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 Buisán  Tella 
 B0  B12  B0  B12 

Soil organic C - -  - - 
Total N - -  - - 

pH + +  = + 
Electrical Conductivity = -  = - 

Σ Exchangeable Cations - =  = - 
Cation Exchange Capacity = -  = = 
Σ Water-extractable cations = -  = - 

N-NH4+ = +  = + 
N-NO3- = =  = - 

Available P = -  = = 
Changes in the studied soil properties immediately (B0) and one year (B12) after 19 

burning as compared to unburned soils. 20 

 21 

 22 

Highlights 23 

 Prescribed burning is used to remove shrubs and recover subalpine pastures 24 

 We studied its effect on soil chemical properties immediately and one year after 25 

 Fire had few direct effects on nutrient content but it decreased one year later 26 

 New SOM inputs induced changes in cation exchange capacity and 27 

exchangeable cations 28 

 Research further in time is needed to assess the sustainability of this practice 29 

 30 
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Abstract 36 

The abandonment of the traditional pastoral activities in the subalpine grasslands of the 37 

Central Pyrenees (NE-Spain) has resulted in shrub encroachment processes that are 38 

dominated by species such as the Echinospartum horridum. Therefore, prescribed 39 

burning has been recently readopted in this region as a management tool to stop the 40 

spread of shrubs and recover grasslands. We aimed to assess the effect that this 41 

practice may have on soil chemical properties such as SOC, N, pH, EC, water-42 

extractable and exchangeable cations (Ca2+, Mg2+ and K+), cation exchange capacity, 43 

inorganic N forms (N-NH4+ and N-NO3-) and available P. We studied two prescribed 44 

burnings conducted at the subalpine level of the Central Pyrenees in the municipalities 45 

of Tella-Sin (April, 2015) and Buisán (November, 2015). At each site, the topsoil was 46 

sampled in triplicate at soil depths of 0-1, 1-2 and 2-3 cm immediately before (U), 47 

immediately after (B0) and one year after (B12) burning, and litter and/or ashes were 48 

removed prior to sampling. The results indicate that in the B0 samples, burning 49 

significantly reduced the SOC and N contents as well as the exchangeable Ca2+ and 50 

Mg2+ at 0-1 cm, whereas the rest of the studied properties remained virtually unchanged. 51 

However, in the B12 samples we detected a decrease of nutrient content that was 52 

probably related to leaching and/or erosion processes. 53 

Keywords: soil nutrients, cation exchange capacity, prescribed fire, shrub encroachment, 54 

pasturelands 55 

1. Introduction 56 

Pasturelands in the Central Pyrenees (NE-Spain) have traditionally been maintained by 57 

livestock grazing and occasional burnings (Nadal-Romero et al., 2018). However, due to 58 

rural exodus and the reduction in livestock densities, this activity has suffered from 59 

remarkable reductions over the past decades (Komac et al., 2013). The mesophytic 60 

pastures that can be found in the Pyrenees below the timberline require shrub 61 



management (i.e., grazing, burning or clearcutting) for survival (Halada et al., 2011); 62 

therefore, the reduction in grazing activity led to shrub encroachment processes that 63 

were dominated by species such as Echinospartum horridum (Vahl) Rothm (Komac et 64 

al., 2013; Nuche et al., 2018). The development of this species poses a threat to 65 

biodiversity and an increase in flammability risks (Caballero et al., 2010) because it forms 66 

large and dense monospecific covers (Komac et al., 2011).  67 

A suitable procedure to reduce shrub encroachment in grazing lands can be the use of 68 

prescribed burnings (Goldammer & Montiel, 2010), which are defined as the planned use 69 

of fire to achieve precise and clearly defined objectives (Fernandes et al., 2013). 70 

Nevertheless, fire can affect most soil properties directly by burning and indirectly as a 71 

consequence of the new post-fire conditions (Santín & Doerr, 2016). The extents of the 72 

effects of fire on soils are highly influenced by environmental conditions; so, prescribed 73 

burnings are conducted when the soil and fuel moisture, temperature and topography 74 

conditions are favorable, to limit the impact of the burnings on soils and prevent fire from 75 

escaping (Vega et al., 2005; Molina, 2009). However, prescribed burnings show 76 

contrasting effects on soil properties, as has been recently reviewed in Alcañiz et al. 77 

(2018). 78 

Previous works dealing with prescribed burnings of Echinospartum horridum in the 79 

Central Pyrenees have shown that this practice may severely affect soil organic matter 80 

(SOM) content (Armas-Herrera et al., 2016, 2018; Girona-García et al., 2018a, 2018b) 81 

in the first few centimeters of the topsoil. The combustion of SOM and vegetation may 82 

produce an increase in the available nutrients by either the mineralization of organic 83 

compounds or the production of ashes (González-Pérez et al., 2004; Knicker, 2007). 84 

Then, the incorporation of ashes into the soil can lead to increases in pH and electrical 85 

conductivity (EC) (Certini, 2005). The literature shows that the available concentrations 86 

of Ca2+, Mg2+, K+ and Na+ are commonly increased after prescribed burning (Arocena & 87 

