applied. 

The ESSA method for ECMs in historic urban areas considers the improvement in the energy efficiency as a 

beneficial impact and compares it with the negative impacts caused by the application of the ECM that 

achieves this improvement. The symmetric approach to both assessments allows the creation of a Balanced 

HIA Index for ECMs applied in historic environments. The ESSA method, shown in Figure 1

HERITAGE SIGNIFICANCE ENERGY SIGNIFICANCE

Urban landscape Urban energy demand

Building
General heritage significance, 

statutory protection, shopfronts

Air infiltrations, occupation patterns, 

thermal mass

Windows
Windows, shadding devices, 

balconies, loggias
U value, G value

Roofs Chimneys, other roof features U value

External wall Mansonry, finishes, sculptures

Internal wall Interior finishes

Installations
Mechanical and electrical service 

installations
Efficiency, energy source

U value, orientation
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, has three main steps: 1) the calculation of the magnitudes regarding heritage significance and positive 

and negative impacts at the component and building levels, 2) the calculation of the HIA for all the 

buildings in the area and 3) the final suitability assessment of each ECM where the Balanced HIA Index 

is compared to the applicability and economic feasibility. The next subsections explain in detail each of 

these steps. 

 

Figure 1: Multi-scalar process of ESSA method 

3.1. Step 1: Calculation of the magnitudes of the heritage significance and positive and negative impact 

The first step consists of calculating the magnitudes of the heritage significance and positive and negative 

impacts. The magnitudes regarding heritage significance are set for each key element according to expert 

judgement or based on the statutory protection of the elements. Positive impacts (saved energy) and 

negative impacts (impact in Heritage Significance) are calculated for each building and for each ECM and 

classified according to an ordinal scale ranging from 0 to 4, as shown in Table 2. 



SCALE 

HERITAGE 

SIGNIFICANCE 

ASSESMENT 

(EFFESSUS) 

MAGNITUDE OF THE IMPACTS 

  
POSITIVE IMPACT  

(ESSA) 

NEGATIVE IMPACT 

(ICOMOS 2010) 

0 
Neutral or negative 

significance 

No impact or 

negligible impact 
Savings <10 kWh/year No appreciable change 

1 Minor significance Minor impact 
Savings from 10 to 20 

kWh/year 

The historic building element has 

slight changes that hardly affect it 

2 Major significance Moderate impact 
Savings from 20 to 40 

kWh/year 

The element is slightly different 

as a result of the intervention 

3 Outstanding significance Major impact 
Savings from 40 to 60 

kWh/year 
The element is significantly 

modified 

4 
Exceptionally outstanding 

significance 
Extreme impact Savings >60 kWh/year The element is totally altered 

Table 2: Scale for heritage assessment and magnitude of the impacts for each ECM 

Heritage Significance Assessment is calculated according to the EFFESUS method, which specifically 

assesses the multi-scale impact of ECMs in terms of the visual, physical and spatial values of historic 

environments [7].  

The positive impact represents savings in energy demand by applying ECMs. The calculation procedure 

for assessing this improvement in energy efficiency has to provide enough accuracy and flexibility to 

model the building stock of any historic district, aiming to accomplish this calculation without relying 

heavily on a large amount of input data. For a rapid assessment, the quasi-steady state monthly method 

described in EN ISO 13790:2008 (Calculation of energy use for space heating and cooling) has been 

considered [39], which offers the right balance between needed input and provided accuracy. Methods for 

energy diagnosis based on this standard have been already tested over several districts (e.g. in Germany 

and the Netherlands [25] [40]) and have been used with a multi-scale approach [41]. From the perspective 

of historic environments, the proposed method allows us to take into account in the calculations two 

specific issues that are particularly important for preindustrial buildings: air infiltration and thermal 

inertia [42] [43]. With this method, the baseline energy demand and the saved energy for each ECM for 

each building in the considered area can be calculated and assigned to a 0-4 scale, as can be seen in Table 

2.  

Regarding the negative impact of ECMs, plenty of work has been done in recent years analysing and 

classifying ECMs for existing buildings [44] [45][46]. Some of them have even focused on structuring 

and making accessible retrofitting measures suitable for historic buildings [47], but there has not been an 

attempt to structure those measures according to their impact on heritage significance. To measure the 

impact of each ECM in terms of the physical, spatial and visual authenticity and integrity, the scale 

proposed by ICOMOS has been adapted (see Table 2)   



The metrics that are necessary for the calculation of the required investment in a specific building include 

geometric and economic data. Geometric data can be directly obtained from the urban data model 

described in section 3.4. (e.g. the square metres of wall surface in need of insulation, the number of 

windows to be upgraded or substituted or the square metres of roof to be made airtight). The economic 

data can be obtained from local construction cost databases. 

3.2. Step 2: Calculation of Heritage Impact Assessment at building level 

According to the ICOMOS guidelines for the implementation of the HIA, the HIA is assessed considering 

the magnitude of impact (negative or positive) against the magnitude of the heritage significance of the 

element that is altered. In the ESSA method, both magnitudes are on a 0-4 scale, so a numerical approach 

is possible for the widespread HIA calculation at the urban level (unlike the approach from ICOMOS), as 

can be seen in Table 3. This output is positive for the positive impacts and negative for the negative ones 

and ranges from neutral impacts to extreme impacts. A distinctive colour code is used for visualization 

purposes. 

