
A CLT CONCERNING CRITICAL POINTS OF RANDOM FUNCTIONS

ON A EUCLIDEAN SPACE

LIVIU I. NICOLAESCU

Abstract. We prove a central limit theorem concerning the number of critical points in
large cubes of an isotropic Gaussian random function on a Euclidean space.
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1. Introduction

Throughout this paper X(t) denotes a centered, isotropic Gaussian random function on
Rm, m ≥ 2.

Assume that X is a.s. C1. For any Borel subset S ⊂ Rm we denote by Z(S) the number
of critical points of X in S. For a positive number L we set

ZL := Z
(

[−L,L]m
)
,

and we form the new random variable

ζL :=
1

(2L)m/2

(
ZL −E

[
ZL
] )
. (1.1)
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In this paper we will prove that, under certain assumptions on X(t), the sequence of random
variables (ζN ), converges in distribution as N →∞ to a Gaussian with mean zero and finite,
positive variance.

The proof, inspired from the recent work of Estrade-León [11], uses the Wiener chaos
decomposition of ZL.

Notations.

• N := Z>0, N0 := Z≥0.
• For any positive integer n we denote by 1n the identity map Rn → Rn.
• For t = (t1, . . . , tm) ∈ Rm we set

|t| :=

√√√√ m∑
k=1

t2k, |t|∞ := max
1≤k≤m

|tk|.

• For any v ≥ 0 we denote by γv the Gaussian measure on R with mean 0 and variance
v.
• If X is a scalar random variable, then we will use the notation X ∈ N(0, v) to

indicate that X is a normal random variable with mean zero and variance v.
• If A is a subset of a given set S, then we denote by IA the indicator function of A

IA : S → {0, 1}, IA(s) =

{
1, s ∈ A,
0, s ∈ S \A.

• If X is a random vector, then we denote by E[X] and respectively var(X) the mean
and respectively the variance of X.

2. Statement of the main result

Denote by K(t, s) the covariance kernel of X(t),

K(s, t) := E
[
X(t)X(s)

]
, t, s ∈ Rm.

The isotropy of X implies that there exists a radially symmetric function C : Rm → R such
that K(t, s) = C(t − s), ∀t, s ∈ R. We denote by µ(dλ) the spectral measure of X so that
C(t) is the Fourier transform of µ

C(t) = (2π)−
m
2

∫
Rm

e−i(t,λ)µ(dλ). (2.1)

2.1. The setup. For the claimed central limit result to hold, we need to make certain as-
sumptions on the random function X(t). These assumptions closely mirror the assumptions
in [11].

Assumption A1. The random function X(t) is almost surely C3.

To formulate our next assumption we set

ψ(t) := max
{
|∂αt C(t)|; |α| ≤ 4

}
, t ∈ Rm, (2.2)

where for any multi-index α = (α1, . . . , αm) ∈ Nm0 we set

|α| := α1 + · · ·+ αm, ∂αt = ∂α1
t1
· · · ∂αmtm .

Assumption A2.

lim
|t|→∞

ψ(t) = 0 and ψ ∈ L1(Rm).
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Our next assumption involves the spectral measure µ(dλ) and it states in precise terms that
this measure has a continuous density that decays rapidly at ∞.

Assumption A3. There exists a nontrivial even, continuous function w : R → [0,∞) such
that

µ(dλ) = w(|λ|)dλ.
Moreover w has a fast decay at ∞, i.e.,

|λ|4w(|λ|) ∈ L1(Rm) ∩ L2(Rm).

Remark 2.1. (a) Let us observe that A1-A3 imply that

ψ ∈ Lq(Rm), ∀q > 0.

(b) The assumptions A1-A3 are automatically satisfied if the density w is a Schwartz function
on R.

(c) The paper [11] includes one extra assumption on X, namely that the Gaussian vector

J2(X(0)) :=
(
X(0),∇X(0),∇2X(0)

)
.

is nondegenerate. We do not need this nondegeneracy in this paper, but we want to mention
that it is implied by Assumption A3; see Proposition A.6. ut

Fix real numbers u ≥ 0 and v > 0. Denote by Sm the space of real symmetric m ×
m matrices, and by S

u,v
m the space Sm equipped with the centered Gaussian measure Γu,v

uniquely determined by the covariance equalities

E[aijak`] = uδijδk` + v(δikδj` + δi`δjk), ∀1 ≤ i, j, .k, ` ≤ m.
In particular we have

E[a2ii] = u+ 2v, E[aiiajj ] = u, E[a2ij ] = v, ∀1 ≤ i 6= j ≤ m, (2.3)

while all other covariances are trivial. The ensemble S
0,v
m is a rescaled version of the Gaussian

Orthogonal Ensemble (GOE) and we will refer to it as GOEvm. As explained in [20, 21],
the Gaussian measures Γu,v are invariant with respect to the natural action of O(m) on Sm.
Moreover

dΓ0,v(A) = (2v)−
m(m+1)

4 π−
m(m+1)

4 e−
1
4v

trA2 |dA|. (2.4)

The ensemble S
u,v
m can be given an alternate description. More precisely a random A ∈ S

u,v
m

can be described as a sum

A = B + X1m, B ∈ GOEvm, X ∈N(0, u), B and X independent.

We write this
Su,vm = GOEvm +̂N(0, u)1m, (2.5)

where +̂ indicates a sum of independent variables. We set Svm := S
v,v
m . Recall from (2.1) that

E
[
X(t)X(0)

]
= C(t) = K(t, 0) = (2π)−

m
2

∫
Rm

e−i(t,λ)w(|λ|)dλ.

Following [23] we define

sm :=
1

(2π)m/2

∫
Rm

w(|x|)dx, dm :=
1

(2π)m/2

∫
Rm

x21w(|x|)dx,

hm :=
1

(2π)m/2

∫
Rm

x21x
2
2w(|x|)dx.



4 LIVIU I. NICOLAESCU

Clearly sm, dm, hm > 0. If we set

Ik(w) :=

∫ ∞
0

w(r)rkdr, (2.6)

then we have (see [23])

(2π)m/2sm =
2π

m
2

Γ(m2 )
Im−1(w), (2π)m/2dm =

2π
m
2

mΓ(m2 )
Im+1(w),

(2π)m/2hm =
1

3

∫
Rm

x41w(|x|)dx =
2π

m
2

m(m+ 2)Γ(m2 )
Im+3(w).

(2.7)

Then we deduce that

E
[
X(0) · ∂tiX(0)

]
= E

[
∂tiX(0) · ∂2tjtkX(0)

]
= 0, ∀i, j, k (2.8a)

E[X(0)2] = sm, E
[
∂tiX(0) · ∂tjX(0)

]
= dmδij , ∀i, j, (2.8b)

E
[
X(0) · ∂2titjX(0)

]
= −dmδij , ∀i, j, (2.8c)

E
[
∂2titjX(0) · ∂2tkt`X(0)

]
= hm

(
δijδk` + δikδj` + δi`δjk

)
, ∀i, j, k, `. (2.8d)

The equality (2.8b) shows that ∇X(0) is a Rm-valued cenetered Gaussian random vector
with covariance matrix dm1m, while (2.8d) shows that ∇2X(0) ∈ Shmm . ut

2.2. The main result. We can now state the main result of this paper.

Theorem 2.2. Suppose that X(t) is a centered, stationary, isotropic random function on
Rm, m ≥ 2 satisfying assumptions A1, A2, A3. Denote by ZN the number of critical points
of X(t) in the cube CN := [−N,N ]m. Then the following hold.

(i)
E
[
ZN

]
= Cm(w)(2N)m, ∀N, (2.9)

where

Cm(w) =

(
hm

2πdm

)m
2

ES1m

[
|detA|

]
. (2.10)

(ii) There exists a constant V∞ = V∞(m,w) > 0 such that

var(ZN ) ∼ V∞Nm as N →∞. (2.11)

Moreover, the sequence of random variables

ζN = N−m/2
(
ZN −E

[
ZN

] )
converges in distribution to a normal random variable ζ∞ with mean zero an positive
variance V∞.

Remark 2.3. (a) The isotropy condition on X(t) may be a bit restrictive, but we believe
that the techniques in [11] and this paper extend to the more general case of stationary
random functions. However, for the geometric applications we have in mind, the isotropy is
a natural assumption. Let us elaborate on this point.

Suppose that (M, g) is a compactm-dimensional Riemannian manifold, such that volg(M) =
1. Denote by ρ the injectivity radius of g. For ε > 0 we denote by gε the rescaled metric
gε := ε−2g. Intuitively, as ε → 0, the metric gε becomes flatter and flatter. Denote by ∆g

the Laplacian of g and by ∆ε of gε. Let

λ0 ≤ λ1 ≤ λ2 ≤ · · ·
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be the eigenvalues of ∆g, multiplicities included. Fix an orthonormal basis of L2(M,dVg)
consisting of eigenfunctions Ψk of ∆g,

∆gΨk = λkΨk

Then the eigenvalues of ∆ε are λk(ε) = ε2λk with corresponding eigenfunctions Ψε
k := ε

m
2 Ψk.