Opio, 2003; Lavoie et al., 2010; Alcañiz et al., 2016). Inorganic N forms can also increase 88 



after burning from either the contribution of ashes or the mineralisation of soil organic N. 89 

For this reason, it is common to detect ammonium gains immediately after burning that 90 

will result in nitrates increases via nitrification over time (Gundale et al., 2015; San 91 

Emeterio et al., 2016). Fire may also boost the contents of available P in the soil via both 92 

the contributions of ashes as well as the mineralization of its organic forms that can occur 93 

even at relatively low temperatures (Úbeda et al., 2005; Badía-Villas et al., 2014; 94 

Larroulet et al., 2016; García-Oliva et al., 2018). This enrichment in nutrients produced 95 

by fire may promote the rapid establishment of herbaceous species. However, another 96 

consequence of SOM destruction is the loss of adsorption sites in the soil, thereby 97 

reducing the cation exchange capacity (CEC) (Badía & Martí, 2003). In this way, 98 

depending on the severity and recurrence of burning, these practices could also lead to 99 

nutrient losses (Wanthongchai et al., 2008). Nevertheless, the CEC usually remains 100 

unchanged after prescribed burning (Larroulet et al., 2016; Fonseca et al., 2017). 101 

The main objective of our study was to detect the effects of prescribed burning of 102 

Echinospartum horridum for pasture reclamation on soil chemical properties, focusing 103 

on soil nutrient content and availability, at the subalpine level of the Central Pyrenees 104 

(NE-Spain). We analyzed the immediate effects of burning on total soil organic C (SOC), 105 

total N, pH, EC, water-extractable and exchangeable cations, CEC, inorganic N forms 106 

(N-NH4+ and NO3-) and available P, as well as their changes one year after the fire at soil 107 

depths of 0-1, 1-2 and 2-3 cm. 108 

2. Material and methods 109 

2.1. Study sites 110 

The study sites are located in two subalpine areas of the Central Pyrenees (NE-Spain) 111 

in the municipalities of Buisán and Tella-Sin (Fig. 1). The Buisán plot is located in an 112 

area with a mean slope of 10 % at 1760 m.a.s.l., while the Tella plot was located on a 113 

steeper slope of 25 % at 1875 m.a.s.l., and both sites face south.  The mean annual 114 



temperature in Buisán is 6 ºC and 5 ºC in Tella. The mean annual precipitations are 1500 115 

mm (Buisán) and 1700 mm (Tella). The topsoil Ah horizons (0-5 cm) of both sites are 116 

characterized by high SOM contents, high CEC and fine textures; the pH in Buisán is 117 

neutral whereas it is moderately acidic in Tella. Soils in Buisán are classified as Eutric 118 

Cambisol and those in Tella as Eutric Epileptic Cambisol (IUSS Working Group WRB, 119 

2014), and the complete soil characterization of the study sites can be found in Armas-120 

Herrera et al. (2016) and Girona-García et al. (2018a), respectively. In Buisán and Tella, 121 

the bedrock is composed of fine detritic sediments over clayey limestones alternated with 122 

Eocene marls. As a consequence of the decreased grazing activity and the prohibition 123 

of fire after 1980, these areas have been invaded by Echinospartum horridum, which 124 

covered more than 75 % of the surface area before the prescribed burning was 125 

conducted. Pastures in the study sites that surround the Echinospartum horridum shrubs 126 

are composed of herbaceous species such as Bromus erectus Huds., Festuca 127 

nigrescens Lam., Agrostis capillaris L., Briza media L., Onobrychis pyrenaica (Sennen) 128 

Sirj., Trifolium pratense L. and Trifolium repens L. 129 

 130 



Fig. 1. Location of the Buisán and Tella areas of study 131 

 132 

2.2. Prescribed burning characteristics 133 

The prescribed burnings were conducted in April, 2015 (Tella) and November, 2015 134 

(Buisán) by qualified firefighters of the EPRIF (Wildfire Prevention Team) of Huesca and 135 

BRIF (Reinforcement Brigades against Wildfires) of Daroca units. The environmental 136 

conditions met the established parameters for Echinospartum horridum burning: no 137 

heavy rainfall took place prior to the burning date, the temperature was between 5 and 138 

15 ºC, the relative humidity of the air was 35-70 %, and the wind speed ranged from 5 to 139 

