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1 Introduction

The nature of scattering of heavy ions by nuclei depends, to a great extent, on the
specificity of the behavior of a potential on its periphery where an essential role is played
by a powerful but slightly changing Coulomb potential, and on the contrary, a sharply
changing nuclear potential. In this case, it is important to employ extended optical
potentials of the Woods—Saxon type with a large range of interaction. Note is to be made
that, at present, there are effective calculations programs for the scattering differential
cross section. However, it is better to consider the problems concerning the physical
picture of the process on the basis of analytic methods of calculation and analysis of the
corresponding amplitudes. They allow one, for instance, to understand why the nature
of angular distributions changes with growing scattering angles, how they depend on the
energy and set of colliding nuclei, what can be expected if either parameters of the problem
are varied. Approaches of that sort were developed for diffraction scattering models where
experimental data are fitted through matching parameters of either form if the scattering
S-matrix given phenomenologically (see, e.g., [1-4]). The physical language taken from the
optical interference and diffraction was adapted for interpreting the angular distributions
of elastic scattering of nuclei.

In recent years, in the heavy-ion scattering problems, wide use has been made both of
phenomenological nucleus-nuclear potentials and microscopic potentials constructed by
using effective NN-forces and the nuclear density distribution functions, an account was
taken of the exchange effects and the density dependence of forces, and so on [5-8]. This
creates a more profound physical basis of understanding the scattering mechanism itself
and manifestation of peculiarities of the nucleus structure, for instance, of the neutron
or proton halo on a remote periphery of some light nuclei, neutron excess in the surface
region of nuclei, the influence of the nuclear-matter compression on internuclear forces.
In this connection, it seems of interest to develop the analytic methods of calculation of
amplitudes within the framework of the potential approach. In this case, the problem is
not only to qualitatively consider the scattering picture, but also to make quantitative
computations that reproduce exact numerical solutions at the same given potential.

In the paper, heavy-ion scattering is considered at energies from 10 to 100 MeV /nucleon
when the condition £ > V is justified, and the wavelength is small as compared to the
characteristic parameters: radius R and thickness a of the surface layer of the potential.
(Here E is the collision energy; V, the interaction potential). Then, one can take the
Glauber-Sitenko approach [9,10] as the basis, in which the eikonal amplitude is obtained
in closed form for small scattering angles ¥ < \/Z/TR (k is the collision momentum).
This approach is widely used in hadron-nucleus scattering where the Gaussian shape of a
potential or the density of a target-nucleus is usually employed. Then integration in the

phase that proceeds along the straight trajectory of motion can be performed explicitly,



and in some cases, the amplitude can be obtained in a certain form. Unfortunately, it
is just this form of the approach that cannot be applied to heavy—ion scattering. The
specific feature of the latter is that it should be modified to take account, first, of the
strong Coulomb distortion of the trajectory of motion. Now, this latter deviates off the
straight line along the initial momentum ki on the deflection angle 0, ~ 7,7y¢*/RE,
where R is the sum of radii of colliding nuclei. The other specific point is the always large
radius of interaction which arrive at a conclusion to employ extended forms of poten-
tials of the Saxon-Woods type that strongly differ from Gaussian potentials. For those
potentials, the eikonal phase was not yet found in an explicit form; and this made it
impossible to develop analytic methods of evaluation of the nucleus—nuclear amplitude.
And only recently in ref.[11], its approximate expression was obtained for a symmetrized
Saxon-Woods potential. It rather accurately reproduces the behavior of the exact numer-
ical phase and thus allows one to determine the differential cross section coincident with
exact calculations. And this, in turn, made it possible to adapt the known asymptotic
methods of estimation of rapidly oscillating integrals to the problem of nucleus-nucleus
scattering and its specific character.

In this paper, we derived the amplitudes in explicit form corresponding to their typical
regimes of scattering in certain angular intervals. Effects of deviation of the motion trajec-
tory connected with the influence of the strong Coulomb field are discussed and taken into
account. As a result, the range of angles could be increased where the Glauber-Sitenko
approach is valid. The accuracy of analytic calculations was controlled by numerical com-
putations of angular distributions, and comparison with experimental data was carried

out.

2 The Method

The scattering amplitude in the Glauber-Sitenko approach is of the form [9, 10]:
$ta) = =it [ soan)| XV~ 1] 0
0

Here ¢ = 2k sin(¥9/2) is the momentum transferred; 9 is the scattering angle; the eikonal
phase is given by '
k (o)
=50 [ VT de, )

and b is the impact parameter. The interaction potential consists of the nuclear and
Coulomb parts:

Vi(r) = Vn(r)+ Ve(r). 3)



The nuclear potential is usually taken to be the optical Woods—Saxon potential

Vn(r) = (Vo + iWo)up(r), up(r) = (1 + exp r :z R)_ , (4)

whereas the Coulomb potential is chosen in the traditional form

_ Ve
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which corresponds to the interaction of change Zje with a uniformly distributed charge
Z,e in the sphere of radius Re.

Owing to the condition kb >> 1, the integral in the amplitude (1) oscillates strongly.
This makes it possible to use the asymptotic methods for its estimation. The Bessel
function is replaced by its asymptotic expression Jo(z) = 1/2/7z cos(z —7/4), (z > 1);
besides, in (1), when scattering proceeds through angles ¥ # 0, it suffices to consider only

the first term. Then we obtain

O=Ffn—Ffoy, fo= —ZL_sin(l—ﬂ/Qj \/g (1 £14) ), (6)

ta = / Vb db 9)(0) (7)
0

9)(0) = £gb+ x(b),  x(b) = xn(b) + xc(b). 8)
Here xn(b) and xc(b) are the nuclear Coulomb phases calculated by eq.(2) with the
appropriate potentials (4) and (5). The f_) and f) are called the near-side and far-
side amplitudes; in the quasiclassical limit, they are associated with the trajectories of
deflection around the near and remote edges of a scatterer.

