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Abstract

A resource selection function (RSF) is any model that yields values proportional to the probability of use of a

resource unit. RSF models often are fitted using generalized linear models (GLMs) although a variety of statistical

models might be used. Information criteria such as the Akaike Information Criteria (AIC) or Bayesian Information

Criteria (BIC) are tools that can be useful for selecting a model from a set of biologically plausible candidates.

Statistical inference procedures, such as the likelihood-ratio test, can be used to assess whether models deviate from

random null models. But for most applications of RSF models, usefulness is evaluated by how well the model predicts

the location of organisms on a landscape. Predictions from RSF models constructed using presence/absence (used/

unused) data can be evaluated using procedures developed for logistic regression, such as confusion matrices, Kappa

statistics, and Receiver Operating Characteristic (ROC) curves. However, RSF models estimated from presence/

available data create unique problems for evaluating model predictions. For presence/available models we propose a

form of k -fold cross validation for evaluating prediction success. This involves calculating the correlation between RSF

ranks and area-adjusted frequencies for a withheld sub-sample of data. A similar approach can be applied to evaluate

predictive success for out-of-sample data. Not all RSF models are robust for application in different times or different

places due to ecological and behavioral variation of the target organisms.
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1. Introduction

The idea of a resource selection function (RSF)

has its origins with the theory of natural selection

(Manly, 1985), but with the intent to characterize

selection of resources by animals. A RSF is

defined as any function that is proportional to

the probability of use by an organism (Manly et

al., 1993). The units being selected by animals (e.g.

pixels of land) are conceived as resources and

predictor variables associated with these resource

units may be ‘resource’ variables or covariates of

the resources, e.g. elevation or human-disturbance.

RSF models overlap substantially with methods

that have been developed for mapping distribu-

tions of organisms using species�/environment
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patterns (Guisan and Zimmermann, 2000); indeed
in some instances the methods are identical. Such

predictive geographic modeling has been particu-

larly well developed by plant ecologists (e.g.

Austin et al., 1990, 1994).

A RSF model is a form of habitat suitability

index (HSI; US Fish and Wildlife Service, 1981)

but with statistical rigour. Some HSI models are

created using expert opinion and other approaches
not directly tied to statistical estimation, whereas

RSF models are always estimated directly from

data. A RSF usually is estimated from observa-

tions of (1) presence/absence (used-vs.-unused), or

(2) presence/available (used-vs.-available) resource

units. For both of these sampling designs the

prevailing statistical model is a binomial general-

ized linear model (GLM), usually logistic regres-
sion, although in the case of presence/available

sampling designs, logistic regression is used as an

estimating function and not for statistical infer-

ence. When linked to a geographical information

system (GIS), RSF models can be powerful tools

in natural resource management, with applications

for cumulative effects assessment, land-manage-

ment planning, and population viability analysis
(Boyce et al., 1994; Boyce and McDonald, 1999;

Boyce and Waller, 2000).

As many applications of RSF models have

conservation and management implications, we

believe that the most important consideration for

evaluating RSF models is prediction. If a model

reliably predicts the locations of organisms, it is a

good model. Other measures for model evaluation
relate to the model selection process, such as how

well the model fits the data. In some circumstances

we need to know if the model does better than a

random null model, i.e. statistical inference. Still

other evaluation criteria must be considered rela-

tive to model robustness, e.g. how well a habitat

model can predict distribution and abundance in

other places and times.

1.1. Sampling designs

If we have access to presence/absence (used-vs.-

unused) resource units, logistic regression can be

used to generate RSF models. Here we assign a 0

to sites where the organism is absent and a 1 to

sites where present; and a set of predictor variables
is selected a priori using hypothesized habitat

relations based on the ecology of the organism

(Burnham and Anderson, 2001). With this sort of

data, logistic regression yields the probability of

use of a resource unit, e.g. a pixel or polygon.

Models that can predict the probability of use have

been termed resource selection probability func-

tions (RSPF; Manly et al., 1993).
A concern with the used-versus-unused ap-

proach to fitting RSF models is that it may be

difficult to demonstrate non-use, especially for

mobile and cryptic animals. Also, non-use can

depend on sampling intensity, so that a more

extensive search might result in unused sites being

reclassified as used sites. This means that the

errors are imbalanced because we can be assured
that used sites indeed have been used, but we are

less certain about unused sites. Depending on the

interpretation of the results, this may not be a

serious problem if a representative sample of used

and unused sites is based on an unbiased sample of

use. Even though some sites might be used

eventually, the fact that a representative sample

did not show presence is still an unbiased sample
of use and non-use. Building a model using such a

sample is acceptable if one can be satisfied with

model predictions that are proportional to the

probability of use (i.e. RSF), but imbalanced

errors can result in biased estimates of the actual

probability of use (RSPF) because the true prob-

abilities of use are higher than predicted by the

model.
In some sampling situations we cannot estimate

a sample of unused sites. For example, radio-

telemetry data on animals can identify points used

by the animals, but there is an infinite number of

points on the landscape which may have been

used, so we cannot define ‘unused’ points. With

plants we are often confronted with herbarium

records or other ‘presence-only’ data where no
field effort has attempted to characterize sites

where the plant did not occur (Zaniewski et al.,

2002 this volume). In these situations, the appro-

priate design structure is one of presence versus

availability, i.e. characterizing a sample of sites

where the organism is present from a sample of

what is available on the landscape. What is
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‘available’ can be based on a complete census of
the available habitats, or more plausibly, we can

take a random sample of landscape locations.