10 km h-1. An approximation of the temperatures reached during burning at each site 140 

was obtained via type-K thermocouples placed in one sampling point at each of the 141 

different soil depths (Table 1). The Buisán burning was performed by applying the point 142 

source fire technique and creating a grid of spot ignitions that burned from the east to 143 

the west flanks that followed a slow progression (0.63 ha h-1). In Tella, a backing fire was 144 

ignited to spread against the wind and downslope, and it was faster (2.82 ha h-1) than 145 

that in Buisán. At both sites, the aerial biomass of Echinospartum horridum was mostly 146 

eliminated by burning, resulting in burned trunks, partially charred litter and patches of 147 

black and gray ashes. 148 

2.3. Soil sampling 149 

At each burning site, we chose three representative sampling spots that were covered 150 

by Echinospartum horridum prior to burning. At each of these points, after removing the 151 

shrubs and organic layers from an approximate surface area of 0.25 m2, the topsoil Ah 152 

horizon was carefully sampled at depths of 0-1, 1-2 and 2-3 cm (Fig. 2). These samplings 153 

were carried out early in the morning immediately before the prescribed burnings were 154 

conducted, and unburned (U) samples were collected and considered the control. To 155 

detect the immediate effects of fire (B0), we sampled points adjacent to U shortly after 156 



burning (<2 h), after removing ashes and charred remains. Additionally, in both study 157 

sites, points contiguous to U and B0 were sampled one year later (B12) to assess the 158 

short-term evolution of soil properties after burning. 159 

 160 

Fig. 2. Sampling design followed in each study site. Unburned (U), immediately after (B0) and one year after burning 161 

(B12) samples 162 

 163 

2.4. Sample preparation and analysis 164 

The collected soil samples were air-dried at room temperature until constant weight and 165 

sieved through a 2 mm mesh sieve. A small portion of each sieved sample was then 166 

ground to fine powder, from which total soil organic C (SOC) and total nitrogen (N) were 167 

determined using an elemental analyzer (Vario Max CN Macro Elemental Analyser, 168 

Germany).  169 

Soil pH was determined from potentiometric measurements of a 1:5 (w v-1) suspension 170 

of soil and distilled water and the electrical conductivity (EC) was determined using an 171 

electrical conductivity meter in a 1:10 (w v-1) suspension of soil and distilled water 172 

(McLean, 1982). Water-extractable (WE) cations (Ca2+, Mg2+ and K+) in the soil samples 173 

were determined by atomic absorption (Mg2+) and emission (Ca2+ and K+) spectrometry 174 

(AAS/AAE Spectrometer Varian SpectrAA 110) in 1:10 (w/v) filtered extracts of soil and 175 

distilled water after 2 hours of shaking. (Sharpley & Kampath, 1988). Ammoniacal (N-176 

NH4+) and nitric (N-NO3-) forms of nitrogen were determined according to the methods in 177 



Bremner & Keeney (1965) in 1:5 (w v-1) filtered extracts of soil and 1M KCl after 30 178 

minutes of shaking. The ammonia was separated by steam distillation from an aliquote 179 

of the extract and collected in a boric acid solution; then, it was determined by titration 180 

using 0.005N H2SO4. Then, in the same extract, Devarda alloy was added to reduce the 181 

remaining nitrate to ammonium and the same procedure was followed for its distillation 182 

and titration. Available P was determined following the method of Olsen & Sommers 183 

(1982). P was extracted using 0.5M NaHCO3 buffered at pH 8.5 (1:20 w v-1of soil and 184 

extractant). Then, an aliquot of each sample was taken and its P content was determined 185 

colorimetrically by measuring the concentration of the complex formed by the reaction of 186 

phosphate with acid ammonium molybdate, using a UV/visible spectrophotometer (Cole-187 

Parmer, Jenway 6300 Spectrophotometer, United Kingdom). To determine the 188 

exchangeable Ca2+, Mg2+ and K+ as well as the cation exchange capacity (CEC), a 189 

sequential extraction procedure was followed. Exchangeable cations were determined 190 

by atomic spectroscopyin the leachate obtained after three consecutive extractions (total 191 

shaking time of 15 minutes) with 1M CH3COONa buffered at pH 8.2 (ratio 1:20, w v-1). 192 

After that, samples were washed three times with ethanol (ratio 1:20, w/v) to remove the 193 

excess of the displacing solution without disturbing the adsorbed Na+. Then, the 194 

adsorbed Na+ was displaced after three consecutive extractions (total shaking time of 15 195 

minutes) with 1M CH3COONH4 buffered at pH 7 (ratio 1:20, w v-1), and it was determined 196 

by atomic emission spectrometry, considering its value equal to that of the CEC (Bower 197 

et al., 1952; Rhoades, 1982). 198 

2.5. Statistical analysis 199 

To identify the differences in the studied soil properties related to the treatments (burning 200 

and time), as well as their variations within soil depths, one-way ANOVA tests were used 201 

because the interaction between time and depth was significant in most cases. Sampling 202 

time (U, B0, B12) was considered a fixed factor, and the data were split by soil depth (0-203 

1, 1-2 and 2-3 cm) to detect the effects of fire and time at each of the studied soil depths. 204 



Furthermore, changes in soil properties among soil depths were tested using soil depth 205 

(0-1, 1-2 and 2-3) as a fixed factor, for which the data were split by sampling time (U, B0, 206 

B12). These tests were performed using StatView for Windows version 5.0.1 (SAS 207 