The methods of evaluations of integrals with rapidly oscillating functions such as the
pole method, the steepest descents and stationary phase methods, require the assumed
phases x(b) in an explicit analytic form. Note that the phases y(b) defined by (2) are
integrals of the potential along the straight trajectory of motion of nuclei. For the Coulomb
potential, this phase is calculated explicitly [12]:

2
et = 7= B i &+ 2o la(k(Ro + €))| O —b) +

+2Re In(kb) O (b — Rc)}. 9)

Here { = \/RZ, — 0%, and ) = Z; Z,¢*k/2E is the Sommerfeld parameter. For the nuclear
potential in the form of the Saxon-Woods potential (4) no analytic expression can be
obtained for the phase yn. To overcome this difficulty, approaches were developed, in

which that potential or the phase xn(b) were simulated by the sum of Gaussian functions,
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whose weight coeflicients as well as the parameters of the functions were adjusted with a
sufficient accuracy [13, 14]. Here every time for a new set of parameters of the Woods~
Saxon potential, one should repeat the procedure of fitting. Besides, in view of the
mentioned specificity of nucleus-nucleus scattering, it is highly important to use a more
realistic exponential asymptotics than the Gaussian asymptotics for the potential in the
region of its periphery.

In ref. [11], another method was proposed based on an approximate separation of
variables b and z in the integrand of (2). Moreover, a more realistic symmetrized Fermi

function was taken as the distribution function of the potential

sinh C
cosh C + cosh r/a’

use(r) = C = Rja, (10)
that coincides with up(r) in the region r > 0 when R > a. The potential with the
usr distribution has the correct behavior in the center, namely, its derivative u/sp(0) = 0,
while the traditional Woods—Saxon potential has the divergence at the center which differs
from zero (u(0) # 0). Thus, hereafter it is more appropriate to employ the symmetrized
Woods-Saxon potential [15]. Moreover, as it has been shown in [11], for this potential

one can derive an approximate analytic expression for the nuclear phase:

Vo +1Wo

XN(b) =—kR B

P(170) uSF(b)a (11)

where

1
P(1,0) =5 [2.489453 + 0.34597 C' — 0.0046 C?].

In the region of the potential periphery b ~ R, it well reproduces the phase obtained by
numerical integration (2). What is more, it has been verified [11] that the corresponding
differential cross sections of elastic scattering, calculated with the phase found numerically
and the phase (11), coincide with a good accuracy in the whole range of applicability of
the Glauber-Sitenko approach.

In what follows, we develop the approximate methods for calculating the amplitudes
on the basis of analytic expressions of phases (9) and (11). In our case of nucleus-nucleus
scattering, we have ¢b ~ ¢R >> 1, which allows us to employ the asymptotic method of
stationary phase. According to this method, the exponent gy in (7) should be expanded
in the Taylor series in the vicinity of saddle points b,, that determine regions of a major
contribution to the integral. So, we write

" (bs")

’ g
9)(8) = gy (bs,) + gl (bs) (b= b,) + ‘*’2 (b=by)% + ..., (12)

and, from the condition for the first derivative being equal to zero, we derive the equation

for stationary points (saddle points):
£q+ Xn(bs,) + xc(bs,) = 0. (13)
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Consider the case when Wy = 0 ! Then equation (13) will contain real quantities, and its
solutions produce the dependence g = ¢(b). For the reaction of nucleus—nucleus scattering
usually considered, it turns out that a stationary point, a solution to the equation for g4,
lies outside of the range of integration. Therefore the term fi;y can be neglected in (6), and
the scattering amplitude f(q) is determined only by the near-side amplitude f_y. For the
heavy ion scattering, a situation is typical when the equation for g_y gives two solutions,
and thus, two saddle points b,, and bs, give a leading contribution to the amplitude. If
they are situated sufficiently far from each other 2, their contributions can be considered
as independent, and the near amplitude f(_) is determined by the sum of contributions
from vicinities of those points. Now, we insert (12) with g(y,(bs,) = 0 into the integral
(7), take the slowly changing factor v/b out of the integral sign, and tend the limits of
integration to the right and to the left from b, to infinity. Then the integral is calculated
explicitly, and the amplitude takes the form

1 .
fo = “Tem(0)2) \/g (1—1) Z t=)mo (14)

n=1,2

where
toym = \/E ”2—7T ei(g(_)(bsn) + 7T/4). (15)
g(_)(bSn)

In Fig. 1, we show the dependence ¢ = ¢(b) for scattering of 7O on 2°®Pb at energy
FE..m. = 1327 MsB. The dot-dashed curve is the curve of stationary points for the Coulomb
scattering phase x¢ = 27 In(kb) in the field of two point charges Z;e and Zye, whereas the
point line to the left of the top shows a small deviation that arises if the point charge Z;e is
scattered in the field (5) of the uniformly distributed charge Zye in the sphere of radius R¢.
The solid curve is the numerical solution to equation (13) with the phase xy determined
by expressions (11) and the Coulomb phase x¢ = 25 In(kb), while the long-dashed curve
shows the solution when in equation (13) x¢ is changed by the exact Coulomb phase (9).
It is seen, that throughout the whole periphery region of the nucleus-nucleus potential,
the solid and long-dashed curves coincide very closely. Therefore, instead of the total
Coulomb phase (9), one can use only its asymptotic part 2nln(kb). For Fig. 1 it is seen
that the deviation function ¢(b) has a typical maximum gua, = ¢ = ¢(b,) in the region
of interaction surface that determines the basic features of the scattering picture. In

this region of the limiting classical momentum transfer, it is convenient to represent the

!In final expressions, we replace Vy by Vp + iW,, which is valid for Wo <« Vp. In the periphery region
when b ~ Ry + Ry and at classical scattering angles ¥ < |V|/E, this results in a minor renormalization
of the particle flux by factor (1 — Wy /4E) (see, for instance, [16]). In a more general case for complex
variables, the method of stationary phase was developed in ref. [17] for the diffraction model of scattering.