Hence, the domain of available sites is a critical

consideration in framing the scale of the study

(Johnson, 1980).

We note that a variety of sampling designs is

possible and additional alternatives for estimating

RSF models are reviewed by Manly et al. (1993).

1.2. Statistical inference

In practice, simply showing that a habitat model

provides a significant fit to data is not very

revealing. In fact, in nearly all cases, testing

whether or not the use of habitats is non-random

is a trivial exercise, because organisms are always

differentially distributed on the landscape (Cherry,
1998). Generally, statistical inference is not a very

useful concept in habitat modeling.

Perhaps the most common approach to evaluat-

ing RSF models, albeit misguided (Yoccoz, 1991;

Cherry, 1998; Johnson, 1999; Anderson et al.,

2000; Boyce, 2001), is to use probability or

significance levels. A small P -value is presumed

to give some measure of confidence that the model
is not due to chance alone. Most of us learned to

use statistics for hypothesis testing consistent with

the Popperian approach to science (Popper, 1934).

Yet, there are many long-appreciated difficulties

with the hypothesis-testing focus in biostatistics

(Platt, 1964). Thresholds for significance are

entirely arbitrary or based on convention, e.g.

a�/0.05. The focus is on achieving statistical
significance (Yoccoz, 1991). Null hypotheses com-

monly are framed in ways that are obviously false

or uninformative (Cherry, 1998). Often little or no

information is reported about effect sizes, preci-

sion, or sample sizes, such that we cannot properly

evaluate the meaning of P -values (Anderson et al.,

2000).

Most habitat data are burdened with spatial
and/or temporal autocorrelation (Otis and White,

1999)*/a particular problem with the new GPS-

telemetry technology that permits frequent obser-

vations of individuals. This lack of independence

means that we are likely to commit a Type I error

because we underestimate variances associated

with model coefficients (Lennon, 1999, 2000). A
variety of approaches have been suggested, such as

rarefying (e.g. using only every i-th observation

for analysis) data (Swihart and Slade, 1985a,b).

Applications of such techniques, however, have

proven to be highly conservative, with a reduction

in data of greater than 90% for one study (McNay

et al., 1994). Most ecologists are loath to discard

such hard-earned data. Moreover, rarefaction
procedures tend to remove highly selected habitats

that can be quite important to an animal’s fitness

(e.g. the re-use of important feeding patches or

bedding sites). A more satisfactory approach is to

use variance inflators to obtain robust standard

errors (Nielsen et al., 2002; Vernier et al. 2002; also

see Section 2.4.2). These do not alter the model

coefficients but can have quite marked conse-
quences for P -values, almost always making

them larger when accounting for spatial-temporal

autocorrelation.

1.3. Model selection

In many instances, a key step in analysis is to

ask which of several alternative models best

explains the data (Burnham and Anderson,
1998). Clearly, P -values are an insufficient mea-

sure of the appropriateness of alternative models

(Burnham and Anderson, 1998; Anderson et al.,

2000), and a much better alternative is to use some

form of information criteria, such as the Akaike

Information Criteria (AIC) or the Bayesian In-

formation Criteria (BIC). These are based on the

principle of parsimony, helping to identify the
model that accounts for the most variation with

the fewest variables. AIC tends to select models

with too many parameters when sample sizes are

large, whereas BIC may be too conservative,

yielding overly simplistic models because of the

heavy penalty on the addition of additional

parameters (Hastie et al., 2001).

Application of information criteria in model
selection does not preclude the utility of conven-

tional hypothesis testing, but biologists need to

understand when one or the other is appropriate.

Information-criteria approaches to model selec-

tion have the potential to increase our biological

understanding, through application of data to
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process-based (mechanistic) models. Herein, lies a
new opportunity and challenge in biostatistics. We

should be building models based on ecological

principles that can be evaluated with data. This

requires a fundamental understanding of relevant

theory to propose models that are most likely to

direct our understanding of the system. We must

strive to ensure model adequacy if we want to

ensure biological relevancy (Boyce, 2001).
Since sampling design is crucial to the methods

available for evaluating predictions from RSF

models, we have organized this paper according

to the two primary designs: presence/absence

(used-vs.-unused) and presence/available (used-

vs.-available) resource units.

2. Presence/absence (used-vs.-unused) designs

With this design, each resource unit is classified

as being occupied or not. For example, pixels in a

GIS image are identified as being locations where

an animal was present (used) or where the animal

did not appear (unused). In plant ecology, these

are typically presence/absence data for individual
species, such as would be accumulated in quadrat

data.

2.1. Model selection

Information criteria such as AIC and BIC are

the most powerful approaches for model selection

from a set of alternative plausible models (Burn-

ham and Anderson, 1998). Other methods exist for
evaluating how well the data are explained by the

model, but these may not be penalized appropri-

ately for the number of variables in the model.