  
MAGNITUDE OF THE IMPACT (POSITIVE AND NEGATIVE) 

MAGNITUDE OF THE 

HERITAGE 

SIGNIFICANCE 

no impact/ 

negligible 
minor impact moderate impact major impact extreme impact 

0 1 -1 2 -2 3 -3 4 -4 

exceptional 

significance 
4 

neutral minor moderate large very large 

0 4 -4 8 -8 12 -12 16 -16 

outstanding 

significance 
3 

neutral minor moderate large large 

0 3 -3 6 -6 9 -9 12 -12 

major 

significance 
2 

neutral slight minor moderate moderate 

0 2 -2 4 -4 6 -6 8 -8 

minor 

significance 
1 

neutral neutral/ slight slight minor minor 

0 1 -1 2 -2 3 -3 4 -4 

neutral 

significance 
0 

neutral neutral neutral neutral neutral 

0 0 0 0 0 0 0 0 0 

Table 3: Matrix of HIA calculation (based on ICOMOS 2010) 

The symmetry of the approach makes possible the combination of both of them to obtain a comparable 

balanced HIA for each building (the negative HIA is subtracted to the positive HIA). A colour code again 

is used for a rapid visual assessment in the 3D model (Table 4).  

Balanced HIA  <-4 4 -3 -2 -1 0 1 2 3 4 >4 

Colour code                       

Table 4: Balanced HIA 

Additionally, the calculation of a negative HIA can be used as threshold of the applicability of the 

solution. It can be considered that an ECM that causes a moderate, large or very large negative impact 

(higher than a 4 HIA negative value) should not be applied to a building and therefore should be 

discarded for this specific building.  



3.3. Step 3: Calculation of the suitability of each ECM at district level 

For the evaluation of the suitability of each ECM for a historic urban area, the ESSA method requires the 

calculation at the urban level of three values: the balanced HIA index, the applicability and the economic 

feasibility, expressed in the energy saving for euro invested.  The Balanced HIA Index of an ECM is the 

average of the Balanced HIA Index for that ECM for each building in the district. The applicability is the 

percentage of buildings where a given ECM could be applied because its impact would not have more 

than a minor impact (the threshold is a negative HIA value of 4).  

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐻𝐼𝐴 ≤ 4

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠
∗ 100 

Equation 1: Calculation of Applicability 

The economic feasibility for each ECM is expressed as the obtained energy savings per euro invested 

(annual kWh/€), a metric commonly used to compare competing solutions for energy efficiency [48]. The 

required total investment for each ECM is calculated adding the cost of the implementation of each 

measure in all the buildings where the application is possible.  

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝐸𝐶𝑀𝑖 =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝐸𝐶𝑀𝑖 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑤𝑖ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐻𝐼𝐴≤4

∑ 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐸𝐶𝑀𝑖 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐻𝐼𝐴≤4
  

Equation 2: Calculation of Economic Feasibility  

3.4. Multi-scale information model 

The ESSA method described in this paper provides a rapid assessment of ECMs that requires no or little 

fieldwork and provides results at the urban scale, but at the same time the measures need to be applied at 

the building scale, considering the geometric characteristics of the buildings and their main elements 

(facade, roof, windows and installations) and the applicability of the measures according to the 

characteristics or preservation requirement. In these cases, a multi-scale information model that 

coherently combines geometric and semantic information is the most suitable option for the 

representation of the information. In our case, we used a urban model based on the CityGML standard. 

Within the framework of the EFFESUS project, a multi-scale urban model that works in different scales 

(e.g., urban, building, fabric, elements) and integrates energy and cultural heritage information has been 

developed [19]. This model aims to be the reference model for the diagnosis, decision making and 

management of the energy efficiency in historic urban areas; thus, its aim is broader than what is needed 

for the ESSA method. 

A CityGML-compliant data model needs to be enriched with additional attributes for the applicability of 

the model to the assessment methodology. The implementation of the urban model requires: 



1) The definition of the hierarchy of the key elements according to the elements defined in the 

CityGML schema. The structure of the elements of the city that is considered under the 

CityGML schema is generic due to its universality. As the concept of a district is not defined in 

CityGML, the HUA element has been defined using the grouping concept cityObjectGroup, 

which allows the aggregation of arbitrary city objects according to user-defined criteria. Each 

building can contain building installations in this case focused on the energy installations. 

Higher detail in the building description provides information about building boundary surfaces. 

Such elements represent walls and also the roof. Boundary surfaces can include openings, which 

can be of two types: doors and windows. 

2) The extension of the semantic potential of the standard. Four specific CityGML Application 

Domain Extensions (ADEs) were designed in the EFFESUS project to structure all the semantic 

information necessary for the decision making and management of ECM in historic urban areas: 

a cultural heritage extension, energy extension, indicator extension and dynamic extension for 

monitoring purposes. For the rapid assessment described in this paper, only the first two 

extensions are used. They are described in sections 3.4.1 and 3.4.2.  