2The given points are saddle points of the first order, since gE'_)(b,n) #0.



function ¢(b) at the logarithmic parabola [18]

b—b )*
qz%_p@nb_é}, (16)

where parameters b,, ¢,, by, p are determined from fitting this parabola to the exact

curve ¢(b) obtained by numerical solution of equation (13) for the stationary point.
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Puc 1: Dependence of the deviation function on the impact parameter constructed on the
basis of the eikonal phase for scattering of 'O+ *8Pb (E,,, = 1327 MeV ). The potential
parameters are reported in Table 1, and the eikonal phases are defined by (9) and (11).

As it turns out, for a typical combination of the Coulomb and nuclear potentials
characteristic of the nucleus—nucleus scattering, a fit like that should be accomplished as
accurated as possible. Specifically, methodical computations show that, if the position
of b, is determined with an accuracy of an order of 0.5 fm, the cross section is changed
by an order of magnitude. Besides, our aim was also to obtain the explicit dependence
of parameters of this logarithmic parabola on input parameters of the problem, namely,
on geometric parameters and power parameters of given potentials. For this purpose, a
particular method was developed, according to which the first derivative of the function
q(b) in the region of its maximum was first approximated by a polynomial of the third
degree, and then an equation was derived that gave solutions for by, ¢,, by, p in an explicit
form (see Appendix A). In this way, the parabola (16) was completely determined, and
then it was used to derive two solutions for saddle points:

bs, = by + (b, — by) exp{—+/(¢- — q)/p}, (17)
bey = bi + (b, — by) exp{++/(¢, — ¢)/p}.
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This approximation of the function ¢(b) in the region of its maximum by the logarith-
mic parabola is shown in Fig. 1 with a fine dashed line. Note that b; in formula (16) is a
point of intersection of the curve of momentum deviation ¢(b) with the axis b from the left,
whereas b, and ¢, show the point (a large asterisk in Fig. 1) of the classical momentum
boundary ¢ < ¢, of applicability of a classical scattering theory. From this figure it is seen
that the logarithmic parabola well reproduces the vertex and the left part of the deviation
function where the saddle points by, are situated. To the right, the dependence ¢(b) is
determined by the first derivative of the asymptotic part of the Coulomb phase (9), and
it is described by the saddle points 2n/q. So, the behaviors of the deviation function is
determined by the following set of saddle points

bs, = b1 + (b, — bi) exp{—+/(¢ = ¢)/p} , b<b, (18)
bs, = 2n/q , b>b,. '

These points are shown in Fig. 1 by asterisks.

3 Classical and quantum scattering regions

At angles ¥ < ¥, ( ¢ < ¢, ), scattering proceeds in the classical region; at every angle ¥,
there are two trajectories of motion with different impact parameters b,, and b,,.

Numerical and analytic calculations of the ratio of the elastic scattering cross section
to the Rutherford cross section do/dog are presented in Fig. 2 . The amplitude f(q) is
defined by eqs. (6) and (15). The absorption is taken into account via changing the real
potential by the complex one in the final expression for the amplitude. It is seen that
the analytic calculations are in good agreement with the numerical computations, except
for the region of angles close to ¥,, which corresponds to the extremum of the deviation
function ¢(b). At ¥ = 9,, the cross section becomes infinite, since the second derivative
9(—)(b;) in the denominator of (15) turns into zero.

When ¢ < ¥, (¢ < ¢,) the ratio of cross sections do /dog oscillates with respect to unity.
This occurs due to interference between the nuclear and Coulomb amplitudes determined
by different saddle points b,, and b, from (18) and having, respectively, different phases
9(-)(bs,) and g(y(bs,). As a result, the absolute value of the amplitude squared

(@ = [F1bsy (01 + [ £Tbss (9)]*+

2k? qmbs, by,
Al c0s|g(—)(bs,) — g(_)(bs,].
N TG, B ) = 9 b

contains a nonzero interference term. The nuclear amplitude f[bs, ()] at small angles

U < ¥, ~ |V|/E is always small as compared to the Coulomb amplitude, and thus, it

3In these and further calculations, account is taken of the Coulomb distortion of the straight trajectory
of motion, i.e. the path of integration in eq.(2). These effects will be discussed in section 6.
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manifests itself as interference. When 9 — 0, oscillations are completely suppressed by
the Rutherford scattering. When absorption is included, W, # 0, the flux of particle
in the elastic channel diminishes, which smoothers oscillations. This scattering picture
corresponds to the Fresnel diffraction in optics that results from interference between an
incident beam and a beam scattered at the edge of a screen.