We now define the random function Yε(p) on M ,

Yε(p) =
∞∑
k=0

w
(√

λk(ε)
) 1

2ZkΨ
ε
k(p),

where (Zk)k≥0 is a sequence of independent standard normal random variables.
Fix a point p0 ∈ M and denote by expε the exponential map Tp0M → M defined by the

metric gε. (This is a diffeomorphism onto when restricted to the ball of radius ε−1ρ of the
tangent space Tp0M equipped with the metric gε.) Denote by Rε the rescaling map

Tp0M → Tp0M, v 7→ εv.

This map is an isometry (Tp0M, g) → (Tp0M, gε). We denote by Xε the random function
on the Euclidean space (Tp0M, g) obtained by pulling back Yε via the map expε ◦Rε. The
random function Xε(t) is Gaussian and its covariance kernel converges in the C∞ topology
as ε → 0 to the covariance kernel of random function X we are investigating in this paper.
Denote by N(Xe, Br) the number critical points of Yε in a g-ball of radius r < ρ on M , and
by N(X,BR) the number of critical points of X in a ball of radius R. In [23] we have shown
that

E
[
N(Yε, Br)

]
∼ E[N(X,Br/ε

]
= const. ε−m as ε→ 0.

Additionally, in [22] we looked at the special case when M is a flat m-dimensional torus and
we showed that the variances random variables

ε−m/2
(
N(Yε, Br)−E

[
N(Yε, Br)

] )
, ε−m/2

(
N(X,Br/ε)−E

[
N(X,Br/ε)

] )
have the identical finite limits as ε > 0. In [22] we were not able to prove that this common
limit is nonzero, but Theorem 2.2 shows this to be the case.

These facts suggest that the random variable N(Yε, Br) may satisfy a central limit theorem
of the type proved in [5, 13]. We will pursue this line of investigation elsewhere. ut

2.3. Organization of the paper. The strategy of proof owes a great deal to [11]. In
Subsections 3.1 and 3.2 we describe the Wiener chaos decomposition of the random variable
ZN in the Gaussian Hilbert space generated by the Gaussian family(

X(t),∇X(t),∇2X(t)
)
, t ∈ Rm.

In the first half of Subsection 3.3 we show that var(ζN ) has a finite limit V∞ as N →∞. In
the second half of this subsection we prove that V∞ > 0. The central limit theorem is then
obtained using the Breuer-Major type central limit theorem in [11]. Appendix A contains
estimates of the lower order terms in the Hermite polynomial decomposition of | detA| where
A ∈ Svm, m � 1. These estimates can be used to produce explicit lower bounds for V∞ for
large m.
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2.4. Related work. Central limit theorems concerning crossing counts of random functions
go back a while, e.g. T. Malevich [18] (1969) and J. Cuzik [9] (1976).

The idea to use Wiener chaos decompositions to establish such central limit theorems is
more recent, late 80s early 90s and we want to mention here the pioneering contributions of
Chambers and Slud [8], Slud [27, 28] and Kratz and León [15].

This topic was further elaborated by Kratz and León in [16] where they also proved a
central limit theorem concerning the length of the zero set of a random function of two
variables. We refer to [6] for particularly nice discussion of these developments.

Azäıs and León [5] used the technique of Wiener chaos decomposition to give a shorter and
more conceptual proof to a central limit theorem due to Granville and Wigman [13] concerning
the number of zeros of random trigonometric polynomials of large degree. Recently, Adler
and Naitzat [1] used Hermite decompositions to prove a CLT concerning Euler integrals of
random functions.

Acknowledgments. I want to thank Yan Fyodorov for sharing with me the tricks in Lemma
A.5.

3. Proof of the main result

The random variables X(t), t ∈ Rm are defined on a common probability space (Ω,O,P ).
We denote by OX the σ-subalgebra of O generated by the variables X(t), t ∈ Rm. For
simplicity we set L2(Ω) := L2(Ω,OX ,P ).

As detailed in e.g. [14, 17, 26], the space L2(Ω) admits an orthogonal Wiener chaos
decomposition

L2(Ω) =

∞⊕
q=0

L2(Ω)q,

where L2(Ω)q denotes the q-th chaos component. We let Pq : L2(Ω) → L2(Ω)q denote the
orthogonal projection on the q-th chaos component.

Let T denote a compact parallelipiped

T := [a1, b1]× · · · × [am, bm], ai < bi, ∀i = 1, . . . ,m.

From [2, Thm.11.3.1], we deduce that X is a.s. a Morse function on T . In particular, almost
surely there are no critical points on the boundary of T .

3.1. Chaos decompositions of functionals of random symmetric matrices. The dual
space (Svm)∗ = Hom(Svm,R) is a finite dimensional Gaussian linear space in the sense of [14]
spanned by the entries (aij)1≤i≤j≤m of a random matrix A ∈ Svm. Its Fock space is the space
L2(Sm,Γv,v) and admits an orthogonal chaos decomposition,

L2(Svm) =
⊕
q≥0

L2(Svm)q.

We recall that

P̂q,v :=

q⊕
k=0

L2(Svm)k

is the subspace of L2(Svm) spanned by polynomials of degree ≤ n in the entries of A ∈ Svm,

and L2(Svm)q is the orthogonal complement of P̂q−1,v in P̂q,v. The summand L2(Svm)q is called
the q-th chaos component of L2(Svm, ).
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The chaos decomposition construction is equivariant with respect to the action of O(m)
on Svm. In particular, the chaos components L2(Svm)k are O(m)-invariant subspaces. If we
denote by L2(Svm)inv the subspace of L2(Svm) consisting of O(m)-invariant functions, then we
obtain an orthogonal decomposition

L2
(
Svm
)inv

=
⊕
k≥0

L2(Svm)invk , (3.1)

where L2(Svm)invk consists of the subspace of L2
(
Svm
)
k

where O(m) acts trivially. In particular,

we deduce that L2(Svm)invk consists of polynomials in the variables trA, trA2, . . . , trAm.
We define the O(m)-invariant functions

p, q, f : Sm → R, p(A) = (trA)2, q(A) := trA2, f(A) = |detA|.

A basis of P̂inv2,v is given by the polynomials 1, trA, p(A), q(A). Clearly, since trA is an odd

function of A, it is orthogonal to the even polynomials 1, p(A), q(A). We have

ESvm

[
p(A)

]
=

n∑
i=1

E[a2ii] + 2
∑
i<j

E[aiiajj ] = 3mv +m(m− 1)v = m(m+ 2)v. (3.2)

We have

ESvm
[q(A)] =

m∑
i=1

E[a2ii] + 2
∑
i<j

E[a2ij ] = 3m+m(m− 1) = m(m+ 2)v. (3.3)

We deduce that the polynomials

p̄(A) = p(A)−ESvm
[p(A)] = p(A)−m(m+ 2)v,

q̄(A) = q(A)−ESvm
[qA)] = q(A)−m(m+ 2)v

(3.4)

form a (non-orthonormal) basis of L2(Svm)inv2 .

3.2. Hermite decomposition of Z(T ). For ε > 0 define

δε : Rm → R, δε = (2ε)−mI [−ε,ε]m .

Observe that the family (δε) approximates the Dirac distribution δ0 on Rm as ε ↘ 0. We
recall [11, Prop. 1.2] which applies with no change to the setup in this paper.

Proposition 3.1 (Estrade-León). The random variable Z(T ) belongs to L2(Ω). Moreover

Z(T ) = lim
ε↘0

∫
T

∣∣det∇2X(t)
∣∣δε(∇X(t)

)
dt

almost surely and in L2(Ω). ut

The above nontrivial result implies that the random variable Z(T ) has finite variance and
admits a chaos decomposition as elaborated for example in [14, 17, 26].

Recall that an orthogonal basis of L2
(
R,γ1(dx)

)
is given by the Hermite polynomials,

[14, Ex. 3.18], [19, V.1.3],

Hn(x) := (−1)ne
x2

2
dn

dxn

(
e−

x2

2

)
= n!

bn
2
c∑

r=0

(−1)r

2rr!(n− 2r)!
xn−2r. (3.5)
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In particular

Hn(0) =

{
0, n ≡ 1 mod 2,

(−1)r (2r)!2rr! , n = 2r.
(3.6)

For every multi-index α = (α1, α2, . . . ) ∈ NN
0 such that all but finitely many αk-s are nonzero,

and any

x = (x1, x2, . . . ) ∈ RN

we set

|α| :=
∑
k

αk, α! :=
∏
k

αk!, Hα(x) :=
∏
k

Hαk(xk).