3.4.1. Cultural heritage domain extension 

 

The Cultural Heritage ADE includes information at the scale of the district, building, and building 

envelope. The model structures information regarding historic significance according to three main 

aspects (visual, physical and spatial) and for elements at different scales: the district scale (e.g., roof 

scape, street scape or public spaces), building scale (e.g., external walls, roof, windows, or balconies) and 

dwelling level (e.g., internal walls, doors or interior finishes). Information regarding the main 

construction materials as well as their properties is set at the level of the building envelope, and the 

general consideration of the integrity and state of preservation is established at the building level (e.g., 

historic type, integrity or physical state). Formal protection and law restrictions for heritage preservation 

are identified at both the building and envelope levels. All this information makes possible very detailed 

HIA assessments, but for the rapid assessment described in this paper, all this information is translated to 

the key elements (Table 1) and the one with the highest value of the three levels of heritage significance 

(visual, spatial and physical) is adopted. A detailed description of the Cultural Heritage ADE can be 

found in Chapter 3 of the thesis of A. Egusquiza [49] 



3.4.2. Energy performance domain extension 

The energy performance extension includes information at different scales: district, building, building 

envelope and building installation (demand and generation installations). Information related with climate 

is referenced at the district level. At the building level, information related with geometry (i.e., gross floor 

area and storey height), occupancy (i.e., internal gains, thermal mass and air infiltration) and use (i.e., 

comfort temperature and ventilation strategy) is set. The material properties (i.e., U values and g Value), 

type (i.e., façade or adjoining wall) and size of the windows and relation between opaque and opening 

areas are identified at the building envelope level. At the building installation level, the energy 

installations (e.g., type and efficiency) are referenced. A detailed description of the Energy Performance 

ADE can be found in Chapter 3 of the thesis of A. Egusquiza [49] 

In Table 5, the data required for the energy assessment are presented. The required data represents the 

name of the required parameter for the energy assessment, the data model indicates the name of the 

parameter in the data model, the key element indicates the scale (HUA, building, façade, roof or wall), 

ECM indicates if this parameter value changes when applying an ECM, ADE shows if the parameter 

belongs to the core of the CityGML or it has been included in the extensions, and the input data indicate 

the source of the parameter. 

REQUIRED 

DATA              

DATA MODEL KEY ELEMENT ECM ADE INPUT DATA 

Situation Latitude, longitude HUA No No Cadaster 

Total Area area, storeysAboveGround Building No Yes Calculated 

Thermal inertia ThermalMass Building Yes Yes Manual 

Air renovation 

(winter) 

AirInfiltration Building Yes Yes Manual 

Air renovation 

(summer) 

VentilationStrategy Building Yes Yes Manual 

Storeys height StoreyHeightAboveGround Building No No Calculated 

Set point cooling summerConfortTemperature Building No Yes Manual 

Set point heating winterConfortTemperature Building No Yes Manual 

Internal gains Class, use Building No No Cadaster 

Area isAdjoiningWall, orientation, 

area 

External wall, roof, 

internal walls 

No Yes Calculated 

% opening openningPercentage External wall, roof No Yes Manual 

U opaque opaqueAverageU External wall, roof, 

internal walls 

Yes Yes Manual 

U windows openningAverageU External wall, roof Yes Yes Manual 

G value gValue External wall, roof Yes Yes Manual 

Exposure  isAdjoiningWall External wall, roof, 

internal walls 

No Yes Calculated 

Thermal Bridge thermalBridge External wall, roof Yes Yes Manual 

Shading  strategy hasShadowStrategy External wall, roof Yes Yes Manual 

Table 5: Required data for energy calculation 



4. The implementation in the case of Santiago de Compostela  

Santiago de Compostela, universally known as the final destination of the St. James's Way pilgrimage 

route, is located in the north-west of Spain with approximately 100.000 inhabitants, whose historic 

district was declared a World Heritage Site by UNESCO in 1985. In 1997, the “Plan especial de 

protección e rehabilitación da cidade histórica” (Special Protection and Rehabilitation Plan for the 

Historic City Core of Santiago de Compostela-SPRP) was approved with the goal of addressing the 

preservation and restructuring of the old town. The area selected as the case study is the historic district of 

the city of Santiago de Compostela (See Figure 2). 

 

Figure 2: Historic District de Santiago de Compostela 

A detailed analysis of the original constructive type of the buildings of Santiago de Compostela and its 

evolution can be found in the work of Guallart Ramos et al. [50]. Two main urban layouts can be 

highlighted: Rueiro housing and the medieval housing. In the selected area, there are mainly buildings of 

the second type. The buildings were built within two granitic walls that form a layout of parallel lines 

perpendicular to the main streets. Those buildings have usually two or three floors with a width that 

ranges from 4 to 7 metres. The original structural concept was based on a light structure of wood (often 

reused wood) within the granitic walls. Table 6 summarizes the description of the different elements of 

the historic district of Santiago using the information of Guallart Ramos et al. [50] as seen in the work of  

Méndez [51] and the adopted values for calculations (i.e., thickness and U value). 

ELEMENT MATERIAL DESCRIPTION OBSERVATIONS 
Thickness 

(m) 

U value 

(W/m2C) 

Facade 
Granite stone  

 

Two layers of granite 

stone with a filling of 

earth or small pieces 

Sometimes they have a 

protecting external finishing 

of lime mortar 

0,6  2,3 

Roof 
Wooden structure  Wooden structure covered 

with tile 
 0,124  1,31 

Windows 

Singled glazing 

without framing 

External aligned with the 

façade or internal window 

High infiltrations but 

wooden shutters produces a 
buffering effect 

0,1 

 

5,6 

 



ELEMENT MATERIAL DESCRIPTION OBSERVATIONS 
Thickness 

(m) 

U value 

(W/m2C) 

Singled glazing with 
wooden frame 

Internal window High infiltration lower 
buffering effect 

Table 6: Description of the elements of the Santiago de Compostela (source: Guallart Ramos et al. [50] as seen in 

Méndez [51])  

According to the data from SPRP, only 35 buildings (0.04%) from the considered area have gas 

infrastructure.  