As the saddle points b, and by, approach the limit point of maximum (at b,), regions
near each of them which give main contributions to the amplitude, start to overlap. In
this case, the estimate (15) of the integrals and the assumption of their independent
contribution to the amplitude lose their meaning. The problem can be resolved either by
the addition of subsequent expansion terms of the phase g(_y(b) into (12) or with a help
of modification of the stationary-phase method, for instance, following ref. [19]. In the

next section, this case is considered in detail.
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Puc 2: The ratio of differential cross sections do/dog for reaction 17O + 298Pp. The
potential parameters are the same as in Fig.1. The solid curve is an ezact numerical
calculation with Wy # 0. Calculation by the stationary-phase method: small-dashed lines
are for Wo = 0 (no absorption), dashed curves are for Wy # 0 (with absorption).

The behavior of the amplitude for angles ¥ > ¥, far from the region of classical scatter-
ing can be understood from qualitative considerations by using the same parametrization
(16) for the function ¢(b) employed in the region of classical angles. For ¢ > ¢,, from
(17), we have \/g, —¢ = iy/g— ¢,. In this case, the only the saddle point bs, remains
physically substantiated that determines the exponential drop of the scattering amplitude
fy ~ exp(—q Im(b,,)) and the corresponding cross section (see dashed curves in the
region of ¥ > ¥, in Fig. 2). This behavior is also confirmed by numerical calculations (a

solid curve) and is observed experimentally.



4 The region of Coulomb rainbow

Let us consider the region of angles around 9, where a broad maximum is experimentally
observed in the angular distribution of the scattering that is called the rainbow scattering.
It is analogous to the phenomenon of natural rainbow in optics that arises from interfer-
ence between reflected and refracted rays of light in a drop of water, whose sizes are large
as compared to the light wavelength. In our case, it is the interference of two amplitudes
connected with two stationary points from the right and left side of ., to which one can
make correspond two near trajectories passing close by the limiting classical trajectory of
motion. So, we consider the scattering mechanism in the region of ¥, ~ |V,u..(r =~ R.)|/E
when the saddle points merge (Fig. 1), and there arises a stationary point of a higher
order.

To obtain the scattering amplitude in that region, we expand the function g(_) in a
power series around the rainbow point b ~ b,. Since g('_)(b,) = 0, one should take into
account, at least, terms up to the third order. Considering that gé_)(br) = —q + ¢, and
g((i))(bT) = x®)(b,), we have

9(-)(0) = —gb, + x(b) = (¢ — @) (b—b,) + %(z} —b,)" + ... (19)

In this case, the stationary-phase method for integral (7) gives

1/3 ,
by =27 [FB)Q(T)] Vo, €90 i), (20)

where the Airy function is defined by the formula

o X o 113
Ai(a):%/ oz +2°3) 4, a=(q—qr)[w(%r—)] . 1)

This is the so-called Airy approximation for rainbow scattering usually employed in diffrac-
tion models. Like in the case of the Fresnel diffraction, the rainbow scattering (Coulomb
rainbow) is determined by the near amplitude fo)

Because of a particular behavior of the Airy function on-the ”lighted side” of the
rainbow (J < 9, , oscillations of the cross sections are observed, and they rapidly damp
when moving away from ¥,; on the "shadow side”, ¥ > 9, the cross section decreases
quickly. The maximum of the angular distribution is located on the lighted side and
corresponds to the maximum of the Airy function (a wave rainbow) when o = —1. The
limit angle ¥, in this case determines the position of the classical rainbow (a geometrical
rainbow).

In Fig. 3, comparison of numerical (solid lines) and analytic calculations is given
for the cross section of scattering near the rainbow angle for the case of high energies

(Fig. 3a) and low energies (Fig. 3b) and different pairs of interacting nuclei. It is seen
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that the computation by the analytic stationary-phase method in the traditional Airy
approximation (20) (dashed curves) gives no satisfactory description for the nucleus—
nucleus scattering. These curves in both the cases go considerably below the solid curves
calculated numerically. When the absorption is included through the change of V; by
Vo + tWo, still larger disagreement takes place. A possible reason seems to be that the
expansion of the function g(_ in the series up to the third-order terms (19) is not sufficient.
In particular, it could be verified that the expansion of g_y (19) for the scattering of
70 by *%Pb agrees with the function gy computed numerically only in the region of
b=b,£0.5 fm, which corresponds to the scattering in a highly narrow angular range. To
obtain an adequate description of the nucleus-nucleus scattering around ¥, we employed
the method applicable when two saddle points of the first order are close to each other
[19]. Within this method, the expansion in the exponential is made not in the vicinity of
the stationary point of second order, but in the vicinity of a midpoint betweenb,, and b,

that, in the limiting case, turns into a point of a higher order.

10 10 3
F a ] b
Y
1E O 13
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Puc 3: The ratio do/dog in the region of the rainbow angle. Solid curves are the exact
numerical calculation with Wo # 0. Calculations by the stationary-phase method: dashed
curves are calculated by formula (20); dotted curves are calculations for the case of two

neighboring points by formula (22). The potential parameters are listed in Table 1.
According to the procedure given in [18], the integral (7) can be written in the form

to) = 70 (han/Byy + hav/byy) €190 Ai(o),

(22)
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where

F2 1
ha, v a0 = 519 (bsy) + 9(-)(bsy)]
1.2 9y (bsy ) 0 2[ (=)\0s1 (=)(6s5)] (23)
3 2/3
o = [5(9)(bs) = 9o (b))
When b;, — bs,, then g’ (b, ,) — 0. In this limiting case

_9 1/3

h]:hZZ[—?—:| ) bslzbsgzbr~
g\ (b,)

The saddle point b;, ~ b, is expressed by formula (17).