To simplify the notation we set

U(t) :=
1√
dm
∇X(t), A(t) := ∇2X(t).

Thus U(t) is a Rm-valued Gaussian random vector with covariance matrix 1m while A(t) is
a Gaussian random symmetric matrix in the ensemble Shmm .

Recall that f(A) = |detA|. We have f ∈ L2(Shmm )inv and we denote by fn(A) the com-
ponent of f(A) in the n-th chaos summand of the chaos decomposition (3.1). Since f is an
even function we deduce that fn(A) = 0 for odd n. Note also that

f0(A) = E
S
hm
m

[
|detA|

]
6= 0.

Following [11, Eq.(5)] we define for every α ∈ Nm0 the quantity

d(α) :=
1

α!
(2πdm)−

m
2 Hα(0). (3.7)

Arguing exactly as in the proof of [11, Prop. 1.3] we deduce the following result.

Proposition 3.2. The following expansion holds in L2(Ω)

Z(T ) =

∞∑
q=0

Zq(T ),

where

Zq(T ) = PqZ(T ) =
∑

α∈Nm0 , n∈N0,
|α|+n=q

d(α)

∫
T
Hα

(
U(t)

)
fn
(
A(t)

)
dt. ut

Observe that the expected number of critical points of X on T is given by

E
[
Z(T )

]
= E

[
Z(T )

]
= d(0)

∫
T
E
[
H0

(
U(t)

)
f0
(
A(t)

) ]
dt

(use the stationarity of X(t))

= (2πdm)−
m
2

∫
T
E

S
hm
m

[
f(A(t))

]
dt = (2πdm)−

m
2 E

S
hm
m

[
|detA|

]
vol(T )

=

(
hm

2πdm

)m
2

ES1m

[
| detA|

]
vol(T ).

This proves (2.9) and (2.10).



A CENTRAL LIMIT THEOREM 9

3.3. Asymptotic variance of Z(T ). Denote by CN the cube [−N,N ]m and by B the cube
[0, 1]m. For any Borel measurable subset S ⊂ Rm such that vol(S) 6= 0 we set

ζ(S) :=
1√

vol(S)

(
Z(S)−E

[
Z(S)

] )
.

Thus, ζN = ζ(CN ). Since ζN ∈ L2(Ω) we deduce var(ζN ) <∞.

Proposition 3.3. There exists V∞ ∈ (0,∞) such that

lim
N→∞

var(ζN ) = V∞.

Proof. To prove that the above limit exists we follow closely the proof of [11, Prop. 2.1]. We
have

ζN = ζ(CN ) = (2N)−
m
2

∑
q≥1

Zq(CN ),

VN := var
(
ζ(CN )

)
=
∑
q≥1

(2N)−mE
[
Zq(CN )2

]︸ ︷︷ ︸
=:Vq,N

.

To estimate Vq,N we write

Zq(T ) =

∫
T
ρq(t)dt,

where

ρq(t) =
∑

α∈Nm0 , n∈N0

|α|+n=q

d(α)Hα

(
U(t)

)
fn
(
A(t)

)
. (3.8)

Then

Vq,N = (2N)−m
∫
CN×CN

E
[
ρq(s)ρq(t)

]
dsdt

(use the stationarity of X(t))

= (2N)−m
∫
CN×CN

E
[
ρq(0)ρq(t− s)

]
dsdt =

∫
T2N

E
[
ρq(0)ρq(u)

] m∏
k=1

(
1− |uk|

2N

)
du.

The last equality is obtained by integrating along the fibers of the map

CN × CN 3 (s, t) 7→ t− s ∈ T2N .

To estimate the last integral, we fix an orthonormal basis (bij)1≤i≤j≤m of the Gaussian Hilbert

space Hom(Shmn ,R). We denote by B the vector (bij)1≤i≤j≤m, by A the vector (aij)1≤i≤j≤m
both viewed as column vectors of size

ν(m) := dim Sm =
m(m+ 1)

2
.

There exists a nondegenerate deterministic matrix Λ of size ν(m)× ν(m), relating A and B,
A = ΛB. We now have an orthogonal decomposition

fn(A) =
∑

β∈Nν(m)
0 , |β|=n

c(β)Hβ(B).

Let us set

Im :=
(
Nm0
)
×
(
Nν(m)
0

)
.
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We deduce

ρq(t) =
∑

(α,β)∈Im

d(α)c(β)Hα(U(t) )c(β)Hβ(B(t) ).

We can further simplify this formula if we introduce the vector

Y (t) :=
(
U(t), B(t)

)
, B(t) = Λ−1A(t).

For γ = (α, β) ∈ Im we set

a(γ) := d(α)c(β) Hγ

(
Y (t)

)
:= Hα

(
U(t)

)
Hβ

(
B(t)

)
.

Then

ρq(t) =
∑

γ∈Im, |γ|=q

a(γ)Hγ

(
Y (t)

)
, (3.9)

E
[
ρq(0)ρq(u)

]
=

∑
γ,γ′∈Im
|γ|=|γ′|=q

a(γ)a(γ′)E
[
Hγ(Y (0) )Hγ′(Y (u) )

]
.

We set ω(m) := m + ν(m), and we denote by Yi(t), 1 ≤ i ≤ ω(m), the components of Y (t)
labelled so that Yi(t) = Ui(t), ∀1 ≤ i ≤ m. For u ∈ Rm and 1 ≤ i, j ≤ ω(m) we define the
covariances

Γij(u) := E
[
Yi(0)Yj(u)

]
.

Observe that there exists a positive constant K such that∣∣Γi,j(u)
∣∣ ≤ Kψ(u), ∀i, j = 1, . . . , ω(m), u ∈ Rm, (3.10)

where ψ is the function defined in (2.2).
Using the Diagram Formula (see e.g.[17, Cor. 5.5] or [14, Thm. 7.33]) we deduce that for

any γ, γ′ ∈ Im such that |γ| = |γ′| = q there exists a universal homogeneous polynomial of
degree q, Pγ,γ′ in the variables Γij(u) such that

E
[
Hγ(Y (0) )Hγ′(Y (u) )

]
= Pγ,γ′

(
Γij(u)

)
.

Hence

Vq,N =
∑

γ,γ′∈Im
|γ|=|γ′|=q

a(γ)a(γ′)

∫
T2N

Pγ,γ′
(

Γij(u)
) m∏
k=1

(
1− |uk|

2N

)
du︸ ︷︷ ︸

=:RN (γ,γ′)

. (3.11)

From (3.10) we deduce that for any γ, γ′ ∈ Im such that |γ| = |γ′| = q there exists a
caonstant Cγ,γ′ > 0 such that∣∣Pγ,γ′(Γij(u)

) ∣∣ ≤ Cγ,γ′ψ(u)q, ∀u ∈ Rm.

Since ψ ∈ Lp(Rm), ∀p > 1, we deduce from the dominated convergence theorem that

lim
N→∞

RN (γ,γ ′) = R∞(γ, γ′) :=

∫
Rm

Pγ,γ′
(

Γij(u)
)
du, (3.12)

and thus

lim
N→∞

Vq,N = Vq,∞ :=
∑

γ,γ′∈Im
|γ|=|γ′|=q

a(γ)a(γ′)R∞(γ, γ′) =

∫
Rm
E
[
ρq(0)ρq(u)

]
du. (3.13)

Since Vq,N ≥ 0, ∀q,N , we have

Vq,∞ ≥ 0, ∀q.



A CENTRAL LIMIT THEOREM 11

Lemma 3.4. For any positive integer Q we set

V>Q,N :=
∑
q>Q

Vq,N .

Then
lim
Q→∞

(
sup
N
V>Q,N

)
= 0, (3.14)

the series ∑
q≥1

Vq,∞

is convergent and, if V∞ is its sum, then

V∞ = lim
N→∞

VN = lim
N→∞

∑
g≥1

Vq,N . (3.15)

Proof. For s ∈ Rm we denote by θs the shift operator associated with the field X, i.e.,

θsX(•) = X(•+ s).

This extends to a unitary map L2(Ω)→ L2(Ω) that commutes with the chaos decomposition
of L2(Ω). Moreover, for any parallelipiped T we have

Z(T + s) = θsZ(T ).

If we denote by LN the set of lattice points

LN := [−N,N)m ∩ Zm

then we deduce
ζ(CN ) = (2N)−m/2

∑
s∈Lm

θsζ
(
B), B = [0, 1]m.

We denote by P>Q the projection

P>Q =
∑
q>Q

Pq,

where we recall that Pq denotes the projection on the q-th chaos component of L2(Ω). We
have

P>Qζ(CN ) = (2N)−m/2
∑
s∈Lm

θsP>Qζ
(
B).