The process of building a logistic regression

model is similar to that for multiple linear regres-

sion analysis (Guisan and Zimmermann, 2000),

and because most users of logistic regression

software are likely to be familiar with linear
regression, there is a demand for an easy-to-

interpret measure of how well the model fits the

data. The coefficient of determination, r2, is just

such a linear regression statistic included with

most statistical software packages offering logis-

tic-regression analogues. Several variations exist

including the Cox and Snell r2 and the Nagelkerke
r2. For GLMs one typically compares �/2 log

likelihood (�/2LL) for a model with the �/2LL

for a null model and calculate the percent deviance

explained (StataCorp., 2001). Another common

method used for assessing model fit is the use of

goodness-of-fit tests. Long (1997) provides a

description of several scalar measures developed

to summarize the overall goodness-of-fit for re-
gression models of continuous, count, or catego-

rical dependent variables. Likelihood ratio or

Pearson x2 goodness-of-fit tests are questionable,

however, when the number of covariate patterns is

close to the number of observations. In such

circumstances, we might regroup the data into

nearly equal-size groups based on ordered model

probabilities, followed by a x2 goodness-of-fit test
(Hosmer and Lemeshow, 1989).

2.2. Prediction

2.2.1. Confusion matrices and classification tables

Standard output from statistical software for

logistic regression usually includes a classification

table or ‘confusion matrix’ of predicted and
observed values based on the fitted model, typi-

cally with a x2 statistic. The observed response

variable is (0,1) so this does not present a problem.

Predicted values vary as a probability ranging

from a possible low value of 0 to a possible high

value of 1. Typically, a mid-point cut-off level of

0.5 is the default for creating a classification table.

Even with presence/absence data, the cut-off is
seldom equal to 0.5 and one must select a thresh-

old cut-off level (Guisan et al., 1998). Classifica-

tion accuracy is also sensitive to the relative

frequency (prevalence) of observations of the

species within the sample as threshold cut-off

levels are varied. For instance, high classification

accuracy for a rare species may be obtained by

simply shifting the probability cut-off level to 1,
hence, never predicting the species to occur (Pearce

and Ferrier, 2000).

2.2.2. Kappa statistic

An additional method for evaluating classifica-

tion effectiveness of a model is with the Kappa

statistic. The basic premise of Kappa is that a
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certain level of random or chance agreement is
going to occur within a classification table and,

therefore, one must adjust classification rates

accordingly. Kappa adjusts for such bias by

measuring the actual agreement minus the agree-

ment expected by chance (Cohen, 1960). Impor-

tant advantages of Kappa are the use of

agreement, instead of association (traditional clas-

sification tables). This is particularly important
when the prevalence of the species is low (Fielding

and Bell, 1997)*/a frequent phenomenon in wild-

life RSF modeling because models often are

developed for rare, threatened, or endangered

species. Under such circumstances, agreement

(vs. classification tables) becomes much more

valuable, because it distinguishes and incorporates

both false positives and false negatives. Kappa is
also less sensitive to zero values within the matrix

(Manel et al., 2001). Remote-sensing classifica-

tions frequently use Kappa as a measure of

accuracy assessment (Congalton, 1991; Lillesand

and Kiefer, 1994). As in a confusion matrix, a

threshold value for prediction must be identified,

as illustrated in the Guisan et al. (1998) model for

the distribution of an alpine plant. Under situa-
tions where one might consider some errors in the

classification table to be less or more important,

one can use a weighted Kappa, controlling the

seriousness of each possible disagreement (Cohen,

1968). This weighted Kappa technique has proven

to be useful in assessing thematic maps where the

categories are ordered or classified according to a

nominal or ordinal scale (Naesset, 1996; Guisan
and Harrell, 2000). Such a measure might be used

for ordered classes of RSF scores, but we suggest

caution if the method is used for presence/available

data, for reasons explained below. Alternatively,

one could compare different maps/models devel-

oped for the same area using a Kappa statistic

(Monserud and Leemans, 1992).

2.2.3. ROC

A problem with all threshold dependent mea-

sures of classification is the potential for distor-

tions or bias when dichotomizing an inherently

continuous variable (Altman et al., 1994). Recog-

nizing this limitation, a classification approach

called the Receiver Operating Characteristic

(ROC) has been developed that is independent to
probability cut-off levels. Although the medical

literature is rich in the use of ROC to evaluate

models, its use in ecological studies has only

recently occurred (e.g. Murtaugh, 1996; Fielding

and Bell, 1997; Cumming, 2000; Pearce and

Ferrier, 2000). An advantage of the ROC ap-

proach over traditional classification tables is the

ability of ROC analyses to evaluate the proportion
of correctly and incorrectly classified predictions

over a continuous range of threshold probability

cut-off levels (Pearce and Ferrier, 2000). To

calculate a ROC curve, sensitivity and specificity

are evaluated at different probability cut-off levels

within the data to produce pairs of sensitivity/

specificity values (Metz, 1978). Sensitivity is de-

fined as the probability that a model yields a
positive prediction where an animal actually

occurs (i.e. 1), whereas, specificity is the prob-

ability that a low score is predicted where no

animal is observed (i.e. 0). As the cut-off threshold

is varied, different proportions of positive and

negative cells are included. Plotting sensitivity as a

function of 1�/specificity for each threshold yields

a ROC curve. From this ROC curve, we can
integrate the area under the curve (AUC) as an

assessment of model performance or predictive

power (Cumming, 2000). A model with no pre-

dictive power would have an AUC of 0.5 (e.g. a

458 line), while a perfect model would correspond

to an AUC of 1.0.

2.2.4. k-Fold cross validation

Researchers are frequently limited in both time
and money and are, therefore, unlikely to have

independent data available for prospective sample

evaluations. An alternative is to withhold a frac-

tion of the data using a k -fold partitioning of the

original samples (Fielding and Bell, 1997), where k

represents the number of partitions ranging from 2

to N�/1 (number of observations minus one). This

method works particularly well for studies having
a single intensive period of data collection (e.g.