The cross section calculated by (22) is plotted in Fig. 3 by dotted curves. It is seen,
that they are in good agreement with the cross section computed numerically on the left
of the limiting classical angle 9, including the region of the wave rainbow angles, the
maximum of the ratio do/dogr. As it has been shown, at angles either larger or smaller
with respect to the range of rainbow, the cross section can be interpreted as the Fresnel

diffraction.

5 The Fraunhofer scattering

Here, we will thoroughly examine the behavior of the elastic scattering cross section
at angles ¥ > 4,, i.e., in the region inaccessible for classical scattering. We saw that
the Fresnel picture "works” well in the classically accessible region, and at ¥ > 4,, it
shows a smooth exponential damping, which is natural beyond the scope of classical
scattering. However, in this region, the frequently observed experimental patterns are
when differential cross sections fall off and oscillate simultaneously that are typical of the
Fraunhover diffraction in optics. If use is made of the optical potential with real and
imaginary parts,it is possible to explain many nuances of the behavior of cross sections in
this region of angles. Theoretically, a new point is that, now, there are stationary points
bs, in the range of integration Re(b,,) > 0 for the near- f_y and far-side f(+) components
of the whole amplitude f(¢). They shift into the complex plane of the impact parameter
binto the region where poles of the function usp(b) of the nuclear phase are disposed at
r¥(e) = £R + eima(2p — 1), with p=1,2,3..., ¢ = +1. In ref. [20], an attempt has been
made to explicitly find the profile integral with the Fermi function 2 up(VB? + 2%)dz
in phase (2) through continuing into the complex plane. The answer was given by the
sum of residues at poles of the Fermi function r¥ = R +ira(2p — 1), (p = 1,2,3...).
However, in the limit & — 0, the sum was 0, instead of the correct value ~ R. Therefore,
the authors of ref. [20] have proposed the following prescription
. o 4 -
xn(b) = —kRK’+E—M/9 1-irg Z(% + %)] , (24)
- p=1 "p P
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where )\E,i) = 1/(r¥)? — b2, and the condition Im /\;(,i) > 0 should hold. Numerical veri-
fication shows that this function correctly reproduces the behavior of the profile integral
in the complex plane, at least, around the poles nearest to the real axis b. At the same
time, expression (24) does not give the accuracy required for the phase yy on the real
axis in the range of b > R, even if several hundred terms are kept in the sum. For further
consideration, it should be remembered that, when amplitudes are estimated asymptot-
ically, saddle points are displayed in the region of extremums of the phase. Therefore
the amplitudes under consideration are changed sharply in the complex plane just near
singularities of the phase, the poles xn(b). A major contribution to the amplitude for
g > g, comes from the two poles rf = R % i7a nearest to the real axis, and every next
pair with p > 1 brings a correction by a factor exp (—ragq) lower than the previous one.
However, a more accurate result can be achieved if the total contribution of remaining
terms with p > 2 of the sum in (24) is simulated, in the region of rf-poles, by the smooth
function A(b) [21] rather than neglecting contributions from the poles with p > 2, as it

was made in [22]. It is just this modified expression, we will use for the nuclear phase

. + -
xn(6) = —kRK)fEl—WO = m%(% + %) + AZL]?], (25)
The function A(b) = Ap(b) + iAr(b) where b = by + ib, can be found in [21]; for the
Coulomb phase, we take, as before, the asymptotic value yo = 2n In(kb).

In the case when stationary points are looked for in the region of sharp change of
the phase, small contributions from the derivatives of smooth functions x¢(b) and A(b)
can be neglected. Since contributions in the near- and far-side amplitudes are made,
correspondingly, to the saddle points lying in the first and forth quadrants of the complex
plane b, then, in parentheses of eq.(25), only the first term can be kept for f(4), whereas,
for f_), only the second term (see [21]). In this way, we extended the approach to nucleus—-
nucleus scattering developed in ref. [22], in which only the pole in the first quadrant was

taken into account. Now, the equation for the saddle point takes the form

, ot
9ix)(b) = £q + QW =0, (26)
1
where W i
&= _mk%ﬂ = |a] etPa, (27)
Bo = 2w — arcsin ‘1—— (28)

1+ (Wo/Vo)?

Also, the following formulae

: a(E
rf = R+ira = |rF| elﬂ7£ ), (29)
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Va2 + R R’

are useful. Following the procedure of ref. [22], we look for solutions to eq.(26) around

B = arcsin B =27 — g+ (30)

the poles 7 in the form

bgi) = rf: + 5(1:)’ (31)
Im bg, fm
4 7
()
2_
] 7°
] i
; 3
0.
] R 3°
1 .
-2 ] s
®
B R S ——
5
Re b,, fm

Puc 4: Motion of saddle points in the complex plane b with growing angle 9 (3° + 7°) for
scattering "0 + %Ni. The potential parameters are listed in Table 1. Large circles are

poles rf = R +ira; and asterisks, calculations by approzimate formulae (31) and (35).

With the help of the condition [§®)| < |rf|, one can reduce equation (26) to an
equation of third order for the quantity A() and find its roots

1/3
o) +|2
A = 3] 08, |A|=[ﬂj—'} 7 (32)
) _ T L e
o =3[ gt 5| + 3w 2o, (39

for which Im A& > 0, and the solutions ) are in I and IV quadrants [21]. Using the
condition |6 < |rf|, we arrive at

A = \J(rE + ) — o) = /—2rke®), (34)
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and then, from eq.(32), we obtain the final expression

s = _LIAP ip®
n - 2 ’T(i)l )
1

2 2 1
ﬂgi) = §7r(2n +1)+ §ﬁa + §ﬁ£+)- (35)

The behavior of saddle points in the complex plane b determined from approximate
formulae (31) and (35) is shown in Fig. 4. The sum of the near- and far-side amplitudes
calculated with these points determines the Fraunhofer type diffraction scattering. The

detail discussion of the latter is done in Sect. 6.