Using the stationarity of X we deduce

V>Q,N = E
[ ∣∣P>Qζ(CN )

∣∣2 ] = (2N)−m
∑
s∈L2N

ν(s, N)E
[
P>Qζ

(
B) · θsP>Qζ

(
B)
]
, (3.16)

where ν(s, N) denotes the number of lattice points t ∈ L such that t− s ∈ LN . Clearly

ν(s, N) ≤ (2N)m. (3.17)

With K denoting the positive constant in (3.10) we choose positive numbers a, ρ such that

ψ(s) ≤ ρ < 1

K
, ∀|s|∞ > a.

We split V>Q,N into two parts

V>Q,N = V ′>Q,N + V ′′>Q,N ,

where V ′>Q,N is made up of the terms in (3.16) corresponding to lattice points s ∈ L2N such

that |s|∞ < a+ 1, while V ′′>Q,N corresponds to lattice points s ∈ L2N such that |s|∞ ≥ a+ 1.
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We deduce from (3.17) that for 2M > a+ 1 we have∣∣∣V ′>Q,N ∣∣∣ ≤ (2N)−m(2a+ 2)m(2N)mE
[ ∣∣P>Qζ(B)

∣∣2 ].
As Q → ∞, the right-hand side of the above inequality goes to 0 uniformly with respect to
N .

To estimate V ′′>Q,N observe that for s ∈ L2N such that |s|∞ > a+ 1 we have

E
[
P>Qζ

(
B) · θsP>Qζ

(
B)
]

=
∑
q>Q

∫
B

∫
B
E
[
ρq(t)]ρq(u+ s)

]
dtdu, (3.18)

where we recall from (3.9) that

ρq(t) =
∑

γ∈Im, |γ|=q

a(γ)Hγ

(
Y (t)

)
, Im := Nm0 × Nν(m)

0 , ν(m) =
m(m+ 1)

2
.

Thus

E
[
ρq(t)ρq(u+ s)

]
= E

[ ( ∑
γ∈Im, |γ|=q

a(γ)Hγ

(
Y (t)

) )( ∑
γ∈Im, |γ|=q

a(γ)Hγ

(
Y (s+ u)

) )]
Arcones’ inequality [4, Lemma 1] implies that

E
[
ρq(t)ρq(u+ s)

]
≤ Kqψq(s+ u− t)q

∑
γ∈Im, |γ|=q

|a(γ)|2γ!. (3.19)

The series
∑

γ∈Im |a(γ)|2γ! is divergent because the series
∑

γ∈Im a(γ)Hγ(Y ), Y = (U,B), is

the Hermite series decomposition of the distribution δ0(
√
dmU)|detA|.

On the other hand, for γ = (α, β) ∈ Im we have a(γ) = d(α)c(β), where, according to

(3.7) we have d(α) = 1
α!(2πdm)−

m
2 Hα(0). Recalling that

H2r(0) = (−1)r
(2r)!

2rr!
, H2r+1(0) = 0.

we deduce that

(2r)!
∣∣∣ 1

(2r)!
H2r(0)

∣∣∣2 =
1

22r

(
2r

r

)
≤ 1,

and

d(α)2α! ≤ C =
1

(2πdm)m/2
.

This allows us to conclude that∑
γ∈Im, |γ|=q

|a(γ)|2γ! ≤ (2πdm)−m/2qm
∑

β∈Nν(m)
0 ,|β|≤q

c(β)2β! ≤ CqmE
S
hm
m

[
| detA|2

]
.

Using this in (3.18) and (3.19) we deduce

E
[
P>Qζ

(
B) · θsP>Qζ

(
B)
]

≤ CE
S
hm
m

[
|detA|2

]︸ ︷︷ ︸
=:C′

∑
q>Q

qmKq

∫
B

∫
B
ψ(s+ u− t)qdudt

Hence ∣∣V ′′>Q,N ∣∣ ≤ C ′(∑
q>Q

qmKqρq−1
)( ∑

s∈L2N ; |s|∞>a+1

∫
B

∫
B
ψ(s+ u− t)dudt

)
,
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Where we have used the fact that for |s|∞ ≥ a+ 1, |u|, |t| ≤ 1 we have ψ(s+ u− t) < ρ.
Since ρ < 1

K , the sum ∑
q>Q

qmKqρq−1

is the tail of a convergent power series. On the other hand,∑
s∈L2N ; |s|∞>a+1

∫
B

∫
B
ψ(s+ u− t)dudt ≤

∑
s∈L2n

∫
[−1,1]m

ψ(s+ u) ≤ 2

∫
Rm

ψ(u)du <∞.

This proves that supN |V ′′>Q,N | goes to zero as Q → ∞ and completes the proof of (3.14).

The claim (3.15) follows immediately from (3.14). ut

Lemma 3.5. The asymptotic variance V∞ is positive. More precisely,

V2,∞ > 0. (3.20)

Proof. From (3.13) we deduce

V2,∞ =

∫
Rm
E
[
ρq(0)ρq(u)

]
du, (3.21)

where, according to (3.8) we have

ρ2(t) =
∑

α∈Nm0 , n∈N0

|α|+n=2

d(α)Hα

(
U(t)

)
fn
(
A(t)

)
.

The second chaos decomposition f2(A) is a linear combination of the polynomials p̄(A) and
q̄(A) defined in (3.4) where v = hm.

In the above sum the only nontrivial terms correspond to α = 0 or α = (2δi1, 2δi2, . . . , 2δim),
i = 1, . . . ,m. In each of these latter cases we deduce from (3.6) that

d(α) := −1

2
d(0), d(0)

(3.7)
= (2πdm)−

m
2 ,

and we conclude that

ρ2(t) = d(0)
(
f2(A(t) )−f0(A)

2

m∑
i=1

H2(Ui(t) )
)

= d(0)
(
xp̄(A(t))+yq̄(A(t))−f0(A)

2

m∑
i=1

H2(Ui(t) )
)
.

For uniformity we set

z := −f0(A)

2
so that

ρ2(t) = d(0)
(
xp̄(A) + yq̄(A) + z

m∑
i=1

H2(Ui)
)
.

We first express the polynomials p̄(A) and q̄(A) in terms of Hermite polynomials. We set

âij :=

{
1√
3hm

aii, i = j,
1√
hm
aij , i 6= j.

We have

(trA)2 = 3hm

(∑
i

âii

)2

= 3hm
∑
i

â2ii + 6hm
∑
i<j

âiiâjj
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= 3hm
∑
i

(
H2(âii) + 1

)
+ 6hm

∑
i<j

H1(âii)H1(âjj)

p̄(A) = (trA)2 −m(m+ 2)hm = hm

3
∑
i

H2(âii) + 6
∑
i<j

H1(âii)H1(âjj)−m(m− 1)

 .

We have

trA2 = 3hm
∑
i

â2ii + 2hm
∑
i<j

â2ij = 3hm
∑
i

H2(âii) + 2hm
∑
i<j

H2(âij) +m(m+ 2)hm,

q̄(A) = hm

 3
∑
i

H2(âii) + 2
∑
i<j

H2(âij)

 .

Define

F0(t) =
∑
i

H2

(
Ui(t)

)
, F1(t) =

∑
i

H2

(
âii(t)

)
, F2(t) =

∑
i<j

H2

(
âij(t)

)
F3(t) =

∑
i<j

H1

(
âii(t)

)
H1

(
âjj(t)

)
.

Thus

ρ2(t) = d(0)
(
xhm

(
3F1(t) + 6F3(t)−m(m− 1)

)
+ yhm

(
3F1(t) + 2F2(t)

)
+ zF0(t)

)
.

E[F1(0)] = E[F2(0)] = 0,

E[F3(t)] = E[F3(0)] =
m(m− 1)

2
E[â11(0)â22(0)] =

m(m− 1)

6
We set

F̂3(t) = F3(t)−E[F3(t)].

Then

E[F0(0)F̂3(t)] = E[F0(0)F3(t)], E[F1(0)F̂3(t)] = E[F1(0)F3(t)],

E[F2(0)F̂3(t)] = E[F2(0)F3(t)],

ρ2(t) = d(0)
(

3xhm
(
F1(t) + 2F̂3(t))

)︸ ︷︷ ︸
=:Z1(t)

+yhm
(

3F1(t) + 2F2(t)
)︸ ︷︷ ︸

=:Z2(t)

+zF0(t)
)
. (3.22)

To estimate E
[
ρ2(0)ρ2(u)

]
we will rely on the following consequences of the Diagram For-

mula [7], [14, Thm. 3.12].

Lemma 3.6. Suppose that X1, X2, X3, X4 are centered Gaussian random variables such that

E[X2
i ] = 1, E[XiXj ] = cij , ∀i, j = 1, 2, 4, i 6= j.