GPS radio telemetry data) across only one region

(Nielsen et al., 2002). A variety of model-testing

strategies then can be used to evaluate the

reliability of the model using the partitioned data

set(s), including most of the in-sample resubstitu-
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tion techniques (e.g. ROC, goodness-of-fit, etc.)
described in the previous sections.

k -Fold cross validation methods also can be

used to evaluate spatially explicit RSF model

predictions (i.e. GIS maps) by partitioning k

random subsets from the original data. Following

model development, the study area can be classi-

fied for the probability of occurrence using the

RSF model in a GIS, and tallied (binned) into an
arbitrary number of categories of RSF scores

(Boyce and Waller, 2000). For each withheld

observation, an RSF value can be calculated

from the model constructed with the training set.

Then, one can plot the frequency of observations

of RSF scores, adjusted for area, within that

particular RSF-score category. Adjusted frequen-

cies should be highly correlated with the RSF
scores if the model is a good one, i.e. indicating

that the RSF model was indeed predicting the

relative probability of occurrence of the organisms

on the landscape. To make this evaluation, we

recommend use of the Spearman-rank correlation.

As we develop below, this k -fold cross validation

method is particularly important for presence/

availability designs.

2.3. Robustness

There is an element of circularity in evaluating a

model based on the data that were used to estimate

model coefficients in the first place. Evaluations

made from the data used to calibrate the model

often result in optimistic measures of classification

success (Fielding and Bell, 1997). RSF models are
presumed to apply in the area for which they were

developed (Manly et al., 1993). Applying the

models to a new area or different time period

(prospective sampling) results in changes in the

availability of various habitats and this will usually

result in a change in the model coefficients and

apparent selection. Nevertheless, one measure of

the robustness of a habitat model is when it can be
applied in other areas. Some models, e.g. those for

the Northern Spotted Owl (Strix occidentalis

caurina), apply over vast areas partly because the

models are dominated by old growth forest, a

good predictor of Northern Spotted Owl habitat

throughout their range (Meyer et al., 1998).

Seeing how well one can predict an animal’s

distribution in space and time can be an important

measure of the robustness of a model, and for

some applications may be essential. However,

there are a number of biological problems that

interfere with model evaluation based on prospec-

tive sampling:

1) Habitat selection changes seasonally due to
changes in resources. This is dramatically

illustrated by grizzly bear habitat-use patterns

(Ursus arctos ; Boyce and Waller, 2000). Early

in the season after emergence from their dens,

bears often are found at lower elevations

where they search for food. Higher elevation

areas still are covered with snow so they are

restricted from effectively foraging in those
areas. Later, the bears move to higher eleva-

tions where they forage on vegetation, and

may move to berry-producing areas if berries

are abundant. Bears are opportunistic and

may feed extensively on fish, ungulates, moths

or even garbage when these resources become

available.

2) Habitat selection can change among years,
due to fluctuating resources, or to shifts in

local distribution that result from changes in

abundance of territorial species. For example,

in years of relatively high abundance, indivi-

duals of territorial species may occupy a wider

range of habitats than in years where abun-

dance is lower, and, thus, selection would

appear to vary. A failure to take into account
such variations can lead to poor model fit or

inappropriate inferences (Schooley, 1994).

There are many examples of this (Kneeland

et al., 2002), e.g. Case Study 1 below.

3) Habitat selection can vary spatially depending

on the spectrum of habitats available in an

area (Osborne and Suárez-Seoane, 2002 this

volume). Often a habitat is used more as it
becomes more available. This can occur be-

cause the species in question learns how to use

the habitat more effectively, i.e. they develop a

search image for the habitat or resource type.

In the context of predator�/prey theory, this

change in selection associated with availability

is sometimes called a functional response
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(Mysterud and Ims, 1998). Some investigators
have taken the perspective that the existence

of such functional responses amount to a

fundamental flaw in RSF models (Garshelis,

2000). We take an opposing view that such

functional responses can be modeled expli-

citly, so, if given information about what

resources are available, we can estimate RSF

coefficients for a particular locality (Kneeland
et al., 2002). One might consider such a model

to be a ‘localized’ model in contrast to a

‘robust’ model that applies over a broad array

of localities.

Even if a model performs similarly across space

and time, we cannot assume that the model has a

high predictive value. The model may simply be

predicting equally poorly between sample periods

or regions, but maintaining a high degree of

predictive correlation due to similar patterns of

selection. As an example, Manly et al. (1993)

describe the predictive correlation between two

habitat models for the galaxiid fish Galaxias

vulgaris , along the Shag River in New Zealand

(McIntosh et al., 1992). Models were fitted for

‘trout’ (brown trout [Salmo trutta ]) and ‘non-

trout’ sites to predict the density (log-linear

models) of galaxiids based on five principal

components obtained from 14 measured environ-

mental variables. The effect of introduced trout on

habitat selection, however, was not evident be-

cause parameter estimates for models of ‘trout’

and ‘non-trout’ streams were quite similar. In fact,

the correlation between model predictions was

strong (r�/0.992, P B/0.001), indicating that the

distribution of galaxiids under the ‘trout’ model

predicted the ‘non-trout’ data well and vice versa.