6 Discussion of results. The trajectory distortion

In Fig. 5 for the reactions of elastic scattering of 7O on nuclei 2°8Pb, 1205, %7, 60 N;
it is shown that different scattering mechanisms operate in different ranges of the angular
distribution. Scattering in the range ¥ < ¥, (regions I, 1) is described by the sum of
two terms of the near-side amplitude; and each of them is specified by its own impact
parameter by, and b,,. So, there are two trajectories in the range of action of the Coulomb
potential and the tail of nuclear potential that provide scattering through the same angle.

At very small angles, the contribution from the nuclear trajectory is negligible because
of strong absorption of particles at small b,,. In this case, scattering is governed by the
Coulomb trajectory with a large impact parameter b,,, and the ratio do/dop is close
to unity. When ¥ is increased, the saddle points ¢(bs,) on the nuclear slope are shifted
towards larger periphery of the nuclear potential where absorption is small, and the role
of its real part responsible for refraction grows. As a result, the interference picture in
the region I of angular distribution gets more pronounced. It is accepted to be associated
with the Fresnel diffraction.

A specific feature of the angular distribution in the region II is that there is a limiting
scattering angle ¥, near which the classical trajectories are bunched. Just for this reason,
one can draw analogy with the optical interference of refracted and once reflected rays of
light in a drop of water (rainbow scattering). At ¢ < ¥,, the regions I and II are clearly
distinguished, and the point of matching of corresponding cross sections is determined
definitely. From Fig. 5 it is seen that the calculations by formula (15), dashed curves,
are in good agreement with the exact numerical integration of the initial amplitude (1),
solid curves, up to the position of broad maxima of the angular distributions. This is
the region I. Then up to the limiting scattering angles (region II), the numerical results
are reproduced by formula (22) for rainbow scattering (dotted curves). The position
of maxima of the angular distributions corresponds to the maximum of the function
Ai(o) in expression (22) when o = —1. If at a given angle ¥ we have ¢ < —1, then
for the amplitude, one should employ expression (12); otherwise, use should be made
of formula (22). The long dashed curves calculated by eq. (20) (the akin expression
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is frequently employed in diffraction models for the rainbow scattering) are fairly lower
than the numerical ones (solid curves). For lighter nuclei at the same collision energy, the
maximum of the angular distribution is displaced into the region of smaller angles; this

corresponds to narrowing of the classical scattering region.

10 ¢ 10
E 17o+208pb
1E 1
10 7' 10 1
~
5 S \
< ‘R -
° NG :Ec_m' 1257 MeV AN
b b
'-d 'U IERNENI AR EAN RN RN NN AR IRERNNNEN] L1l
1 1:
10 7' I
: 10 't
10 2k ;
10 %k
10 7k :
10 s 10
9, deg Y, deg

Puc 5: Different mechanisms of elastic scattering of 70 on 28Pb, 1208, 907, 60N
I' is the Fresnel diffraction; II, the rainbow scattering; III, the region of the near-side
amplitude; 1V, the Fraunhofer scattering. The solid curves are the numerical calculations;
the dashed curves are calculated by qu. (14); the long-dashed curves, by eq.(20); the dotted
curves, by eq.(22), the small-dashed curves, see sect. 5. The parameters are in Table 1.

In the quantum scattering region (¢ > ¥,), the stationary points are displaced in the
complex plane. Typically, the experimental cross-section data for 9 > o, drop exponen-
tially without oscillations (region III) and/or with oscillations (region 1V). In the first
case, a major contribution to the amplitude comes from the near amplitude with one

complex stationary point by, (eq. (17)) when ¢ > ¢, (dashed lines). In region IV, the
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cross section oscillates because of addition of the near and far amplitudes (small-dotted
lines) (Fraunhofer scattering). When calculating these amplitudes, the saddle points were
computed on the complex plane provided the absorption is taken into account. In con-
tradistinction to the classical region, the choice of the point of matching is here arbitrary.
We have found that solutions corresponding to regions III and IV are matched at the
point of their intersection nearest to ¥, from the right side. It is to be noted that, with
diminishing the ratio of the Coulomb barrier to the collision energy VB/E, scattering in
the quantum region assumes a more clear Fraunhofer character.

Consider the problem of the Coulomb distortion of a trajectory. Under the action of a
strong Coulomb repulsion, the trajectory of heavy ions deviates strongly from a straight
line, which influences the behavior of the cross section noticeably. To take this distortion
into account [24], if, in the nuclear phase (2), we change the impact parameter b to the
corresponding distance of closest approach in the Coulomb field Z; Z,e?/r:

xn(b) = xn(be), be = a. + /0% + a2, (36)

where a. = n/k is a half-distance of closest approach in a head-on collision. It is obvious
that the change b — b. complicates the shape of derivatives of yy with respect to b,
however, this produces an explicit expression for the limiting classical momentum transfer

Gmaz = ¢r and stationary points.

10 3
] . PS+7A1
1 7 ; ) ""
-5
& ]
T 10 3
~ E
o) ]
- ]
10'2'3
1B, =55 MeV f\
10 = e e e
10 . 30 50 70

U, deg

Puc 6: Influence of the Coulomb distortion of a trajectory for the scattering of 325 on
YAl at E,,,. =55 MeV. The left curves are obtained without the distortion a, = 0); the
right ones, with the distortion a, # 0. All the curves are calculated like those in Fig.5.