Then

E
[
H1(X1)H1(X2)

]
= c12, (3.23a)

E
[
H2(X1)H2(X2)

]
= 2c212, E

[
H2[X1]H1(X2)H1(X3)

]
= 2c12c13, (3.23b)

E
[
H1(X1)H1(X2)H1(X3)H1(X4)

]
= c12c34 + c13c24 + c14c23. (3.23c)

ut
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To compute the expectations involved in (3.21) we need to know the covariances between
âij(0) and âjk(t). These are determined by the covariance kernel

C(t) = F[µ(λ)],

where F denotes the Fourier transform. For any i1, . . . , ik ∈ {1, . . .m} we set

Ci1...ik(t) := ∂kti1 ...tik
C(t), F

[
(−i)kλi1 · · ·λikµ(λ)

]
.

We have
E
[
∂kti1 ...tik

X(0)∂`tj1 ...tj`
X(t)

]
= (−1)kCi1...ikj1...j`(t)

Ui(t) =
1√
dm

∂tiX(t), âii(t) =
1√
3hm

∂2tiX(t), âij(t) =
1√
hm

∂2titjX(t).

Recalling that the spectral measure µ(dλ) has the form

µ(λ) = w(|λ|)dλ,
we introduce the functions

Mi1...ik(λ) := λi1 · · ·λikw(|λ|)
and denote by Fi1...ik their Fourier transforms

Fi1...ik(t) = (2π)−m/2
∫
Rm

e−i(t,λ)Mi1...ik(λ)dλ.

Then

E
[
Ui(0)Uj(t)

]
= − 1

dm
Cij =

1

dm
Fij(t), (3.24a)

E
[
Ui(0)âjj(t)

]
= −E

[
âjj(0)Ui(t)] = − 1√

3hmdm
Cijj(t) =

i√
3hmdm

Fijj(t), ∀i, j, (3.24b)

E
[
Ui(0)âjk(t)

]
= −E

[
âjk(0)Ui(t)] = − 1√

hmdm
Cijk(t)

=
i√

hmdm
Fijk(t) ∀i, j, k, j 6= k,

(3.24c)

E
[
âii(0)âjj(t)

]
=

1

3hm
Ciijj(t) =

1

3hm
Fiijj(t), (3.24d)

E
[
âii(0)âjk(t)

]
= E

[
âjk(0)âii(t)

]
=

1

hm
√

3
Ciijk(t)

=
1

hm
√

3
Fiijk(t), ∀i, j, k, j 6= k,

(3.24e)

E
[
âij(0)âk`(t)

]
= E

[
âk`(0)âij(t)

]
=

1

hm
Ciijk(t)

=
1

hm
Fijk`(t), ∀i, j, k, `, i 6= j, k 6= `.

(3.24f)

We have

E[F0(0)F0(t)] =
∑
i,j

E[H2(Ui(0)H2(Uj(t))] =
2

d2m

∑
i,j

Fij(t)
2.

Using the fact that the Fourier transform is an isometry and the equality M2
ij = MiiMjj

we deduce ∫
Rm

Fij(t)
2dt =

∫
Rm

Mij(λ)2dλ =

∫
Rm

Mii(λ)Mjj(λ)dλ
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and thus, ∫
Rm
E[F0(0)F0(t)]dt =

〈√
2

dm

∑
i

Mii,

√
2

dm

∑
j

Mjj

〉
L2

(3.25)

E
[
F0(0)F1(t)] =

∑
i,j

E[H2(Ui(0))H2(âjj(t))] =
2

3hmdm

∑
i,j

(
iFijj(t) )2.

Since M2
ijj = MiiMjjjj we deduce∫

Rm
E
[
F0(0)F1(t)]dt =

2

3hmdm

∑
i,j

‖Mijj‖2L2 =

〈√
2

dm

∑
i

Mii,

√
2

3hm

∑
j

Mjjjj

〉
L2

. (3.26)

Arguing similary we deduce∫
Rm
E
[
F0(0)F1(t)]dt =

∫
Rm
E
[
F0(t)F1(0)]dt.

E[F0(0)F2(t)] =
∑
i,j<k

H2(Ui(0))H2(âjk(t)) = 2
∑
i,j<k

i√
dmhm

Fijk(t),

∫
Rm
E[F0(0)F2(t)]dt =

〈√
2

dm

∑
i

Mii,

√
2

hm

∑
j<k

Mjjkk

〉
L2

=

∫
Rm
E[F0(t)F2(0)]dt. (3.27)

E[F0(0)F3(t)] =
∑
i,j<k

E
[
H2(Ui(0))H1(âjj(t)H1(âkk(t))

]
= −2

∑
i,j<k

1

3dmhm
Fijj(t)(t)Fikk(t),∫

Rm
E[F0(0)F3(t)]dt =

2

3hmdm

∑
i,j<k

〈Mijj ,Mikk〉L2

=

〈√
2

dm

∑
i

Mii,

√
2

3hm

∑
j<k

Mjjkk

〉
L2

=

∫
Rm
E[F0(t)F3(0)]dt.

(3.28)

We have

E
[
F1(0)F1(t)

]
=
∑
i,j

E[H2(âii(0))H2(âjj(t))
]

=
2

9h2m

∑
i,j

Fiijj(t)
2

∫
Rm
E
[
F1(0)F1(t)

]
dt =

〈 √
2

3hm

∑
i

Miiii,

√
2

3hm

∑
i

Miiii

〉
. (3.29)

E
[
F1(0)F2(t)

]
=
∑
i,j<k

E[H2(âii(0))H2(âjk(t))
]

=
2

3h2m

∑
i,j<k

Fiijk(t)
2,

∫
Rm
E
[
F1(0)F2(t)

]
dt =

〈 √
2

3hm

∑
i

Miiii,

√
2

hm

∑
j<k

Mjkjk

〉
L2

. (3.30)

E
[
F1(0)F3(t)

]
=
∑
i,j<k

E[H2(âii(0))H1(âjj(t))H1(âkk(t)
]

=
2

9h2m

∑
i,j<k

Fiijj(t)Fiikk(t).

∫
Rm
E
[
F1(0)F3(t)

]
dt =

〈 √
2

3hm

∑
i

Miiii,

√
2

3hm

∑
j<k

Mjjkk

〉
L2

. (3.31)
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E
[
F2(0)F2(t)

]
=

∑
i<j,k<`

E
[
H2(âij(0))H2(âk`(t)

]
= 2

∑
i<j,k<`

Fijk`(t)
2,

∫
Rm
E
[
F2(0)F2(t)

]
dt =

〈√
2

hm

∑
i<j

Mijij ,

√
2

hm

∑
i<j

Mijij

〉
L2

. (3.32)

E
[
F2(0)F3(t)

]
=

∑
i<j,k<`

E
[
H2(âij(0))H1(âkk(t))H1(â``(t))

]
=

2

3h2m

∑
i<j,k<`

Fijkk(t)Fij``(t),

∫
Rm
E
[
F2(0)F3(t)

]
=

〈√
2

hm

∑
i<j

Mijij ,

√
2

3hm

∑
k<`

Mkk``

〉
L2

. (3.33)

E
[
F3(0)F3(t)

]
=

∑
i<j,k<`

E
[
H1(âii(0))H1(âjj(0))H1(âkk(t))H1(â``(t))

]
=

∑
i<j,k<`

E[âii(0)âjj(0)]E[âkk(t)â``(t)] +
1

9h2m

∑
i<j,k<`

(
Fiikk(t)Fjj``(t) + Fii``(t)Fjjkk(t)

)
= E[F3(0)]2 +

1

9h2m

∑
i<j,k<`

(
Fiikk(t)Fjj``(t) + Fii``(t)Fjjkk(t)

)
.

E
[
F̂3(0)F̂3(t)

]
= E

[
F3(0)F3(t)

]
−E[F3(0)]2 =

1

9h2m

∑
i<j,k<`

(
Fiikk(t)Fjj``(t)+Fii``(t)Fjjkk(t)

)
.

We deduce∫
Rm
E
[
F̂3(0)F̂3(t)

]
dt =

1

9h2m

∑
i<j,k<`

∫
Rm

(
Fiikk(t)Fjj``(t) + Fii``(t)Fjjkk(t)

)
dt

and we conclude∫
Rm
E
[
F̂3(0)F̂3(t)

]
dt =

〈 √
2

3hm

∑
i<j

Mijij ,

√
2

3hm

∑
k<`

Mkk``

〉
L2

(3.34)

To put the above equalities in perspective we introduce the functions

G0 =

√
2

dm

∑
i

Mii, G1 =

√
2

3hm

∑
i

Miiii, G2 =

√
2

hm

∑
j<k

Mjjkk, G3 =
1

3
G2.

The assumption A3 implies that G0, G1, G2 ∈ L2(Rm, dλ). Using the notation

Fi • Fj :=

∫
Rm
E
[
Fi(0), Fj(t)

]
.

we can rewrite the equalities (3.25, ..., 3.34) in a more concise form

Fi • Fj = Fj • Fi = 〈Gi, Gj〉L2 , Fi • F̂3 = Fi • F3, ∀i, j = 0, 1, 2,

F̂3 • Fi = Fi • F̂3 = 〈Gi, G3〉L2 , ∀i = 0, . . . , 3.