4.1. Multi-scale information model for Santiago de Compostela 

The EFFESUS data model has been completed for the case study of Santiago de Compostela with 

semantic information available from public data sources. Most of the parameters at the building level 

have been collected from the Spanish cadastre and have been processed to automatically be included in 

the data model. Most of the parameters at district level are obtained from the climate database of the 

Spanish meteorological agency and are manually introduced into the data model. As a result, all buildings 

(819) of the historic district are represented in LoD2 by independent facades and the roof. The building 

height has been obtained from LiDAR data.  

The magnitude of the heritage significance of the different key elements has been calculated taking as a 

basis the statutory protection of the different elements that they represent. The information for the 

heritage significance assessment has been obtained from the database of the SPRP, which was updated in 

2009 and is accessible as open data. The database includes all the protected elements at the building and 

components levels. The 62 types have been grouped into the 7 previously defined key elements according 

to the logic shown in Table 1, and their heritage value have been translated to the proposed 0-4 scale, as 

can be seen in Table 7. 

SOURCE VALUE  

(SPRP DATABASE) 
ADOPTED VALUE 

HUA HUA 

UNESCO World Heritage site 4 Exceptional significance  

BUILDING BUILDING 

1 Monumental buildings of outstanding value 4 Exceptional significance  

2 
Building of singular features and of major 

value 
3 Outstanding significance  

3 
Buildings with special features regarding 

architecture and environment 
2 Major significance  

4 Interesting buildings in the urban context 1 Minor significance  

0 Not listed 0 Neutral significance  

PROTECTED ELEMENTS 
WINDOWS, ROOFS, EXTERNAL WALL, INTERNAL WALL AND 

INSTALLATIONS 

E Exceptional 
4 Exceptional significance If building HS = 4 

3 Outstanding significance If building HS = 1-3 

C Common 
2 Major significance If building HS = 2-4 

1 Minor significance If building HS = 1 



N 
Missing Value 0 Neutral significance  

D 
Decontextualized Value 0 Neutral significance  

Table 7: Correlation between source values and adopted values for Heritage Significance 

The heritage significance assessment has also been used to establish the scope of the assessment. 

Buildings with too high and too low values have been discarded, the first ones because their exceptional 

nature demands a specific evaluation and the second ones because they do not present any element with 

heritage significance. In total, 741 buildings from 819 (90%) have been considered. The majority (66.8%) 

of these buildings are of minor significance. 27.2% are of major significance, and only 5.9% are of 

outstanding significance. The 72% of buildings has some degree of heritage significance in their 

windows, 58% in their exterior walls or roofs and only 3% in their interior elements (walls and interior 

installations). 

  

4.2. Energy Conservation Measures 

Within the EFFESUS project, 77 ECMs were analysed to determine their impact on heritage significance. 

11 of these ECMs have been selected to be tested in Santiago. To test the ESSA method, the main 

criterion for selection has been to choose solutions with a clear impact in energy behaviour and in the 

materiality of the buildings. Solutions that improve the airtightness of the building and the thermal 

characteristics of the envelope, impact different key elements and use different strategies or materials for 

the same purpose have been selected. The following table (See Table 8) shows the selected ECMs and the 

used values for the calculations. More details regarding ECMs analysed within the project can be found in 

the EFFESUS Energy efficiency solutions repository [52]. 

ECM 
KEY 

ELEMENT 

IMPACT ON 

ENERGY 

EFFICIENCY 

IMPACT ON 

HERITAGE 

SIGNIFICANCE* 
COST 

Modified 

Parameter 

New 

value 
V P S Euro Unit 

1 

Airtightness 

of the whole 
building 

Sealing of all 

openings and joints 

Building 

general 

Air 

infiltration 
n=0,75 0 2 0 6,16 l.m 

2 
Airtightness 

of windows 

Sealing of all 

windows 
Windows 

Air 

infiltration 
n=1 2 2 0 6,16 l.m 

3 
Airtightness 

of the roof 

Airtightness 

membrane to 
underside roof 

Roofs 
Air 

infiltration 
n=1 1 2 0 1,05 m2 

4 

Exterior 

insulation 
with a 

composite 

system 

10 cm of a 

composite system 

External 

wall 
U value 

0,3 (W/m 

2K) 
3 4 3 81,9 m2 

5 

Exterior 

insulation 

plaster 

5 cm of insulation 
plaster 

External 
wall 

U value 
0,8 (W/m 

2K) 
3 3 1 66,84 m2 



6 

Diffusion 

closed 

interior 
insulation 

10 cm of mineral 

wool 

Internal 

wall 
U value 

0,3 (W/m 

2K) 
3 4 2 9,50 m2 

7 

Diffusion-

open, 
capillary-

active interior 

insulation 

5 cm of IQ-Therm 
Internal 

wall 
U value 

0,50 

(W/m 2K) 
3 3 2 45,00 m2 

8 

Insulation of 
an existing 

cavity 

5 cm of perlite 
External 

wall 
U value 

0,65 

(W/m 2K) 
0 1 0 46,76 m2 

9 
New glazing 

systems 

Install high 

performance 

window and glazing 

Windows 

U value 
1,8 (W/m 

2K) 
4 3 1 394 unit 

Air 

infiltration 
n=1 

10 

Secondary 

double 
glazing 

Secondary double 

glazing with wooden 
frame and shutters 

Windows 

U value 
1,47 

(W/m 2K) 

3 2 2 441 unit 

Air 

infiltration 
n=1 

11 
Insulation of 

the roof 
40 mm of EPS Roofs U value 

0,7 (W/m 

2K) 
0 1 1 8,11 m2 

*Impact on heritage significance determined by experts in the EFFESUS project 

Table 8: Evaluated ECMs in the case of Santiago with their impact in energy efficiency, heritage significance and 

cost (V= visual, P= Physical and Spatial) 

4.3. Calculations 

As previously mentioned, the energy performance of the building has been assessed considering mainly 

the international standard ISO 13790:2008 (“Energy performance of buildings- Calculation of energy use 

for space heating and cooling”), based on a quasi-steady state monthly method. Each building has been 

treated as a single zone, with residential use and data monthly typical day values for climate being used. 