Although this consistency in RSF scores between

streams suggests similar patterns of habitat selec-

tion, we still cannot be confident that the models

predicted well. Furthermore, within dynamic sys-

tems, model consistency from present and past

data is no guarantee of future predictive perfor-

mance (Oreskes et al., 1994). Particular care

should be taken in interpreting model results

beyond their original domain, a difficult task given

the fact that ecologists are often charged with

evaluating future scenarios (global warming, cu-
mulative effects, population viability, etc.).

2.4. Case study 1: songbird�/habitat relationships

We developed RSF models using presence/

absence data for 5 boreal forest songbird species:

Black-throated Green Warbler (Dendroica virens ),

Red-breasted Nuthatch (Sitta canadensis ), White-
throated Sparrow (Zonotrichia albicolis), Yellow-

rumped Warbler (D. coronata ), and Yellow War-

bler (D. petechia ). This is the same suite of species

for which we recently developed abundance mod-

els (Vernier et al., 2002). The study area encom-

passes :/140 km2 of boreal mixed-wood forest

near Calling Lake, in north-central Alberta, Ca-

nada (558N, 1138W). Trembling aspen (Populus

tremuloides ), balsam poplar (P. balsamifera ), and

white spruce (Picea glauca ) were the most abun-

dant upland tree species, often occurring together

in old, mixed stands, whereas black spruce (P.

mariana ) characterized hydric sites.

Our objectives with this case study were to (1)

assess the temporal variability in songbird-habitat

relationships (direction, strength, and significance
of estimated coefficients), (2) evaluate the tem-

poral variability in the predictive performance of

models, and (3) determine if the predictive perfor-

mance of the models increased with the number of

years of data used to fit the model.

2.4.1. Songbird and habitat variables

We used bird abundance data collected by

point-count surveys conducted between 1993 and
1999, as part of the Calling Lake Fragmentation

Experiment and related studies (e.g. Schmiegelow

et al., 1997). A total of 406 permanent sampling

stations were located within 65 sites, which we

define as contiguous areas of similar forest type

and age. Site types included areas clearcut in 1993

as part of the experimental design, young and old

deciduous forests, mature coniferous forests, and
mixed-wood forests. There was at least 200 m

between each sampling station. Details of the

sampling protocol and study area can be found

in Schmiegelow et al. (1997).

We measured habitat patterns around each bird

sampling station using 1:20 000 digital Alberta
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Vegetation Inventory (AVI) maps. We used origi-
nal and derived map layers to measure habitat

characteristics around each bird sampling station

at two spatial scales: the local-scale, which

matched the size and shape of the circular bird

sampling stations (inner buffer of 100 m radius, or

3.14 ha), and the neighborhood scale, which

extended from 100 to 500 m beyond the sampling

stations (outer buffer, 75.4 ha). Habitat variables
we selected (Table 1) either had been used in the

literature previously, or were hypothesized corre-

lates of species abundance based on the ecology of

the species. The process of generating the variables

as well as their evaluation for inclusion in statis-

tical models is described in Vernier et al. (2002).

2.4.2. Statistical analysis

All presence/absence models (GLM, logistic

regression) were developed using the same general

approach we recently used to develop abundance

models (Vernier et al., 2002; GLM, Poisson
regression), where the set of variables included

for each species’ model was selected from among

five alternative habitat model formulations using

AIC). We used STATA’s cluster option to calcu-

late variance estimates that are robust to influen-

tial observations, within site correlations, and

undetected over-dispersion (StataCorp., 2001).

We evaluated models using ROC curves. The

AUC was used as a measure of model performance

for both in-sample/resubstitution (ROCin) and

out-of-sample/prospective sampling (ROCout)

data. Following Swets (1988) and Manel et al.

(2001), we considered models with a ROC value

ranging between 0.7 and 0.9 as ‘useful applica-

tions’ and those with values greater than 0.9 as

being of ‘high accuracy’.

To assess the temporal variability in songbird�/

habitat relationships (objective 1), we developed

separate models for each year (1993�/1999) and

recorded the direction, strength, and significance

of the estimated coefficients. To evaluate the

temporal variability in the predictive performance

of the models (objective 2), we used the models

developed in objective 1 to calculate ROCin for

each year (e.g. 1995) and calculated ROCout using

data from the following year (e.g. 1996), excluding,

the last year of sampling. To determine if the

predictive performance of the models increased

with the number of years used to fit the model

(objective 3), we developed models using 1 year of

data, 2 years of data, 3 years of data, and so on,

and validated each of these models using data

from the following year. For example, a model

Table 1

Definitions for predictor variables in the songbird-habitat relationships case study

Variable Variable type Range of values Description

Local

L_CCUT Binary 0 or 1 Survey station located in recent clearcut (B/15 years)

L_YDEC Binary 0 or 1 Survey station located in young deciduous stand (B/�/90 years)

L_ODEC Binary 0 or 1 Survey station located in old deciduous stand (�/90 years)

L_PINE Binary 0 or 1 Survey station located in pine stand

L_SIZE Numeric 0.5�/703.4 ha Area of stand in which survey station is located

L_CROWN Numeric 0-85.5% Mean crown closure among forested polygons

L_DEC Numeric 0�/1.0 Mean deciduous proportion of forested polygons

L_HT Numeric 0�/31.0 m Mean stand height of forested polygons

Neighborhood

N_CUT Numeric 0�/0.66 Proportion of neighborhood in a clearcut

N_MID Numeric 0�/0.99 Proportion of neighborhood in mid seral forest (15�/90 years)