From (3.21) and (3.22) we deduce

V2,∞ =

∫
Rm

ρ2(t)dt = d(0)2
(

3xhmZ1 + yhmZ2 + zF0)
)
•
(

3xhmZ1 + yhmZ2 + zF0)
)

= d(0)2
∥∥∥3xhm(G1 + 2G3) + yhM (3G1 + 2G2) + zG0

∥∥∥2
L2
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= (d(0))2
∥∥∥3xhm

(
G1 +

2

3
G3

)
+ 3yhM

(
G1 +

2

3
G2

)
+ zG0

∥∥∥2
L2

= d(0)2
∥∥∥3hm(x+ y)

(
G1 +

2

3
G2

)
+ zG0

∥∥∥2
L2
.

The functions G1 + 2
3G2 and G0 are linearly independent and

z = −1

2
f0(A) = −1

2
E
[
| detA|

]
6= 0.

Hence V2,∞ > 0. ut

This concludes the proof of Proposition 3.3. ut

Remark 3.7. The numbers x, y that describe f2(A), the 2nd chaos component of f(A) seem
hard to compute in general. In Appendix A we describe their large m asymptotics; see (A.16).

ut

3.4. Conclusion. To conclude the proof of Theorem 2.2 we observe that from (3.14) we
deduce that

lim
Q→∞

lim
N→∞

var
(
P>QζN

)
= 0.

Hence, it suffices to establish the asymptotic normality of the sequence

P≤QζN =
1

(2N)m/2

∫
CN

∑
2≤q≤Q

ρq(t)dt.

This follows from a Breuer-Major type central limit theorem, [7, 24, 25]. In our instance, we
can invoke [11, Prop. 2.4] and its proof to reach the desired conclusion.

Appendix A. Asymptotics of some Gaussian integrals

We want to give an approximate description of the 2nd chaos component of |detA| when
m� 0.

Observe that if u : Sm → R is a continuous function, homogeneous of degree k, then for
any v > 0 we have

ESvm
[u(A)] = (2v)

k
2E

S
1/2
m

[u(A)].

Proposition A.1. Set Cm := 2
3
2 Γ
(
m+3
2

)
. We have the following asymptotic estimates as

m→∞

E
S
1/2
m

[
| detA|

]
∼ Cm

√
2

π
m−

1
2 . (A.1)

E
S
1/2
m

[
p(A)f(A)

]
∼ 2Cm√

π
m

3
2 . (A.2)

ES

[
q(A)f(A)

]
∼ Cm√

2π
m

7
2 . (A.3)
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Proof. We need to make a brief detour in the world of random matrices.
We have a Weyl integration formula [3] which states that if f : Sm → R is a measurable

function which is invariant under conjugation, then the value f(A) at A ∈ Sm depends only
on the eigenvalues λ1(A) ≤ · · · ≤ λn(A) of A and we have

EGOEvm

(
f(X)

)
=

1

Zm(v)

∫
Rm

f(λ1, . . . , λm)

 ∏
1≤i<j≤m

|λi − λj |

 m∏
i=1

e−
λ2i
4v

︸ ︷︷ ︸
=:Qm,v(λ)

|dλ1 · · · dλm|,

(A.4)
where Zm(v) can be computed via Selberg integrals, [3, Eq. (2.5.11)], and we have

Zm(v) = (2v)
m(m+1

4 Zm, Zm = (2π)
m
2 m!

m∏
j=1

Γ( j2)

Γ(12)
= 2

m
2 m!

m∏
j=1

Γ

(
j

2

)
. (A.5)

For any positive integer n we define the normalized 1-point correlation function ρn,v(x) of
GOEvn to be

ρn,v(x) =
1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

For any Borel measurable function f : R→ R we have [10, §4.4]

1

n
EGOEvn

(
tr f(X)

)
=

∫
R
f(λ)ρn,v(λ)dλ. (A.6)

The equality (A.6) characterizes ρn,v. Let us observe that for any constant c > 0, if

A ∈ GOEvn⇐⇒cA ∈ GOEc
2v
n .

Hence for any Borel set B ⊂ R we have∫
cB
ρn,c2v(x)dx =

∫
B
ρn,v(y)dy,

and we conclude that
cρn,c2v(cy) = ρn,v(y), ∀n, c, y. (A.7)

The behavior of ρn,v for large n is described the the celebrated Wigner semicircle theorem.

Theorem A.2 (Wigner). As n→∞, the probability measures

ρn,vn−1(λ)|dλ| = n1/2ρn,v
(
n1/2λ

)
|dλ|

converge weakly to the semicircle distribution

ρ∞,v(λ)|dλ| = I |λ|≤2
√
v

1

2πv

√
4v − λ2|dλ|. ut

We have the following result of Y. Fyodorov [12]; see also [20, Lemmas C.1, C2.].

Lemma A.3. Suppose v > 0. Then for any λ ∈ R we have

EGOEvm

(
|det(λ+B|

)
= (2v)

m+1
2 Cme

c2

4v ρm+1,v(λ), Cm := 2
3
2 Γ

(
m+ 3

2

)
. (A.8)

ESvm

(
|det(A)|

)
= (2v)

m+1
2

Cm√
2πv

∫
R
EGOEvm

(
|det(λ+B|

)
e−

λ2

2v dλ

= (2v)
m+1

2
Cm√
2πv

∫
R
ρm+1,v(λ)e−

x2

4v dλ.

(A.9)
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ut

We will also need the following asymptotic estimates.

Lemma A.4. Let k be a nonnegative integer. Then

1√
2π

∫
R
ρn, 1

2
(λ)λ2ke−

λ2

2v dλ ∼ vk
√

2v(2k − 1)!!√
πn

as n→∞ (A.10)

Proof. Consider the function

w(λ) =
λ2k

v
2k+1

2 (2k − 1)!!

e−
λ2

2v

√
2π

.

Then ∫
R
w(λ)dλ = 1.

We set wn(λ) :=
√
nw(
√
nλ). The probability measures wn(λ)dλ converge to δ0 and we have

1√
2π

∫
R
ρn, 1

2
(λ)λ2ke−

λ2

2v dλ =
v

2k+1
2 (2k − 1)!!√

n

∫
R
ρn, 1

2n
(λ)wn(λ)dλ.

Arguing exactly as in [21, Sec. 4.6] we deduce

lim
n→∞

∫
R
ρn, 1

2n
(λ)wn(λ)dλ = ρ∞, 1

2
(0) =

√
2

π
.

ut

The estimate (A.1) follows from (A.9) and (A.10).
To simplify the notation we set

EG := E
GOE

1/2
m
, ES := E

S
1/2
m
.

Let us observe that the equality (2.5) implies that

ES

[
p(A)f(A)

]
=

1√
π

∫
R
EG

[
p(λ+B)f(λ+B)

]
e−λ

2
dλ, (A.11a)

ES

[
q(A)f(A)

]
=

1√
π

∫
R
EG

[
q(λ+B)f(λ+B)

]
e−λ

2
dλ. (A.11b)

To estimate ES

[
p(A)f(A)

]
and ES

[
q(A)f(A)

]
for m large we use a nice trick we learned

from Yan Fyodorov. Introduce the functions

Φ,Ψ : R× (−∞, 1)→ R,

Φ(λ, z) := EG

[
| det(λ+B)|ez tr(λ+B)

]
, Ψ(λ, z) := EG

[
|det(λ+B)|e

z
2
tr(λ+B)2

]
.

Obviously
Φ(λ, 0) = Ψ(λ, 0) = EG

[
| det(λ+B)|

]
so both Ψ(λ, 0) and Ψ(λ, 0) can be determined using (A.8).

Observe next that

Φ′′zz(λ, 0) = EG

[ (
tr(λ+B)

)2 | det(λ+B)|
]

= EG

[
p(λ+B)f(λ+B)

]
, (A.12a)

2Ψ′′zz(λ, 0) = EG

[
(tr(λ+B)2 |det(λ+B)|

]
= EG

[
q(λ+B)f(λ+B)

]
. (A.12b)

We have the following key observation.
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Lemma A.5 (Y. Fyodorov).

Φ(λ, z) = em( z
2

2
+zλ)Φ(λ+ z, 0) = e−

mλ2

2 e
m
2
(λ+z)2Φ(λ+ z, 0), (A.13a)

Ψ(λ, z) =
e
mλ2z
2(1−z)

(1− z)
m(m+3)

4

Ψ

(
λ√

1− z
, 0

)
. (A.13b)

Proof. Using (2.4) we deduce

Φ(λ, z) = Km

∫
Sm

|det(λ+B)|ez tr(λ+B)− 1
2
trB2

dB = em( z
2

2
+λz)Km

∫
Sm

e−
1
2
tr(B−z)2dB

(make the change in variables C := B − z)

= em( z
2

2
+λz)Km

∫
Sm

|det(λ+ z +B)|e−
1
2
trC2

dB

= em( z
2

2
+λz)EG

[
|det(λ+ z + C)|

]
= em( z

2

2
+λz)Φ(λ+ z, 0).