Institute Inc. Cary, North Carolina, USA). We also conducted a principal component 208 

analysis (PCA) to identify further relationships between soil properties, using a Pearson 209 

correlation, with XLSTAT software (XLSTAT 2017: Data Analysis and Statistical Solution 210 

for Microsoft Excel. Addinsoft, Paris, France). 211 

3. Results and discussion 212 

3.1. Prescribed burning intensity and severity 213 

The fire severity of both prescribed burnings was estimated as low-moderate based on 214 

the indicators defined by Parsons et al. (2010). After burning, part of the litter was 215 

charred, and a thin layer of black to gray ash could be found with recognizable litter 216 

beneath it. The soil structure remained unchanged (Girona-García et al., 2018b), and 217 

aggregates were not weakened by the consumption of soil organic matter. The 218 

Echinospartum horridum shrubs were mostly consumed, and only their main trunks 219 

remained. The partial consumption of litter allowed for the transfer of heat into the soil, 220 

especially at the Tella site, as can be observed in the temperature analysis shown in 221 

Table 1. It is noteworthy that these measurements can only be considered observations, 222 

and the fire intensity was approximated because the temperatures were measured only 223 

at one point in each site. In the Buisán site, a maximum temperature of 438 ºC was 224 

recorded on the soil surface and the temperature remained over 400 ºC for 4.8 minutes. 225 

However, little heat transfer into the soil was detected as the temperatures at a depth of 226 

1 cm depth raised to only 31.1 ºC and very slight increases were observed in deeper soil 227 

layers. On the other hand, at the Tella burning, temperatures at a depth of 1 cm reached 228 

a maximum of 397 ºC and stayed in a range of 300-400 ºC for 3 minutes, whereas at 2 229 

cm, temperatures increased to 121 ºC and stayed at 100-200 ºC for 8.5 minutes. Apart 230 

from the fire intensity and soil thermal inertia, the contrasted heat transfer into the soil 231 



that was observed during burning could be related to the water content of the soil (Table 232 

1). The high pre-fire soil water content in Buisán (137 ± 3 %) and Tella (100 ± 32 %) 233 

could have limited the heating of the soil as heating is normally slowed until after 234 

complete water vaporization (Campbell et al., 1995; Badía et al., 2017). According to 235 

that, the soil water content in Tella tended to decrease after burning at the three studied 236 

soil depths, while in Buisán the water content decreased at only the 0-2 cm depth. From 237 

all the gathered data, we can conclude that the Tella burning was characterized by a fast 238 

(2.82 ha h-1) and intense fire, whereas the Buisán burning was less intense but the fire 239 

residence time was longer (0.63 ha h-1). 240 

Table 1 General characteristics of the prescribed burnings of Buisán and Tella. Temperature analysis comprises the 241 

elapsed time since a temperature increase was detected until it stabilised during the cooling stage 242 

Study Site   Buisán   Tella 

Burning Date  November, 2015  April, 2015 

E. horridum cover (%)  75  80 

Estimated Fuel Loads (kg m-2):     

Aerial biomass  9.24  9.86 

Litter (OL + OF)  1.62  1.73 

Burned surface (ha)  3.8  12.5 

Wind speed (km h-1)  <8  10-15 

Firing technique  Point Source Fire  Backing Fire 

Mean flame height (m)  1  0.4 

Mean flame length (m)  1.5  1.7 

Burning rate (ha h-1)  0.63  2.82 

Temperature analysis  Surface 1 cm 2 cm 3 cm    Surface 1 cm 2 cm 3 cm 

Maximum temperature (°C)  438 31.1 18.5 18.5   n.d. 397 121 n.d 

Initial temperature (°C)  13.1 9.77 9.60 8.93   n.d. 16.0 16.2 n.d 

Final temperature (°C)   27.5 22.2 17.6 18.2    n.d. 25.5 25.7 n.d 

Duration (min)            

< 100 °C  17.5 30.0 30.0 30.0   n.d. 33.0 42.0 n.d. 

100 - 200 °C  6.00 0.00 0.00 0.00   n.d. 5.00 8.50 n.d. 

200 - 300 °C  4.00 0.00 0.00 0.00   n.d. 9.50 0.00 n.d. 

300 - 400 °C  2.00 0.00 0.00 0.00   n.d. 3.00 0.00 n.d. 

> 400 °C   0.50 0.00 0.00 0.00     n.d. 0.00 0.00 n.d. 



Pre-fire soil water content (%, w w-1)   n.d. 137 72.8 58.8     n.d. 100 108 84.2 

Post-fire soil water content (%, w w-1)   n.d. 60.7  55.7 53.9      n.d. 74.5 78.6 59.0  

n.d.: not determined 243 

 244 

 245 

3.2. Effects of fire on soil organic matter 246 

The soil organic C (SOC) and total N (N) contents were very high in the unburned (U) 247 

soils of both the Tella and Buisán sites (Fig. 3). At the Buisán site, the SOC concentration 248 

was 243 ± 10 g kg-1 at 0-1 cm and decreased to 78.8 ± 14.1 g kg-1 at 2-3 cm soil depth; 249 

and the N content was of 14.6 ± 0.7 g kg-1 at 0-1 cm and decreased to 6.15 ± 0.91 g kg-250 