Due to this residential use and the characteristic of the case study, low internal gains have been 

considered (2 W/m2). The Thermal Inertia has been considered medium high (400 kJ/m2·K), and the 

airtightness of the buildings has been considered low (1.5 air changes per hour). It has been taken into 

account that a traditional building needs to be ventilated at a higher rate than a modern building, usually 

approximately 0.8 to 1.0 air changes [43]; therefore, high levels of airtightness have not been pursued. 

The Thermal Bridge factor has been considered to have no impact; therefore, a value of 1 (f=1) has been 

used.  

A specific tool has been developed for automatizing the calculations of the Heritage Impact Assessment 

at building level for all the buildings in the selected case study. The tool is based on the implementation 

of EN ISO 13790:2008 and an ad hoc implementation for the assessment of the application of ECMs on 

the Impact in Heritage Significance based on the ICOMOS guidelines.  

For the positive impact, the energy saved per year with each ECM was calculated for each building 

comparing the baseline energy demand with the energy demand obtained with the parameters modified by 



the implementation of an ECM. The results have been translated to the scale explained in Table 2 and 

compared with the overall heritage significance of the building to obtain the positive HIA for each 

building and ECM, as explained in Table 3. The negative HIA has been calculated similarly: the negative 

impact has been evaluated comparing the most severe impact of ECMs (visual, physical or spatial) with 

the heritage significance of the element that is being altered. In both cases, a result from 0 to 16 is 

obtained as seen in Table 3: positive for energy efficiency improvement and negative for the impact on 

heritage significance. The combination of the two is the Balanced HIA index.  

4.4. Results  

The application of the ESSA method to the study area of Santiago de Compostela provides numerical 

results, which allow the comparison of different refurbishment strategies applicable to the historic urban 

area. 

 

Figure 3: Results of the average Positive HIA, Negative HIA and Balanced HIA Index for each ECM 

To have a global vision of the impact of each solution for the whole historic urban area, average values 

for each ECM have been calculated for the three HIA values (i.e., positive, negative and balanced). The 

ESSA method offers an easy way to see the balance between the positive and negative impacts, as can be 

seen in Figure 3. There is a group of solutions that offers a better balance between the negative and 

positive impacts: the solutions that improve the thermal characteristics of the envelope by insulating them 

from inside or using the internal cavity (ECM 6, 7 and 8).Their positive impacts are similar to insulation 

from the exterior (ECM 4 and 5), but their negative impacts are considerably lower, as they do not impact 

in exterior walls, which usually have heritage significance. Similarly, the improvement of the energy 

performance of the openings, by changing them (ECM 9) or adding a secondary glazing (ECM 10), has a 

high negative impact (windows and balconies are architectural features that frequently have high cultural 



value, and in the case of Santiago, 72% of the buildings have windows with some degree of heritage 

significance) that is not always compensated by their high positive impact, although in the case of 

secondary glazing, the impacts are positive, so it could be an ECM that is suitable after careful design. 

The ECMs that have an impact on the roof (ECM 3 and 11) have, on average, a slight or neutral 

beneficial impact.  

The total energy savings and necessary investment have been calculated for an application threshold of 4 

for the negative impacts (i.e., only the cases where the negative impact is minor, slight or neutral are 

considered). The results are summarized in Table 9. The results do not aim to offer a direct answer to the 

question of what are the best ECMs for a specific historic urban area. Their objective is to offer a basis for 

evidence-based decision making that has to be contrasted with the objectives and target of each city. 

 

ECM Strategy 
Element of 

impact HIA-  HIA+ HIA  
Total savings 

(MWh/ year) 

Total invest. 

(million €) 

Saving/ invest. 

(MWh/€ year) 

App. 

(%) 

1 
Improving 

the air 

tightness 

Building 

general 
-2,78 2,87 0,09 6476 1,85 3,50 94 

2 Windows -2,49 1,43 -1,06 4992 1,16 4,32 99 

3 Roof -1,54 1,43 -0,11 5073 48,20 0,11 99 

4 

Improving 

thermal 

performan

ce of the 

envelope 

External wall -4,62 4,65 0,04 6156 14,23 0,43 44 

5 External wall -3,49 3,85 0,39 4647 11,62 0,40 44 

6 Internal wall -0,33 4,65 4,32 16079 4,32 3,72 96 

7 Internal wall -0,33 4,41 4,08 14527 20,47 0,71 96 

8 External wall -1,15 4,13 2,98 14274 22,74 0,63 100 

9 Windows -4,98 4,83 -0,15 7992 3,10   2,58 48 

10 Windows -3,74 4,86 1,12 8524 3,72   2,29 48 

11 Roof -0,77 0,11 -0,66 2124 0,85   2,50 100 

Table 9: Results of each ECM for all the historic urban area (HIA- = Negative Heritage Impact Assessment; HIA+= 

Positive Heritage Impact Assessment, HIA= Balanced Heritage Impact Assessment Index; Total invest. = total 

required investment; Saving/ invest. = Savings per euro invested, App. = Applicability) 

The final suitability assessment of ECMs comes from a comparison of the Balanced HIA Index with 

economic feasibility (energy saved per euro invested) and applicability, as can be seen in the Figure 4. 