N_LATE Numeric 0�/1.00 Proportion of neighborhood in late seral forest (�/90 years)

N_DEC Numeric 0�/1.00 Proportion of neighborhood in deciduous forest

N_SW Binary 0 or 1 Presence of white spruce forest

N_SIMP Numeric 0�/0.83 Habitat patch diversity (Simpson’s index)

N_EDGEN Numeric 0-85.3 m/ha Natural edge density
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using 5 years of data would be developed three
times (i.e. 1993�/1997, 1994�/1998, 1995�/1999) and

tested three times using ROCin (i.e. 1993�/1997,

1994�/1998, 1995�/1999) and two times using

ROCout (i.e. 1998 and 1999). Out-of-sample tests

for models that included 1999 data were not

possible. We summarized our results graphically

using the average ROCin and ROCout value for

each ‘number of years’ group (e.g. the mean of the
three models developed with 5 years of data). We

made no attempt to interpret inter-model varia-

bility because the number of possible models

decreased linearly as the number of years included

in the model increased. For instance, a model

based on 1 year of data could be developed seven

times, while one based on 7 years of data could

only be developed once.

2.4.3. Results

There was moderate variability among years in

the strength and significance of songbird�/habitat

model coefficients, and the overall model (all

years) was generally not a good indicator for

individual-year models (Table 2). Exploration of

changes in abundance between years could provide

further insight into why this might occur. Con-
versely, the direction (sign) of the coefficients was

largely consistent across years (16/21 over all

species). For each species except Yellow-rumped

Warbler, only one variable was consistently sig-

nificant across years, and only for Red-breasted

Nuthatch and Yellow Warbler was this variable

also significant for the overall (all years) model.

The predictive performance of songbird models
was more variable across years when assessed

using out-of-sample data (ROCout) than when

using in-sample data (ROCin) (Table 3 and Fig.

1). Generally, all bird species had good model

accuracy with ROCin and ROCout values �/0.7 for

all years; the exceptions being Yellow-rumped

Warbler in 1993 and Red-breasted Nuthatch in

1993�/1995. For three of the bird species (Black-
throated Green Warbler, White-throated Sparrow,

and Yellow Warbler), the values of ROCin and

ROCout are very similar and show little variability

over time (Fig. 1). In contrast, but only for the first

3 years, the other two species (Red-breasted

Nuthatch and Yellow-rumped Warbler) have

very different values and exhibit high variability.
Differences in patterns for the first 3 years may be

accounted for by landscape-level adjustments to

forest harvesting in the area (Schmiegelow and

Hannon, 1999; Norton et al., 2000). Nevertheless,

although the strength and significance of model

coefficients are quite variable, the models them-

selves are consistently in the ‘useful applications’

and ‘high accuracy’ categories, with the exceptions
noted above. In other words, when prediction is

the objective, the models appear to be robust, even

though their interpretation may vary across years.

The relationship between mean model perfor-

mance (i.e. the average of the models with the

same number of years of data) and the number of

years used to develop the model is summarized in

Fig. 2. With the exception of Black-throated
Green Warbler, out-of-sample tests (ROCout)

were more variable than in-sample tests (ROCin).

In fact, in-sample tests appeared to be little

affected by the number of years used to develop

the models. Out-of-sample evaluations were more

variable, but only in the case of Red-breasted

Nuthatch did performance increase consistently

with number of years. This result is not surprising,
given that among those species we analyze here,

the Red-breasted Nuthatch exhibits the highest

spatial and temporal variance in distribution and

abundance (Carlson and Schmiegelow, 2002). For

two species, White-throated Sparrow and Yellow-

rumped Warbler, out-of-sample tests actually in-

dicated a loss in predictive performance, albeit

minor, with number of years. We make no attempt
to assign significance, as differences in the number

of possible models as a function of the number of

years included in the model made interpretation of

variance problematic. Nevertheless, both in-sam-

ple and out-of-sample model performance was

always greater than 0.7 indicating ‘useful applica-

tions’ and ‘high accuracy’ models.

3. Presence/available (use-vs.-availability) designs

For some types of investigation, e.g. using

radiotelemetry, we obtain attribute data from the

used sites, and from a random sample of what is

available. Resource units (sites) where the organ-
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Table 2

Estimated coefficients and standard errors for species presence/absence models for the years 1993�/1999

Species/variable All years 1993 1994 1995 1996 1997 1998 1999

Black-throated Green Warbler

l_ht �/0.018 (0.045) 0.251 (0.057)*** 0.279 (0.097)*** 0.272 (0.060)*** 0.195 (0.060)*** 0.136 (0.023)*** 0.179 (0.032)*** 0.122 (0.046)***

n_cut 2.138 (1.737) 4.609 (4.063) 3.569 (1.265)*** 3.514 (1.261)*** 0.023 (1.34) 0.164 (0.963) �/0.813 (1.229) 2.704 (1.722)

n_late 5.032 (1.194)*** 0.929 (1.167) 2.671 (1.236)** 4.409 (1.484)*** 2.233 (1.034)** 2.133 (0.890)** 2.929 (1.120)*** 2.523 (0.901)***

n_dec 5.575 (0.760)*** 4.999 (0.992)*** 3.098 (1.134)*** 1.953 (0.864)** 1.142 (0.819) 3.184 (0.960)*** 1.975 (0.725)*** 4.875 (0.550)***

n_sw 0.566 (0.363) 1.624 (0.668)** 0.679 (0.484) 1.239 (0.658)* 0.479 (0.504) 0.891 (0.342)*** 0.127 (0.279) 0.997 (0.358)***

n_simp 7.942 (1.648)*** 2.577 (1.87) 4.447 (1.914)** 4.174 (1.431)*** 4.122 (1.315)*** 3.789 (1.534)** 4.865 (1.607)*** 4.834 (1.258)***