1 at 2-3 cm. On the other hand, a higher SOC content was detected at the Tella site, 251 

which was 338 ± 59 g kg-1 at 0-1 cm and decreased to 216 ± 77 g kg-1 at 2-3 cm. The N 252 

content at this site was also higher than that in Buisán, which was 20.9 ± 2.9 g kg-1 at 0-253 

1 cm and decreased to 15.2 ± 4.6 g kg-1 at 2-3 cm. 254 

 255 

Fig. 3. Soil organic C (SOC) and total N (N) in unburned (U), immediate post-fire samples (B0) and one year after burning 256 

samples (B12) for each soil depth and site (mean value ± SE of three field replicates). For same sampling depth, lowercase 257 

letters indicate significant differences among sampling times (p <0.05). 258 

 259 

 260 



At the Tella site, prescribed burning (B0) significantly reduced the SOC at 0-1 cm (-38 261 

%) compared to U and a decreasing trend, that was close to statistical significance was 262 

also detected at soil depths of 1-2 cm (p = 0.0770) and 2-3 cm (p = 0.0633) cm soil depth. 263 

The N content also showed a decreasing trend (-24 %) at 0-1 cm that was close to 264 

significance (p = 0.0716). At the Buisán site, only the first cm of soil was significantly 265 

affected, where burning decreased the SOC and N contents in B0 by -52 % and -44 %, 266 

respectively. This severe disturbance could be explained by the temperatures reached 267 

during prescribed burning, as explained in the previous section, since the combustion of 268 

SOM begins when temperatures in the range of 200-250 ºC are reached (Certini, 2005; 269 

Santín & Doerr, 2016). Furthermore, the slow spread of fire at the Buisán site indicates 270 

a higher fire residence time compared to that of the Tella site, which could explain the 271 

greater SOC and N reductions. Fire effects were still detectable at both sites one year 272 

after burning (B12) and recovery signs in SOC and N contents were not observed when 273 

compared to the contents of the U samples. The lack of short-term changes in SOC and 274 

N at the Tella site could be related to the removal of ash and charred material by wind 275 

and/or rain after burning. On the other hand, at the Buisán site, ashes mixed with partially 276 

charred litter were still observed at B12, suggesting limited incorporation of ash into the 277 

soil. Extensive discussions of the effects of prescribed burning on SOC and N at the 278 

Buisán and Tella sites can be found in Armas-Herrera et al. (2016, 2018) and Girona-279 

García et al. (2018a). 280 

3.3. Fire effects on soil pH, electrical conductivity and nutrients 281 

Unburned (U) soils at the Buisán site showed pH values between 7.19 ± 0.10 and 7.55 282 

± 0.12 at 0-1 cm and 2-3 cm, respectively (Fig. 4). In B0, an increase in pH was observed 283 

at 0-1 cm (7.59 ± 0.10), and this effect was still present at B12 (7.68 ± 0.07). On the other 284 

hand, at the Tella site, soils presented more acidic pH values (average of 4.5 at all 285 

studied depths) in U soils than those at the Buisán site, and these values remained 286 

unchanged in the B0 samplings indicating that this property was not affected by the fire. 287 



However, at the Tella site, the pH of the B12 samples dramatically increased at all 288 

studied soil depths to values between 6.26 and 6.70. These pH increases in acidic 289 

topsoils could be related to a series of factors such as the: 1) accumulation of K and Na 290 

hydroxides, 2) formation of Mg and Ca carbonates and/or 3) elimination of organic matter 291 

acidic groups (Knicker, 2007 and references therein). 292 

 293 

Fig. 4. pH and electrical conductivity (EC) in unburned (U), immediate post-fire samples (B0) and one year after burning 294 

samples (B12) for each soil depth and site (mean value ± SE of three field replicates). For same sampling depth, lowercase 295 

letters indicate significant differences among sampling times (p <0.05). 296 

 297 

A decreasing gradient in electrical conductivity (EC) with depth was detected in the 298 

Buisán U samples while in the Tella U samples, no differences were observed among 299 

soil depths (Fig. 4). The fire induced no direct changes in EC at either the Buisán or Tella 300 

sites although, in B12, the EC significantly decreased in all the studied soil depths in both 301 

sites.  302 

In the U soils of Buisán, the content of water-extractable cations (WE-Ca2+, WE-Mg 2+ 303 

and WE-K+) was higher at 0-1 cm than that in the underlying layers (Fig. 5). After burning 304 

(B0), no changes were detected in WE-Ca2+ and WE-K+, although WE-Mg2+ was 305 

significantly decreased at 0-1 cm. In B12, significant reductions were detected in WE-306 

Ca2+ (0 to 3 cm) and WE-Mg2+ (0-1 cm) compared to U and B0 and WE-K+ remained 307 



unchanged. However, at the Tella site, the WE-cations showed no differences in B0, but 308 

their contents also decreased at all studied soil depths in B12, indicating losses by soil 309 

erosion and/or leaching (Francos et al., 2018). Our results contrast those traditionally 310 

reported in the literature after fire as it is common to find increases in pH, EC and WE-311 

cations related to the release of cations by the combustion of SOM, as well as the 312 

incorporation of ashes into the soil (Badía & Martí, 2003; Pereira et al., 2011; Badía et 313 

al., 2014; Bodí et al., 2014). Nevertheless, in our study, these effects could not be 314 

observed because soils were sampled immediately after burning, and ashes were 315 

meticulously removed prior to sampling; however, these effects could have probably 316 

occurred within the first year after burning. Furthermore, the results obtained in B12 317 

indicate that ashes were either redistributed at the soil surface or leached downwards 318 

into the soil, as previously observed by Bodí et al. (2014), since WE cations, and thus 319 