  

Figure 4: Suitability Assessment of the ECM 

The cost effectiveness and applicability of the solutions give added criteria for selection within groups of 

ECMs with similar strategies and HIA values. As previously mentioned, the ECMs for internal insulation 

(ECM 6, 7 and 8) are clearly with the best balanced HIA but the insulation with diffusion closed material 

has clear economic advantages (although a more careful study regarding the hygrothermal consequences 

is necessary for its implementation). In the external insulations (ECM 4 and 5), the impacts are quite 

balanced, but their low applicability (44%) has to be considered. Improving the airtightness of the 

building (ECM 1 and 2) is clearly a cost-effective solution, but its suitability depends on the impact of the 

ECM in the heritage values of the windows.  

The colour code (see Table 3 and Table 4) offers rapid visual access to the results of each ECM for each 

building, as can be seen in Figure 5. 

 

Figure 5: Visualization of the results for the ECM6 (Diffusion closed interior insulation). From left to right: Negative 

HIA, positive HIA and balanced HIA index 

5. Conclusions and Future work 

This paper proposes a novel method for early-stage suitability assessment of ECMs at the historic urban 

level based on the multi-scale implementation of the concept of HIA. A multi-scale information model 



based on the CityGML standard has been designed and extended to account for the heritage and energy 

values of buildings in historic urban areas. The use of a Balanced HIA index and colour-coded maps as a 

rapid assessment mechanism is also proposed. This index, combined with the economic assessment and 

applicability of ECMs, can provide support to authorities and local bodies in decision-making processes 

regarding the sustainability of a historic district. Finally, an application of this method is demonstrated in 

a case study using the historic city of Santiago de Compostela, Spain, with 741 buildings and 11 ECMs. 

This systematic method opens a path for more agile and operative methods of assessing energy efficiency 

strategies that can be used at the urban scale. The recently approved European Standard, EN 16883 

(Guidelines for Improving the Energy Performance of Historic Buildings) aims to provide a normative 

working procedure for the planning and selection of measures based on the analysis of information on a 

historic buildings and the assessment of the impact of the measures in relation to the preservation of the 

cultural values of the building. The ESSA method is compatible with the standard and can be used to 

generate a long list of retrofit measures for a whole historic urban area. Recent research regarding 

methodologies for energy assessment and retrofitting of historic towns has highlighted the need to focus 

on specific local ECMs trying to avoid the application of solutions from different context [16]. The ESSA 

method can also be used with local specific ECMs as long as their thermal and heritage attributes are 

characterized.  

As the data model structures wide-range data regarding the energy and architectonic characteristics of 

historic buildings, further assessments to be included in the HIA are possible. For a negative HIA, one of 

the most necessary is to include the compatibility assessment of ECMs. The design of the cultural 

heritage extension of the model already includes the characteristics of the buildings and components that 

can trigger a risk (chemical or physical) if combined with specific ECMs. The included risks are 

efflorescence and salt reaction, corrosion, risk related with moisture content and moisture movement, 

surface and interstitial condensation, structural movement, material contraction and expansion and 

reversibility issues. For a positive HIA, it would be necessary to broaden the perspective from energy 

demand in the operative phase to a whole life cycle assessment.  

Acknowledgements 

The authors gratefully acknowledge the European Commission for providing financial support during the 

research under the EFFESUS project (Grant Agreement Number 314678). The authors also would like to 

thank Ander Romero and Michael Kraxner whose invaluable inputs lead to significant improvement of 



this paper. 

References 

[1] T.J. Scotto, K.M. Leyden, A. Goldberg, Untangling what makes cities liveable: happiness in five cities, Proc. 

ICE - Urban Des. Plan. 165 (2012) 127–136. doi:10.1680/udap.11.00031. 

[2] D. Bradley, J. Bradley, M. Coombes, E. Tranos, Sense of Place and Social Capital and the Historic Built 

Environment, 2009. 

[3] Congress of the European Architectural Heritage, Declaration of Amsterdam, (1975). 

[4] A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energy Rev. 12 (2008) 

2265–2300. doi:10.1016/j.rser.2007.05.001. 

[5] M. Economidou, B. Atanasiu, C. Despret, J. Maio, Europe’s buildings under the microscope, 2011. 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Europe?s+buildings+under+the+microsco

pe#0 (accessed April 13, 2015). 

[6] K. Dol, M. Haffner, Housing Statistics in the European Union 2010, The Hague, 2010. 

http://www.bmwfw.gv.at/Wirtschaftspolitik/Wohnungspolitik/Documents/housing_statistics_in_the_europe

an_union_2010.pdf. 

[7] P. Eriksson, C. Hermann, S. Hrabovszky-Horváth, D. Rodwell, EFFESUS Methodology for Assessing the 

Impacts of Energy-Related Retrofit Measures on Heritage Significance, Hist. Environ. Policy Pract. 5 (2014) 

132–149. doi:10.1179/1756750514Z.00000000054. 

[8] A. Martinez-Molina, I. Tort-Ausina, S. Cho, J.L. Vivancos, Energy efficiency and thermal comfort in 

historic buildings: A review, Renew. Sustain. Energy Rev. 61 (2016) 70–85. doi:10.1016/j.rser.2016.03.018. 