Constant �/10.185 (1.307)*** �/11.634 (1.747)*** �/13.083 (3.000)*** �/13.847 (2.198)*** �/9.549 (2.311)*** �/8.804 (1.898)*** �/9.945 (1.709)*** �/10.234 (1.091)***

Red-breasted Nuthatch

l_ht 0.127 (0.058)** 0.164 (0.028)*** 0.149 (0.033)*** 0.19 (0.062)*** 0.16 (0.023)*** 0.232 (0.034)*** 0.295 (0.038)*** 0.144 (0.032)***

l_dec �/4.053 (1.101)*** 0.023 (0.613) �/4.088 (0.830)*** �/1.477 (1.38) �/3.602 (0.586)*** �/2.986 (0.719)*** �/2.994 (0.823)*** �/1.463 (0.594)**

Constant �/1.473 (1.694) �/4.314 (0.814)*** �/1.719 (0.610)*** �/2.31 (0.672)*** �/2.538 (0.381)*** �/2.031 (0.399)*** �/4.807 (0.778)*** �/3.093 (0.965)***

White-throated Sparrow

n_dec 7.317 (1.823)*** 5.659 (1.368)*** 7.083 (1.916)*** 0.587 (2.093) 3.309 (1.461)** 4.234 (1.045)*** 3.114 (1.188)*** 6.006 (1.139)***

n_simp 4.233 (2.322)* 5.009 (3.51) 6.993 (2.053)*** �/0.013 (3.542) 2.812 (2.42) 5.227(1.886)*** 4.515 (1.905)** 4.832 (2.170)**

l_dec 2.184 (1.725) 2.839 (1.141)** 2.207 (0.885)** 4.921 (0.737)*** 4.247 (0.840)*** 3.129 (0.619)*** 2.442 (1.071)** 2.657 (0.817)***

l_ccut 19.297 (0) �/0.933 (1.009) 1.533 (0.681)** 22.229 (0) 5.753 (1.197)*** 20.489 (0) 3.967 (0.918)*** �/0.389 (0.828)

n_mid �/2.85 (1.773) �/1.646 (0.892)* �/5.632 (1.348)*** �/3.856 (1.545)** �/1.99 (1.308) �/3.618 (0.887)*** �/4.532 (0.805)*** �/2.168 (0.787)***

l_pine 1.082 (1.248) 0.446 (0.938) 0.44 (1.006) �/3.728 (1.829)** �/1.439 (0.955) �/0.946 (0.859) 0.307 (0.761) 0.736 (0.88)

n_edgen �/0.014 (0.028) �/0.085 (0.031)*** �/0.029 (0.016)* �/0.03 (0.023) �/0.036 (0.026) �/0.036 (0.017)** �/0.024 (0.02) �/0.06 (0.021)***

Constant �/4.246 (1.645)*** �/2.222 (1.745) �/3.804 (1.119)*** 0.293 (3.206) �/3.022 (1.365)** �/2.45 (1.017)** �/3.146 (1.341)** �/2.935 (1.063)***

Yellow-rumped Warbler

n_late 5.48 (1.103)*** 3.197 (1.989) 3.14 (0.899)*** 0.505 (1.173) 1.864 (0.818)** 1.712 (0.906)* 2.361 (0.925)** 4.72 (1.117)***

l_odec �/0.362 (1.293) �/1.959 (1.087)* �/3.203 (1.034)*** �/16.922 (0.797)*** �/0.403 (0.746) �/0.46 (0.653) 0.325 (0.532) �/1.092 (1.02)

l_ccut 17.191 (0) �/6.52 (1.505)*** �/4.28 (1.356)*** �/20.862 (0.893)*** �/25.478 (0) �/4.466 (0.827)*** �/3.831 (0.731)*** �/3.491 (1.205)***

n_mid 3.044 (1.327)** 4.32 (1.347)*** 3.275 (1.562)** 0.908 (1.367) 7.121 (1.653)*** 3.141 (1.179)*** 2.58 (1.058)** 2.974 (1.113)***

l_ydec 0.939 (1.223) �/3.122 (1.542)** �/2.128 (1.321) �/17.01 (0) �/3.037 (0.900)*** �/1.774 (0.978)* �/0.94 (0.634) �/0.577 (1.149)

l_size �/0.006 (0.001)*** �/0.005 (0.001)*** �/0.004 (0.001)*** �/0.001 (0.001) �/0.003 (0.001)*** �/0.003 (0.001)*** �/0.001 (0.001) �/0.005 (0.001)***

Constant �/0.358 (0.846) 2.447 (1.973) 2.372 (1.131)** 18.232 (1.054)*** 1.121 (0.909) 1.425 (0.979) �/0.005 (0.79) 0.736 (1.077)

Yellow Warbler

l_odec 2.458 (0.784)*** 2.635 (0.447)*** 3.333 (0.433)*** 2.188 (0.517)*** 2.82 (0.370)*** 1.496 (0.499)*** 2.441 (0.388)*** 2.603 (0.457)***

l_crown �/0.026 (0.013)** �/0.005 (0.011) �/0.014 (0.008)* �/0.01 (0.006) �/0.038 (0.009)*** �/0.038 (0.008)*** �/0.039 (0.010)*** �/0.012 (0.01)