EC, decreased at all studied soil depths. On the other hand, the differences observed in 320 

our study compared to those conducted in Mediterranean environments could be related 321 

to the high mean annual precipitation of our study sites. 322 



 323 

Fig. 5. Water-extractable cations (WE-Ca2+, WE-Mg2+ and WE-K+), available P and inorganic N forms (N-NH4
+ and N-324 

NO3
-) in unburned (U), immediate post-fire samples (B0) and one year after burning samples (B12) for each soil depth 325 

and site (mean value ± SE of three field replicates). For same sampling depth, lowercase letters indicate significant 326 

differences among sampling times (p <0.05). 327 

 328 

 329 



Inorganic N species (N-NH4+ and N-NO3-) at both the Buisán and Tella sites showed no 330 

differences between U and B0 at the studied soil depths (Fig. 5). At both sampling times 331 

and sites, the nitrate content was higher than the ammonium content, indicating the 332 

occurrence of active nitrification processes. Despite the reduction in N in B0 at 0-1 cm, 333 

no changes were observed in ammonium or nitrate contents, which is unexpected 334 

because they are by-products of organic N combustion (Certini, 2005). Furthermore, 335 

apart from organic N mineralization, increases in inorganic N forms are usually found 336 

after prescribed burning due to the incorporation of ashes (Alcañiz et al., 2018 and 337 

references therein). Thus, the removal of ashes prior to sampling explains the neutral 338 

effects of prescribed burning on soil inorganic N forms that were observed in our study 339 

immediately after the fire. In B12, no changes were detected in ammonium or nitrate 340 

contents at the Buisán site. Nevertheless, at the Tella site, an increase in the ammonium 341 

content and a decrease in the nitrate content were detected at all studied soil depths in 342 

B12. This finding contrasts the inorganic N dynamics after fires that are commonly 343 

reported in the literature, in which an immediate pulse in ammonium content is followed 344 

by increases in nitrate content related to nitrification processes up to one year later 345 

(Gundale et al., 2005; Badía et al., 2014; San Emeterio et al., 2016). This could be a 346 

consequence of the reduction in soil biological activity after burning that is evidenced by 347 

a drastic reduction in microbial biomass (Armas-Herrera et al., 2016, 2018) and thus, 348 

nitrification rates because ammonium could be adsorbed in the soil and nitrates could be 349 

leached when they are not rapidly taken up by soil biota or plants (Mroz et al., 1980). 350 

These N losses could have a negative impact on vegetation succession if there is no 351 

prompt plant regrowth (Knicker, 2007).  352 

The available P contents at both the Buisán and Tella sites remained virtually unaffected 353 

by fire (Fig. 5), which is in accordance with the results of previous studies conducted 354 

after prescribed and experimental burnings (Niemeyer et al., 2005; Marcos et al., 2009). 355 

Many studies have also indicated that available P increases after burning (Úbeda et al., 356 



2005; Badía-Villas et al., 2014; Larroulet et al., 2016), and these increases are mainly 357 

related to the incorporation of ashes into the soil. In our case, ashes were removed prior 358 

to sampling, so this effect could not be detected in B0. On the other hand, the lack of 359 

changes in available P is unexpected given the temperatures that were reached in the 360 

topsoil, as organic P mineralization occurs at temperatures over ~200 ºC (García-Oliva 361 

et al., 2018), which would have led to increases in available P (Fontúrbel et al., 2016). 362 

However, the absence of differences might also be related to the fact that P losses by 363 

volatilization do not occur until temperatures of ~775 ºC are reached (Bodí et al., 2014). 364 

Santín et al. (2018) also observed that available P did not significantly change after a 365 

moderate/high-severity prescribed eucalypt forest burning, and this result was related to 366 

the oligotrophic characteristics of that forest system. One year after burning, the available 367 

P values at the Tella site were heterogeneous, and no significant differences were found 368 

when these values were compared to those of U and B0. Nevertheless, the available P 369 

significantly decreased at the Buisán site at all studied soil depths. The losses of 370 

available P after burning may be due to leaching (Pereira et al., 2012), and similar results 371 

were also observed by Alcañiz et al. (2016) one year after prescribed understory burning 372 

in a Mediterranean forest.  373 

3.4. Fire effects on soil cation exchange complex 374 

The cation exchange capacity (CEC) in the U samples of both study sites showed high 375 

values, that ranged from 31.7 to 41.6 cmol(+) kg-1. Burning had no significant effects on 376 

CEC, as seen in its B0 values (Fig. 6), although a decreasing trend was detected at the 377 