[9] L. Mazzarella, Energy retrofit of historic and existing buildings. the legislative and regulatory point of view, 

Energy Build. 95 (2015) 23–31. doi:10.1016/j.enbuild.2014.10.073. 

[10] K. Ka Yin Wong, Economic Value of 3D Geographic Information, London, UK, 2015. 

[11] ICOMOS, Guidance on Heritage Impact Assessments for Cultural World Heritage Properties Purpose, 

(2010). doi:10.1017/CBO9781107415324.004. 

[12] B. Seyedashrafi, M. Ravankhah, S. Weidner, M. Schmidt, Applying Heritage Impact Assessment to Urban 

Development: World Heritage Property of Masjed-e Jame of Isfahan in Iran, Sustain. Cities Soc. (2017). 

doi:10.1016/j.scs.2017.01.002. 

[13] H. Coch, Chapter 4—Bioclimatism in vernacular architecture, Renew. Sustain. Energy Rev. 2 (1998) 67–87. 

doi:10.1016/S1364-0321(98)00012-4. 

[14] M. Rigillo, F. Castagneto, S. Gilchriest, Environmental Performance of Urban Space: Rainfall Management 

in Sieti Village (SA), in: Civiltà Delle Acque, Passaro A., Luciano, Napoli, 2009. 

[15] R. Cantin, J. Burgholzer, G. Guarracino, B. Moujalled, S. Tamelikecht, B.G. Royet, Field assessment of 

thermal behaviour of historical dwellings in France, Build. Environ. 45 (2010) 473–484. 

doi:10.1016/j.buildenv.2009.07.010. 

[16] M. De Fino, A. Scioti, E. Cantatore, F. Fatiguso, Methodological framework for assessment of energy 

behavior of historic towns in Mediterranean climate, Energy Build. 144 (2017) 87–103. 

doi:10.1016/j.enbuild.2017.03.029. 

[17] A. Koch, Energy balance of urban quarters for the development of energy efficiency and management 

strategies, in: Proc. 5th Urban Res. Symp. - Cities Clim. Chang. Responding to an Urgent Agenda, 

Marseille, 2009. 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Energy+balance+of+urban+quarters+for+

the+development+of+energy+efficiency+and+management+strategies#0 (accessed April 13, 2015). 

[18] G. Barbano, A. Egusquiza, Interconnection between scales for friendly and affordable sustainable urban 

districts retrofitting, in: 6th Int. Build. Phys. Conf. IBPC 2015, 2015. 

[19] A. Egusquiza, J.L. Izkara, Facilitating historic districts energy retrofitting through a comprehensive 

multiscale framework, in: EECHB 2016 – Energy Effic. Comf. Hist. Build., Brussels, 2016. 

[20] L. Ross, J. Bolling, J. Döllner, B. Kleinschmit, Enhancing 3D City Models with Heterogeneous Spatial 

Information: Towards 3D Land Information Systems, 12th Agil. Int. Conf. GI Sci. (2009) 113–133. 

[21] G. Gröger, T.H. Kolbe, C. Nagel, K.-H. Häfele, OpenGIS City Geography Markup Language (CityGML) 

Encoding Standard, Version 2.0.0, Open Geospatial Consortium, 2012. 

https://portal.opengeospatial.org/files/?artifact_id=47842. 



[22] F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, A. Çöltekin, Applications of 3D city models: State of the art 

review, ISPRS Int. J. Geo-Information. (2015). doi:10.3390/ijgi4042842. 

[23] G. Gröger, L. Plümer, CityGML - Interoperable semantic 3D city models, ISPRS J. Photogramm. Remote 

Sens. 71 (2012) 12–33. 

[24] N. Vandysheva, P. Van Oosterom, R. Wouters, 3D cadastre modelling in Russia, GIM Int. 26 (2012) 18–21. 

[25] R. Nouvel, C. Schulte, U. Eicker, D. Pietruschka, V. Coors, CityGML-based 3D city model for energy 

diagnostics and urban energy policy support, in: Proc. BS2013 13th Conf. Int. Build. Perform. Simul. 

Assoc., 2013: pp. 218–225. http://www.ibpsa.org/proceedings/BS2013/p_989.pdf (accessed April 27, 2015). 

[26] A. Strzalka, J. Bogdahn, V. Coors, U. Eicker, 3D city modeling for urban scale heating energy demand 

forecasting, HVAC&R Res. 17 (2011) 526–539. 

http://www.tandfonline.com/doi/abs/10.1080/10789669.2011.582920 (accessed April 27, 2015). 

[27] R. Kaden, T. Kolbe, City-wide total energy demand estimation of buildings using semantic 3d city models 

and statistical data, in: ISPRS Ann. Photogramm. Remote Sens. Spat. Inforamtion Sci., Istanbul, Turkey, 

2013: pp. 27–29. http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-

W1/163/2013/isprsannals-II-2-W1-163-2013.pdf (accessed April 27, 2015). 

[28] R. Kaden, T.H. Kolbe, Simulation-based total energy demand estimation of buildings using semantic 3D city 

models, Int. J. 3-D Inf. Model. 3 (2014) 35–53. 

[29] R. Nouvel, M. Zirak, H. Dastageeri, V. Coors, U. Eicker, Urban Energy Analysis Based on 3D City Model 

for National Scale Applications, IBPSA Ger. Conf. (2014). 