In Fig. 6, we compare numerical (solid lines) and analytic calculations (dashed and
dotted lines) of the ratio do/doy for elastic scattering of ®25 on Al at E,,, = 55 MeV.
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Curves without Coulomb distortion (¢, = 0) are shown in the left part of the figure;
whereas those with the Coulomb distortion (a. # 0), in the right part. It is seen that
the distortion strongly shifts the picture of angular distribution; and analytic calculations
are in good agreement with numerical ones. As mentioned before, the cross section is
highly sensitive to the position of the maximum of the deviation function. Therefore,
it is important to exactly determine the quantities ¢, and b, with taking account of the
Coulomb distortion in the initial phase even if a. is small.

In considering the Fraunhofer scattering we saw that the stationary points b, are
complex. In this case, the distortion was taken into account through the change of b, in

the phase in the final expression for the amplitude as follows:
by — by = a. + /B2 + aZ. (37)

Our calculations gave evidence that this change should be introduce when Vg > 0.04E.

Table 1.

The potential parameters for reactions of elastic scattering of 170 on nuclei
298 pp, 120Sn, P°Zr, ONi [25] and scattering of 325 on 2" Al [26].

Ec‘m.y %7 W07 Ra a, Rca
MeV | MeV | MeV fm fm fm

7O 4208 pp | 1327 | 50 47.1 | 9.286 | 0.727 | 10.196
170 4120 S | 1257 | 50 45.0 | 8.171 | 0.706 9.0

7O 49 7z | 1207 | 50 37.1 | 7.666 | 0.697 | 8.463
170 450 N4 1118 | 50 39.5 | 6.823 | 0.754 | 7.783
828 427 Al 55 100 | 48.76 | 7.428 0.5 7.428

In Fig. 7, the analytic calculations are presented matched at points of intersection of
curves for different scattering mechanisms. The curves were calculated with the Coulomb
distortion taken into account. It is seen that the analytic methods developed here repro-
duce the main features of experimental data [25] in all the regions of the scattering angles.
Minor deviations of theoretical curves from the experimental points show that the nuclear
forces should be also included in distortion of the trajectory of motion, especially in the
Fraunhofer diffraction region where the amplitude is considered on the complex plane.

On the whole, we can conclude that the Glauber-Sitenko approximation is applicable

for considering nucleus-nucleus collisions at energies of an order of 10-100 MeV /nucleon.

18



The range of applicability with respect to the scattering angles is expanded at the expense
of the Coulomb shift of the trajectory of motion of an incident ion by ¥, ~ Vjpuq(r ~ R)/E.

10 3 10 3
] 17O+208Pb : 17O+IZOSI1
1 4 1 3
~ [+
b 1 ¢ 1
T 10 T 10 4
N N
b ) ]
o) 1 T
10'“'5 10 '2§
1 BEcm=1327 MeV 1 Ecm=1257 MeV
10 -8 LR LA LD LR LR LR LR L 10 ° T LAALLLARLL AL l"”'”"I””"”'l"”””"
0 1 2 3 4 5 8 7 0 1 2 3 4 5 6 7
9, deg 9, deg
10 3 ;
] Y0+zr ] 0+%Ni
14
5
ChiE
N
b
3 1
10 3
] ,
10—‘ LARARRRR) TTIT Ty TTTTTTTTTT [SARRRERS 10—3 LARRRARRRE RRRRRRRRL} [RRRARRRA |"""'l.'|""""I
0 2 4 8 8 1 2 3 4 5 6
¥, deg 9, deg

Puc 7. Comparison of analytic calculations (solid curves) with experimental data from

ref.[25]. The different scattering mechanisms are matched as shown in Fig.5.

In this way, there appear conditionally separated regions of angles of the classical
¥ < ¥, and quantum scattering 9, < ¥ < 9, + \/Q/TR with their proper peculiarities
of interference and diffraction. The use of the explicit form of the eikonal phase for the
extended optical Woods-Saxon potential allowed one to develop the asymptotic methods
of calculating the eikonal amplitudes in this energy region and to describe the nucleus—

nucleus scattering in terms of diffraction models. It turns out that the construction of
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responsible analytic methods and the calculations of scattering amplitudes are rather
sensitive to the behavior of the potential in a rather narrow region of its periphery. The
consideration of these peculiarities makes it possible to understand the scattering mecha-
nism qualitatively and to describe main features of experimental differential cross sections

quantitatively.

The authors (V.K.L. and Yu.V.Ch.) are thankful to the Russian Foundation for Basic
Research for support, grant 00-15-9673.

Appendix A. Coefficients of the logarithmic parabola in terms
of the input parameters of the reaction

According to (13), the deviation function is given by
9= Xn*Xo- (IL1)
Inserting xn (11) and x¢ = 2 1n(kb) into this expression, we obtain

2 i
q= =+ 2RP(1, C)ulsp(b), (IL.2)

It is impossible to derive the explicit dependence b = b(q) for stationary points from this
equation. Therefore, in the region of the maximum of the deviation function (gmaz =
¢ = q(b:)), we approximate the right-hand side of (I1.2) by the logarithmic parabola
q = g — p[In{(b—b1)/(b — b1)}]? (16), and for it, the stationary paints are determined
explicitly (17). However, for this approximation, one should accurately determine the
position of the maximum, i.e.¢, end b,,~ main parameters of the logarithmic parabola. At

the point b, the derivative of (H.Z) is equal to zero, and we arrive at the equation