Similarly, for z < 1 we have

Ψ(λ, z) = Km

∫
Sm

| det(λ+B)|e
z
2
tr(λ+B)2− 1

2
trB2

dB

= e
mzλ2

2

∫
Sm

|det(λ+B)|e
λz
2

trB− 1
z
2 trB2

dB.

Making the change in variables B = (1− z)−1/2C so that

dB = (1− z)−
m(m+1)

4 dC det(λ+B) = (1− v)−
m
2 det(λ

√
1− z + C).

We deduce

Ψ(λ, z) =
e
mzλ2

2

(1− z)
m(m+3)

4

Km

∫
Sm

|det(λ
√

1− z + C)|e−
1
2
tr(C− λz√

1−z )
2

dC

(C − λz√
1−z → B)

=
e
mzλ2

2

(1− z)
m(m+3)

4

Km

∫
Sm

| det(λ
√

1− z +
λz√
1− z

+B)|e−
1
2
trB2

dB

=
e
mzλ2

2

(1− z)
m(m+3)

4

Ψ

(
λ√

1− z
, 0

)
.

ut

The asymptotic behavior of ES

[
p(A)f(A)

]
. Using (A.13a) we deduce

Φ′′zz(λ, 0) = e−
mλ2

2 ∂2zz
∣∣
z=0

(
e
m
2
(λ+z)2Φ(λ+ z, 0)

)
= e−

mλ2

2
d2

dλ2
(
e
mλ2

2 Φ(λ, 0)
)
.

Using (A.11a) and (A.12a) we deduce

ES

[
p(A)f(A)

]
=

1√
π

∫
R
e−

mλ2

2
d2

dλ2
(
e
mλ2

2 Φ(λ, 0)
)
e−λ

2
dλ
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=
1√
π

∫
R

d2

dλ2
(
e
mλ2

2 Φ(λ, 0)
)
e−

m+2
2
λ2dλ.

Since Φ(λ, 0) has polynomial growth in λ, we can integrate by parts in the above equality
and we deduce

ES

[
p(A)f(A)

]
=

1√
π

∫
R
e
mλ2

2 Φ(λ, 0)
d2

dλ2
(
e−

m+2
2
λ2
)
dλ

(A.8)
=

Cm√
π

∫
R
e
mλ2

2 e
λ2

2 ρm+1, 1
2
(λ)

d2

dλ2
(
e−

m+2
2
λ2
)
dλ

=
Cm√
π

∫
R
e

(m+1)λ2

2 ρm+1, 1
2
(λ)

d2

dλ2
(
e−

m+2
2
λ2
)
dλ

=
Cm(m+ 2)

√
2√

2π

∫
R
ρm+1, 1

2
(λ)
(

(m+2)λ2−1
)
e−

λ2

2 dλ
(A.10)∼ Cm(m+ 2)

√
2√

m+ 1

(
m+1

)
ρ∞, 1

2
(0).

We have thus proved that

ES

[
p(A)f(A)

]
∼
√

2

m+ 1
Cm(m+ 2)(m+ 1)ρ∞, 1

2
(0) as m→∞. (A.14)

This proves (A.2).

The asymptotic behavior of ES

[
q(A)f(A)

]
. We set

u(z) :=
e
mλ2z
2(1−z)

(1− z)
m(m+3)

4

= e−
mλ2

2
e

mλ2

2(1−z)

(1− z)
m(m+3)

4

.

Then
Ψ(λ, z) = u(z)Ψ

(
λ(1− z)−1/2, 0

)
,

Ψ′z(λ, z) = u′(z)Ψ
(
λ(1− z)−1/2, 0

)
+
λ

2
u(z)(1− z)−3/2Ψ′λ

(
λ(1− z)−1/2, 0

)
.

Ψ′′zz(λ, z) = u′′(z)Ψ
(
λ(1− z)−1/2, 0

)
+
λ

2
u′(z)(1− z)−3/2Ψ′λ

(
λ(1− z)−1/2, 0

)
+
λ

2

d

dx

(
u(z)(1− z)−3/2

)
Ψ′λ
(
λ(1− z)−1/2, 0

)
+

3λ2

4
u(z)(1− z)−4Ψ′′λλ

(
λ(1− z)−1/2, 0

)
.

Thus

Ψ′′zz(λ, 0) = u′′(0)Ψ
(
λ, 0
)

+
λ

2
u′(0)Ψ′λ

(
λ, 0
)

+
λ

2

(
u′(0) +

3

2
u(0)

)
Ψ′λ
(
λ, 0
)

+
3λ2

4
u(0)Ψ′′λλ

(
λ, 0
)

= u′′(0)Ψ
(
λ, 0
)

+
λ

2

(
2u′(0) +

3

2
u(0)

)
Ψ′λ
(
λ, 0
)

+
3λ2

4
u(0)Ψ′′λλ

(
λ, 0
)
.

Setting κ(m) = m(m+3)
4 we deduce

u′(z) = e−
mλ2

2
d

dz

(
e

mλ2

2(1−z) (1− z)−κ(m)

)
= e−

mλ2

2

(
mλ2

2
e

mλ2

2(1−z) (1− z)−κ(m)−2 + κ(m)e
mλ2

2(1−z) (1− z)−κ(m)−1
)
.

Thus

u′(0) =
mλ2

2
+ κ(m).
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We set
1

2
A1(λ) =

λ

2

(
u′(0) +

3

2

)
=
λ

2

( mλ2
2

+ κ(m) +
3

2

)
.

Similarly, we deduce

u′′(0) =
mλ2

2

(
mλ2

2
+ κ(m) + 2

)
+ κ(m)

( mλ2
2

+ κ(m) + 1
)

=
m2λ4

4
+ (κ(m) + 1)mλ2 + κ(m)

(
κ(m) + 1

)
︸ ︷︷ ︸

=: 1
2
A0(λ)

.

We set A2(λ) := 3
2λ

2. We have

2Ψzz(λ, 0) = A2(λ)Ψ′′λλ(λ, 0) +A1(λ)Ψ′λ(λ, 0) +A0(λ)Ψ(λ, 0).

Using (A.11b) and (A.12b) we deduce

ES

[
q(A)f(A)

]
=

1√
π

∫
R

(
A2(λ)Ψ′′λλ(λ, 0) +A1(λ)Ψ′λ(λ, 0) +A0(λ)Ψ(λ, 0)

)
e−λ

2
dλ

=
1√
π

∫
R

Ψ(λ, 0))

(
d2

dλ2
(
A2(λ)e−λ

2 )− d

dλ

(
A1(λ)e−λ

2 )
+A0(λ)e−λ

2

)
dλ.

=
1√
π

∫
R
P4,m(λ)Φ(λ)2Ψ(λ, 0)e−λ

2
dλ,

where
P4,m(λ) = A′′2(λ)− 4λA′2(λ) + 4λ2A2(λ)−A′1(λ) + 2λA1(λ) +A0(λ)

= C4(m)λ4 + C2(m)λ2 + C0(m),

where the coefficients C0(m), C2(m), C4(m) are polynomials in m. Recalling that

Ψ(λ, 0) = EG

[
| det(λ+B)|

]
Cmρm+1,1/2(λ),

we deduce

ES

[
q(A)f(A)

]
=
C4(m)√

π

∫
R
ρm+1, 1

2
(λ)λ4

e−λ
2

√
π
dλ+

C2(m)√
π

∫
R
ρm+1, 1

2
(λ)λ2

e−λ
2

√
π
dλ

+
C0(m)√

π

∫
R
ρm+1, 1

2
(λ)

e−λ
2

√
π
dλ.

Using (A.10) with v = 1/2 we deduce that as m→∞ we have

ES

[
q(A)f(A)

]
∼ Cmm

−1/22
1
2

(
2−1

3C4(m)√
π

+ 2−1/2
C2(m)√

π
+
C0(m)√

π

)
.

Upon investigating the definition of A0(λ), A1(λ), and A0(λ) we see that of the three

degC0(m) = 4 > degC2(m), degC4(m).

The degree-4 term in C0(m) comes from the product

2κ(m)(κ(m) + 1) =
m4

2
+ lower order terms.

We conclude that as m→∞ we have

ES

[
q(A)f(A)

]
∼ Cm√

2π
m

7
2 .
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ut

To understand the 2nd chaos component of |detA| we need to also understand the inner
product in L2(Svm)inv2 . For simplicity will write E instead of the more precise ESvm

.
We know that

E
[
p(A)

]
=
[
q(A)

]
= m(m+ 2)v.