[30] D. Monien, A. Strzalka, A. Koukofikis, V. Coors, U. Eicker, Comparison of building modelling assumptions 

and methods for urban scale heat demand forecasting, Futur. Cities Environ. 3 (2017). 

doi:https://doi.org/10.1186/s40984-017-0025-7. 

[31] D. Carrión, A. Lorenz, T.H. Kolbe, Estimation of the energetic rehabilitation state of buildings for the city of 

Berlin using a 3D city model represented in cityGML, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 

XXXVIII-4 (2010) 31–35. 

[32] A. Krüger, T.H. Kolbe, Building analysis for urban energy planning using key indicators on virtual 3D city 

models - The Energy Atlas of Berlin, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX (2012) 

145–150. 

[33] P. Mittermeier, N. Essig, A. Khoja, A. Romero, A holistic Methodology for District Retrofitting projects 

management through an Integrated Decision Support Tool, in: SBE 2016 Conf. Proc., Hamburgh, 2016: pp. 

62–71. 

[34] U. Eicker, R. Nouvel, E. Duminil, V. Coors, Assessing Passive and Active Solar Energy Resources in Cities 

Using 3D City Models, Energy Procedia. 57 (2014) 896–905. doi:10.1016/j.egypro.2014.10.299. 

[35] A. Romero, J.L. Izkara, A. Mediavilla, I. Prieto, J. Perez, Multiscale building modelling and energy 

simulation support tools, in: eWork Ebus. Archit. Eng. Constr. ECPPM 2016. CRC Press, 2016: pp. 316–

322. 

[36] K. Fabbri, M. Zuppiroli, K. Ambrogio, Heritage buildings and energy performance: Mapping with GIS tools, 

Energy Build. 48 (2012) 137–145. doi:10.1016/j.enbuild.2012.01.018. 

[37] F. Soler, F.J. Melero, V.M. Luzón, A complete 3D information system for cultural heritage documentation, 

J. Cult. Herit. 23 (2016) 49–57. doi:10.1016/j.culher.2016.09.008. 

[38] D.M. Campanaro, G. Landeschi, N. Dell’Unto, A.M. Leander Touati, 3D GIS for cultural heritage 

restoration: A “white box” workflow, J. Cult. Herit. 18 (2016) 321–332. doi:10.1016/j.culher.2015.09.006. 

[39] International Organization of Standard (ISO), EN ISO 13790: Energy Performance of Buildings—

Calculation of Energy Use for Space Heating and Cooling, (2008). 

[40] U. Eicker, R. Nouvel, C. Schulte, 3D-Stadtmodelle für die Wärmebedarfberechnung, in: Fourth Ger. IBPSA 

Conf., 2012: pp. 1–7. http://www.ibpsa.org/proceedings/bausimPapers/2012/BauSIM2012_103.pdf 

(accessed April 27, 2015). 

[41] S. Dalla Costa, E. Roccatello, M. Rumor, A cityGML 3D geodatabase for buildings’ energy efficiency, in: 

28th Urban Data Manag. Symp., ISPRS Archives, 2011: pp. 19–24. 

[42] J.A. Orosa, T. Carpente, Thermal Inertia Effect in Old Buildings, Eur. J. Sci. Res. 27 (2009) 228–233. 

[43] English Heritage, Energy conservation in traditional buildings, London, 2008. 

[44] D. Kolokotsa, C. Diakaki, E. Grigoroudis, G. Stavrakakis, K. Kalaitzakis, Decision support methodologies 

on the energy efficiency and energy management in buildings, Adv. Build. Energy Res. 3 (2009) 121–146. 

doi:10.3763/aber.2009.0305. 



[45] Z. Ma, P. Cooper, D. Daly, L. Ledo, Existing building retrofits: Methodology and state-of-the-art, Energy 

Build. 55 (2012) 889–902. doi:10.1016/j.enbuild.2012.08.018. 

[46] L. De Boeck, A. Audenaert, L. De Mesmaeker, Improving the energy performance of residential buildings: a 

literature review, (2013). https://lirias.kuleuven.be/bitstream/123456789/435739/1/13HRP13.pdf.pdf 

(accessed April 7, 2014). 

[47] S.T.B.A. STBA, RESPONSIBLE RETROFIT GUIDANCE WHEEL, (2017). www.responsible-

retrofit.org/wheel. 

[48] R. Galvin, Thermal upgrades of existing homes in Germany: The building code, subsidies, and economic 

efficiency, Energy Build. 42 (2010) 834–844. doi:10.1016/j.enbuild.2009.12.004. 

[49] A. Egusquiza, Multiscale information management for historic districts’ energy retrofitting : a framework, a 

methodology, a model, Universitat Politècnica de Catalunya, 2015. http://www.tdx.cat/handle/10803/334399 

(accessed January 12, 2016). 

[50] J. Guallart Ramos, Á. Pardo Panero, I. Osés Camiruaga, P. Ferreiro Tomé, R. Hermida Fernández, A 

arquitectura historica e os criterios da rehabilitacion. A rehabilitacion de Santiago. A cidade historica de 

Santiago de Compostela, soporte da vivenda do seculo XXI., (2002). 

[51] P. Liñares Mendez, Sustainable refurbishment housing in Santiago de Compostela, Escuela Técnica Superior 

de Arquitectura de Madrid, 2012. 

[52] G. Savina, S. Paglilula, M. Scotto, D2.5: Energy efficiency solutions repository built up, 2013. 

http://www.effesus.eu/wp-content/uploads/2016/01/D-2.5_Energy-efficiency-solutions-repository.pdf.  

  

 