Buisán site. Similar results were found by Larroulet et al. (2016) and Fonseca et al. 378 

(2017), who also detected no significant changes in CEC after prescribed shrub burning 379 

in semi-arid regions. The CEC in soils is tightly related to SOM, so the greater impacts 380 

on SOC and N that were observed at Buisán site could explain the decreasing trend 381 

exhibited by this property. This suggests that although SOM was reduced by burning, 382 

this reduction had not reached a threshold in which CEC was significantly affected 383 



because SOM content was still high after the fire. Additionally, experimental studies that 384 

addressed the effects of heat on CEC indicated that this property could be affected when 385 

temperatures exceed 250 ºC (Badía & Martí, 2003), 300 ºC (Inbar et al., 2014) or 350 ºC 386 

(Thomaz, 2017) for a certain period of time. In the B12 samples, the CEC values at the 387 

Tella site showed no differences when compared to the U and B0 samples; nevertheless, 388 

in Buisán, the CEC values decreased significantly at depths of 0 to 3 cm. As SOM 389 

undergoes mineralization and/or stabilization processes, CEC increases concomitantly 390 

(Stevenson, 1982). Then, the detected decrease in Buisán in the B12 samples could be 391 

related to the incorporation of new SOM that is less transformed and therefore has lower 392 

CEC values.  393 

 394 

Fig. 6. Exchangeable cations (E-Ca2+, E-Mg2+ and E-K+) and cation exchange capacity (CEC) in unburned (U), immediate 395 

post-fire samples (B0) and one year after burning samples (B12) for each soil depth and site (mean value ± SE of three 396 



field replicates). For same sampling depth, lowercase letters indicate significant differences among sampling times (p 397 

<0.05). 398 

 399 

 400 

The exchangeable cation contents (E-Ca2+, E-Mg2+ and E-K+) were similar in the U soils 401 

of both study sites, with Ca2+ being the predominant cation (Fig. 6). At the Buisán site, 402 

burning decreased E-Ca2+ at 0 to 2 cm and Mg2+ at 0 to 1 cm, whereas E-K+ remained 403 

unchanged. On the other hand, at the Tella site, a significant reduction in E-Mg2+ and a 404 

decreasing trend in E-Ca2+ were observed at all studied soil depths in the B0 samples. 405 

In the same way as at the Buisán site, K+ showed no changes after burning in the Tella 406 

site. In this way, the results show the loss of divalent exchangeable cations after burning 407 

at both sites, which is probably a consequence of the destruction of organic functional 408 

groups (González-Pérez et al., 2004). Consequently, the exchange sites would have 409 

been occupied by K+, therefore showing no differences in its content in the B0 samples.  410 

Our findings contrast the results found in the literature that show that increases (Arocena 411 

& Opio, 2003; Lavoie et al., 2010) or neutral effects (Wang et al., 2013; Fontúrbel et al., 412 

2016; Larroulet et al., 2016; Fonseca et al., 2017) on exchangeable cations occur after 413 

prescribed burning. Apart from the differences in burning intensity and vegetation type, 414 

the contrasting effects detected in our study compared to the literature could be related 415 

to the removal of ash prior to sampling and the detailed sampling scale since the studies 416 

mentioned above sampled greater soil thicknesses, which could dilute the effects of 417 

burning (Badía-Villas et al., 2014). One year after burning at the Buisán site, E-Ca2+ 418 

recovered to U values and E-K+ showed an increasing trend, although E-Mg2+ still 419 

showed values similar to B0 at the Buisán site. An opposite trend was detected at the 420 

Tella site, where E-Ca2+ significantly decreased, K+ significantly increased, and E-Mg2+ 421 

showed a recovering trend in all the studied soil depths. The different evolutions of these 422 

properties observed at both sites could be attributed to surface processes and 423 



topographical characteristics. The Buisán site is characterized by low slopes, and no 424 

signs of erosion were observed during the study period. Furthermore, one year after 425 

burning, charred remains and ashes were still present in the plots. This could have been 426 

caused by the snowfall that followed the burning, which stabilized the ash and remaining 427 

litter, allowing a slower release of cations over time (Hamman et al., 2008). On the other 428 

hand, the burning at the Tella site was performed in April on a steep slope, and was 429 

followed by spring rains and summer drought, which could have resulted in leaching and 430 

erosion processes. In this way the probable short-term increase in cations after the fire 431 

was reversed by erosion and/or leaching, explaining the loss of exchangeable cations 432 

(Francos et al., 2016). 433 

3.5. General discussion 434 

SOM is of vital importance for nutrient cycling and cation exchange because nutrients 435 

can be volatilized or transformed into available forms via the combustion of SOM 436 