This implies that
E
[
p(A)2

]
= E

[
(trA)4

]
= 3m2(m+ 2)2v2.

To compute E[ p(A)q(A) ], E[ q(A)2 ] we will use Wick’s formula, [14, Thm. 1.28]. We have

p(A)q(A) =

∑
i

a2ii + 2
∑
i<j

aiiajj

(∑
k

a2kk + 2
∑
k<`

a2k`

)

=
∑
i

a4ii︸ ︷︷ ︸
S1

+ 2
∑
i<k

a2iia
2
kk︸ ︷︷ ︸

S2

+ 2
∑
i, k<`

a2iia
2
k`︸ ︷︷ ︸

S3

+ 2
∑
k, i<j

a2kkaiiajj︸ ︷︷ ︸
S4

+ 4
∑

i<j, k<`

aiiajja
2
k`︸ ︷︷ ︸

S5

.

We have

E[S1] = E

[∑
i

a4ii

]
= mE[a411] = 27mv2.

E[S3] = E

2
∑
i, k<`

a2iia
2
k`

 = m2(m− 1)E[a211]E[a212] = 3m2(m− 1)v2.

E[S5] = E

 4
∑

i<j, k<`

aiiajja
2
k`

 = m2(m− 1)2E[a11a22]E[a212] = m2(m− 1)2v2.

E[S2] = E

[
2
∑
i<k

a2iia
2
kk

]
= m(m− 1)E[a211a

2
22]

Using Wick’s formula we deduce

E[a211a
2
22] = E[a211]E[a222] + 2E[a11a22]

2 = 11v2. (A.15)

Hence
E[S2] = 11m(m− 1)v2.

E[S4] = E

2
∑
k, i<j

a2kkaiiajj


= 2E

∑
i<j

a3iiajj

+ 2E

∑
i<j

aiia
3
jj

+ 2E

 ∑
i<j, k 6=i,j

a2kkaiiajj


= 4E

∑
i<j

a3iiajj

+m(m− 1)(m− 2)E[a11a22a
2
33]

= 2m(m− 1)E[a311a22] + +m(m− 1)(m− 2)E[a11a22a
2
33].

Using Wick’s formula we deduce

E[a311a22] = 3E[a211]E[a11a22] = 9v2
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E[a11a22a
2
33] = E[a11a22]E[a233] + 2E[a11a22]

2 = 5v2,

Hence

E[S4] = 18m(m− 1)v2 + 5m(m− 1)(m− 2)v2 = m(m− 1)(5m+ 8)v2.

We have

q(A)2 =


∑
i

a2ii︸ ︷︷ ︸
X

+ 2
∑
k<`

a2k`︸ ︷︷ ︸
Y


2

= X2 + Y 2 + 2XY.

The random variables X and Y are independent and thus

E
[
q(A)2

]
= E[X2] + E[Y 2] + 2E[X]E[Y ].

We have

E[X] = 3mv, E[Y ] = m(m− 1)v, 2E[XY ] = 6m2(m− 1)v2.

Next,

X2 =
∑
i

a4ii + 2
∑
I<j

a2iia
2
jj ,

E[X2] = mE[a411] +m(m− 1)E[a211a
2
22]

(A.15)
= 27mv2 + 11m(m− 1)v2 = 11m2v2 + 16mv2,

Y 2 = 4

(∑
k<`

a2k`

)2

= 4
∑
k<`

a4k` + 8
∑

i<j, k<`
(i,j) 6=(k,`)

a2ija
2
kl

E[Y 2] = 4

(
m

2

)
E[a412] + 8

((m
2

)
2

)
E[a212]

2.

= 6m(m− 1)v2 + 8

(
m

2

)((
m

2

)
− 1

)
v2 = m(m− 1)v2

(
6 + 2(m+ 1)(m− 2)

)
.

We summarize the results we have obtained so far. Below we denote by o(1) a function of m,
independent of v that goes to 0 as m→∞.

E
[
p(A)

]
= m(m+ 2)v,

E
[
p(A)2

]
= 3m2(m+ 2)2v2 = 3m4v1(1 + o(1)),

E[q(A)] = m(m+ 2)v,

E
[
q(A)2

]
= mv2(2m3 + 2m2 + 9m+ 14) = 2m4v2(1 + o(1)),

E[p(A)q(A)] =
(
m3 + 3m2 + 12m+ 11

)
mv2 = m4v2(1 + o(1)).

We have

E[p̄(A)2] = E[p(A)2]− 2m(m+ 2)E[p(A)] +m(m+ 2)v = 2m4v2(1 + o(1)).

E[ p̄(A)q̄(A) ] = E[p(A)q(A)]−m2(m+ 2)2v2 = −m3v2(1 + o(1)),

E[q̄(A)2] = mv4v2(1 + o(1)).

Thus, in the basis p̄(A), q̄(A) of L2(Svm)inv2 the inner product is given by the symmetric matrix

Qm = m4v2
[

2 o(1)
o(1) 1

]
.
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This proves that the component of f(A) in L2(Svm)inv2 has a decomposition

f2(A) = xmp̄(A) + ymq̄mq(A),

where, as m→∞

xm ∼
1

2m4v2

(
ESvm

[
p(A)f(A)

]
−m(m+ 2)vESvm

[
f(A)

] )
∼ (2v)

m+2
2

2m4v2

(
E

S
1/2
m

[
p(A)f(A)

]
− m(m+ 2)

2
ESvm

[
f(A)

] )
,

ym ∼
1

m4v2

(
ESvm

[
p(A)f(A)

]
−m(m+ 2)vESvm

[
f(A)

] )
,

∼ (2v)
m+2

2

2m4v2

(
E

S
1/2
m

[
q(A)f(A)

]
− m(m+ 2)

2
ESvm

[
f(A)

] )
.

Using (A.1),(A.2) and (A.3) we deduce that there exist two universal constant z1, z2,indepndent
of m and v such that, as m→∞.

xm = z1Cmv
m−2

2 m−5/2, ym ∼ z2Cmv
m−2

2 m−1/2. (A.16)

In the problem investigated in this paper the variance v also depends on m, v = hm. Recall
that the constant Cm grows really fast as m→∞

logCm ∼
1

2
m logm.

Proposition A.6. The Gaussian vector

J2(X) :=
(
X(0),∇X(0),∇2X(0)

)
.

is nondegenerate.

Proof. We set H := ∇2(0) and we denote by Hij its entries. The equality (2.8d) shows that

H ∈ Shmm is a centered Gaussian random real symmetric matrix whose statistic is defined by
the equalities

E
[
H2
ii

]
= 3hm, E

[
HiiHjj

]
= E[H2

ij

]
= hm, ∀i 6= j,

while all the other covariances are trivial. This shows that the second jet J2(X) is the direct
sum of mutually independent Gaussian vectors, J2(X) = A ⊕ H0 ⊕ D, where D = ∇X(0),
H0 is the vector with independent entries (Hij)i<j and A is the vector

A =
(
X(0), H11, . . . ,Hmm

)
.

The components H0 and D are obviously nondegenerate Gaussian vectors. Thus, the jet
J2(X) is nondegenerate if and only if the component A is. The covariance matrix of A is
Rm(sm, dm, hm) where for any s, d, h > 0 we denote by Rm(s, d, h) symmetric (m+1)×(m+1)
matrix with entries

r00 = s, r0i = −d, ∀i = 1, . . . ,m, rii = 3h, rij = h, ∀1 ≤ i < j ≤ m.

Note that multiplying the first row by s−1/2 and then the first column by s−1/2 we deduce

detRm(s, h, d) = s detRm(1, d̄, h), d̄ = ds−1/2.

If we add the first column multiplied by d̄ to the other columns we deduce that

detRm(1, d̄, h) = detGm
(

3h− d̄2, h− d̄2
)
,
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where Gm(a, b) denotes the symmetric m×m matrix whose diagonal entries are equal to a,
and the off diagonal entries equal to b. As explained in [21, Appendix B], we have

detGm(a) = (a− b)m−1
(
a+ (m− 1)b

)
.

Thus

detRm(s, d, h) = s(2h)m−1
(

(m+ 2)h−md̄2
)

= (2h)m−1
(

(m+ 2)hs−md2
)
.

Thus J2(X) is nondegenerate if and only if hmsm
d2m
6= m

m+2 . Using (2.7) we deduce that

hmsm
d2m

=
m

m+ 2

Im−1(w)Im+3(w)

Im+1(w)2
.

From the Cauchy inequality we deduce that Im+1(w)2 ≤ Im−1(w)Im+3(w). We cannot have

equality because the functions
√
w(r) r

m−1
2 and

√
w(r) r

m+3
2 are linearly independent. ut
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