(b/ 2 + 98 2RP(1, C)ugp(b) = 0. (I1.3)
The most suitable method for its explicit solution is the reduce it to a third-order
equation. The latter has at least one real solution that determines the position of the
maximum. In the case of three real roots, the sought b, is the one nearest to the radius
of the nuclear potential R.
To determine the coefficients of the polynomial of third degree that passes through
zero of expression (I1.3), we take four points z,, (n = 0,1,2,3) on the tail of the nuclear

potential as follows *

up(zo) = 0.005, wur(zy) =0.01, up(zg) = 0.02, wup(z3) = 0.05. (I1.4)

4For simplicity, we use here up instead of ugp that coincide at real b > 0.
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Then they can easily be expressed in terms of the potential geometric parameters

zo = R+ aln(199), z1 = R+ aln(99),

, (I1.5)
zy = R+ aln(49), z3 = R+ aln(19).
Using these points, we construct the interpolation Newton polynomial [27]
¢(b) = ¢(xo) + (b — z0) ¢(z0,21) + (b= z0)(b— 1) $(0,T1,22)
+(b = 20)(b— 21)(b = 22) b(0, 21,22, 3), (IL6)

where ¢(z,) are the values of expression (I1.3) at points @, and ¢(z, ..., 2,) are divided

differences of an n-th order of the form:

$(w0, 1) = ﬂ%—@v B(zo, 1, 22) = ¢(x°’z;3 : jiychm?),

b(20, 21, 72, 73) = d(xo, 21, 23) — 925(1‘1712@3).
Lo — T3

Removing brackets in (I1.6) and collecting coefficients of the same degrees of b, we arrive
at an equation of third order, whose real solution determines b,, and ¢, is obtained by
direct substitution of b, into (I1.2). To determine b;, we approximate the function ¢(b)
by a parabola with the vertex at point (b,,q,), i.e. q(b) = ¢, — A(b— b,)?. Requiring
the parabola to pass through a point (for instance, x3) on the left branch of ¢(b), we
obtain the coefficient A; then, b; = b, — \/m The coefficient p is determined from the
condition of coincidence of the logarithmic parabola with the function ¢(b) (11.2) at an
arbitrary point from the interval [by; b.]; we took it equal to (b + b,)/2.

The method proposed did not take account of the effect of deviation of a trajectory
under the action of the Coulomb field. This can be done by using the same conditions
(I1.4) for the function ug(&) where & = a.+ /22 + a2. Note that the change of z by & in
(IL.1)leads to more cumbersome expressions for derivatives in (I1.2) and (I1.3), however,

does not change the above scheme of determination of b,, ¢, b end p.
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JIykesnoB B.K., Ilepmskos B.I1., Yy6os 10.B. E4-2001-75
OmnucaHue yIIpyroro paccesHus TAXeJbIX HOHOB
B pamkax noaxona I'may6epa—CureHko

B paMkax BbICOKO®HepretHyeckoro npubmmxenus I'may6epa—Curenko momy-
YeHbl AaHATUTHYECKUE BBIPAXEHHMS IS aMIUTUTYJ YIIPYroro sapo-saiepHoro pacces-
HHUS, COOTBETCTBYIOIIUE PA3THYHbIM peXHUMaM CTONKHOBeHus. [Ipu aToM HcHosb3y-
eTcs IPOTSKEHHBIM ONTHYecKUil moreHuMan tMna Bynca—CakcoHa U ydTeHO OT-
KJIOHEHHE TPaeKTOPUIl CUIIBHBIM KYJIOHOBCKUM NosieM. CpaBHEHHE aHATUTHYECKHX
pacyeToB CeYeHUH C YUCICHHBIMU pe3yNbTaTaMU U SKCIIEPUMEHTAIbHBIMHU JaHHBI-
MH IIOKa3bIBaeT, 4TO IIOAXOH MOXHO YCIEHIHO IPUMEHSATh B OONACTH SHEpruii
10-100 MsB/nyxioH. Iloka3aHo, 4TO IpH 3aJaHHOM IOTEHLMAJE MOXHO HaWTH
YIJIOBBIE HHTEPBAJIBI, T€ IPEUMYILIECTBEHHO IPOSBISIETCS ONpeAe/cHHas KapTHHA
paccesiHus, KaK, HallpUMep, KJIaCCHYECKOe WM palyXHoe paccesHue, nucpakius
Dpenens unn OpayHrodepa.

Pabota Brimoninena B Jlaboparopuu Teoperudeckoii pusuku um. H.H.Boroto-
6oBa OMSIN.

Ipenpunt OGbeAMHEHHOTO HHCTHTYTA SAEPHBIX MccrenoBanuil. ly6Ha, 2001

Lukyanov V.K., Permyakov V.P., Chubov Yu.V. E4-2001-75
Description of Elastic Scattering of Heavy Ions
in the Glauber—Sitenko Approach

In the framework of the Glauber-Sitenko approach, analytic expressions are
derived for the amplitudes of elastic nucleus-nucleus scattering corresponding
to different regimes of collision. An extended optical potential of the Woods—Sax-
on type is employed in calculations, and the deviation of trajectories by a strong
Coulomb field is taken into account. Comparison of the analytic evaluations
of cross sections with the numerical results and experimental data show that
the approach can be used in the energy region from 10 to 100 MeV/nucleon.
In this way, at a given potential, one can find angular ranges where a definite pic-
ture of scattering like, for instance, the classical or rainbow scattering, the Fraun-
hofer or Fresnel diffraction takes place.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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