(Knoepp et al., 2005). Moreover, SOM, as well as the clay type and content determine 437 

the CEC (Ulery et al., 2017). Prescribed burnings are characterized by low intensities; 438 

therefore, the temperatures that are reached could be sufficient to produce the 439 

combustion of a part of the SOM but lower than the temperatures necessary to induce 440 

mineral alterations (Bodí et al., 2014). Despite the effects of fire on SOM, the CEC did 441 

not decrease accordingly, suggesting that the SOM content threshold that would have 442 

reduced the CEC had not been reached. However, the elimination of organic functional 443 

groups can lead to the loss of divalent cations, resulting in a decrease in the CEC 444 

immediately after burning. The displacement of exchangeable cations after burning could 445 

have led to an increase in water-extractable cations. However, this effect was not 446 

observed and could be related to a reduction in cation extractability in water that is 447 

probably related to cation precipitation (Badía & Martí, 2003). Divalent cations are 448 

released after combustion of organic materials as water-soluble oxides that can be 449 

rapidly transformed to less soluble carbonates and chlorides (Thiffault et al., 2008). For 450 



this reason, no changes were observed in EC at either the Tella or Buisán sites and only 451 

a minor increase in pH was detected at the Buisán site, although transient changes could 452 

have also been produced between the sampling times. In a similar way, burning had no 453 

effects on inorganic N forms and available P. The increases in pH, EC and nutrients 454 

usually reported in the literature after prescribed burning (Alcañiz et al., 2018) are related 455 

to the incorporation of ashes into the sampled soil, which we tried to avoid by all means. 456 

Although fire exerted few direct changes on the studied soil nutrients, some differences 457 

compared to the unburned soil could be observed one year after burning. Apart from the 458 

different seasons when each prescribed burning was performed, the slope also played 459 

an important role in the post-fire evolution. As explained in the previous section, the 460 

Buisán burning was conducted in a plain area and was followed by snowfall that allowed 461 

the ashes and partially charred litter layers to stabilize so leaching of soluble ions only 462 

occurred in the B12 samples.  On the other hand, nutrient losses in the soil after the Tella 463 

burning could be explained by: 1) the soil losses as the prescribed fire was conducted in 464 

April on a south-facing steep slope, making it more prone to erosion, 2) leaching during 465 

the spring rainy season that is favored by the acidic soils. These effects are favored by 466 

the slow vegetation recovery at both study sites as reported in Armas-Herrera et al. 467 

(2018) and Girona-García et al. (2018a). At the Buisán site, one year after burning, 468 

vegetation represented only a small surface of the burned plots, which were mainly 469 

covered by partially charred litter and ashes. In the B12 samples from the Tella site, 470 

herbaceous plant coverage was of only 14 %, whereas bare soil represented 42 % of 471 

the ground surface. 472 

These results were well summarized in the PCA analysis (Fig. 7), in which samples were 473 

clearly separated by site and treatment. Axis 2 (25.17 %) distributed samples by study 474 

site, showing that the Buisán site is characterized by higher pH values and therefore 475 

higher cation contents. On the other hand, the Tella site showed higher SOC, N, P and 476 

inorganic N contents. Axis 1 (47.28 %), however, separated the samples by treatment 477 



according to the previous discussion. The U samples at 0-1 cm from the Buisán site 478 

showed higher positive loadings compared to the equivalent B0 samples. The U and B0 479 

samples from the deeper layers at the Buisán site formed a large cluster that indicated 480 

the limited depth in which burning exerted direct changes. Additionally, the B12 samples 481 

showed higher negative loads, which is in accordance with the decreases detected at 482 

this sampling time for the studied properties. At the Tella site, burning did not have the 483 

same effects on the studied properties as those at the Buisán site; therefore, U and B0 484 

are not clearly separated by axis 1. However, in the same way as at the Buisán site, the 485 

B12 samples from the Tella site also showed higher negative loadings. 486 



 487 

Fig. 7. Results of the Principal Component Analysis (PCA). Variables: Soil organic C (SOC), total N (N), pH, electrical 488 

conductivity (EC), water-extractable cations (WE-Ca2+, WE-Mg2+ and WE-K+), inorganic N forms (N-NH4
+ and N-NO3

-), 489 

available P (P), exchangeable cations (E-Ca2+, E-Mg2+ and E-K+) and cation exchange capacity (CEC). Observations: 490 

unburned (U), immediate post-fire samples (B0) and one year after burning samples (B12) for each soil depth and site. 491 

 492 



 493 

4. Conclusions 494 

Despite the spatial and temporal variations expected from sampling such a thin topsoil 495 

layer (0-1, 1-2, and 2-3 cm depth), we showed the importance of how samplings are 496 

performed (i.e., sampled soil depth, time since burning and ash removal) to isolate the 497 

direct effects of fire on soils. Our results indicate that the SOM content was severely 498 

affected in the first centimetre of the topsoil, although it had few repercussions on soil 499 

nutrient content and availability. However, as a consequence of site characteristics (i.e., 500 

burning season, slope and precipitation), high nutrient losses were detected one year 501 

after burning that were probably related to leaching and/or erosion. Therefore, the long-502 

term impact of prescribed fire on soils may differ depending on the burning season and 503 

topography, and these changes could negatively impact the recovery of vegetation over 504 

time. The results highlight the need to further monitor the evolution of the studied 505 

properties to assess the sustainability of this practice from the perspective of soil and 506 

plant recovery. 507 
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