Constant �/1.419 (0.89) �/2.599 (0.614)*** �/1.945 (0.539)*** �/1.107 (0.404)*** �/0.604 (0.39) �/0.253 (0.337) �/0.749 (0.468) �/2.226 (0.570)***

Robust standard errors in parentheses. * Significant at 10%; ** significant at 5%; *** significant at 1%.
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ism is present will be scored 1 whereas all possible

units (or a sample of available units) will be scored

0. If used sites are points, there are infinitely many

available points, thus, the presence/absence ap-

proach is not appropriate. Observed locations are

presumed to have been drawn from a sample of

available sites, thus, observed values must be a

subset of what is available. We assume a particular

function between the relative probability of use,

w ( �/), and a vector of n predictor variables, x�/x1,

x2, x3, . . ., xn , often using the log-linear form:

w(x)�exp(b1x1�b2x2� . . .�bnxn) (1)

Due to the mathematical relationship between

the Poisson and binomial distributions, we can

estimate b coefficients in the model at Eq. (1)

using coefficients from a logistic regression. So we

will define an estimating function,

t(x)�
exp(b1x1 � b2x2 � . . . � bnxn)

[1 � exp(b1x1 � b2x2 � . . . � bnxn)]
(2)

Table 3

Area under the ROC curve (AUCin), and 1-year ahead predicted area under the ROC curve (AUCout) for the years 1993�/1999

Species Year Prevalence Nin AUCin Nout AUCout

Black-throated Green Warbler 93 0.477 174 0.881 235 0.770

94 0.396 235 0.867 311 0.820

95 0.447 311 0.860 204 0.842

96 0.412 204 0.866 337 0.855

97 0.282 337 0.861 355 0.831

98 0.352 355 0.855 355 0.861

99 0.324 355 0.875

Red-breasted Nuthatch 93 0.224 174 0.866 235 0.653

94 0.353 235 0.733 311 0.697

95 0.209 311 0.806 204 0.534

96 0.618 204 0.694 337 0.742

97 0.157 337 0.777 355 0.805

98 0.530 355 0.851 355 0.870

99 0.324 355 0.869

White-throated Sparrow 93 0.747 174 0.934 235 0.836

94 0.626 235 0.932 311 0.879

95 0.823 311 0.912 204 0.854

96 0.902 204 0.898 337 0.936

97 0.798 337 0.950 355 0.935

98 0.859 355 0.941 355 0.878

99 0.710 355 0.901

Yellow-rumped Warbler 93 0.810 174 0.939 235 0.591

94 0.749 235 0.958 311 0.819

95 0.759 311 0.860 204 0.788

96 0.765 204 0.786 337 0.934

97 0.656 337 0.951 355 0.873

98 0.685 355 0.884 355 0.834

99 0.656 355 0.857

Yellow Warbler 93 0.161 174 0.825 235 0.778

94 0.145 235 0.778 311 0.870

95 0.270 311 0.870 204 0.785

96 0.407 204 0.785 337 0.828

97 0.279 337 0.828 355 0.731

98 0.231 355 0.759 355 0.776

99 0.217 355 0.795

Nin and Nout refer to the number of observations in the model building and model testing sets, respectively. Prevalence indicates the

frequency of occurrence of the species over all stations for a given year.
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with occupied resource units assuming a 1 and

random landscape locations a 0. The predicted

RSF values, w (x), are commonly scaled so that

they are bounded by 0 and 1, say by dividing by

the maximum RSF value, but this is not necessary.

Sampling protocols for estimating RSF models

have been developed in detail (Manly et al., 1993).

Although evaluation procedures for RSF models

based on presence/absence data using logistic

regression have received attention (Hosmer and

Lemeshow, 1989; Fielding and Bell, 1997), evalua-

tion of RSF models for use/availability data are

little studied.

3.1. Model selection

We see no reason to question the appropriate-

ness of AIC or BIC for use/availability data when

selecting the best RSF model from a set of

alternative models. Likelihood methods should

not be affected by the structure of presence/

available data and we would follow Burnham

Fig. 1. Temporal variability in ROC (AUCin and AUCout) for five species of boreal songbirds in Alberta 1993�/99. All models were

developed using 1 year of data and validated using the following year of data. No validation was possible for the 1999 models.
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and Anderson (1998) in advocating the use of AIC

and related methods for model selection.

3.2. Prediction

Many methods for evaluating logistic regression

model predictions are inappropriate for presence/

available data. For presence/available data, the

distribution of used sites is drawn directly from the

distribution of available sites, so these are not

exclusive categories as in usual applications of

logistic regression. Used sites are expected to have

1’s but we also expect that these same sites will be

included amongst the set of available sites with 0’s.

The categories of predicted and observed values

are not unique and as a consequence, classification

success may be low. All methods related to the

confusion matrix, including Kappa and ROC, are

flawed when data come from a sampling scheme

involving presence/available data. This often leads

to confusion with researchers believing that the

model is poor because of low classification success.

Fig. 2. Relationship between mean model performance (AUCin and AUCout) and the number of years used to build the models. Data

were validated using data from the following year. Note that out-of-sample predictions were not possible for models developed using

all 7 years of data.

M.S. Boyce et al. / Ecological Modelling 157 (2002) 281�/300 293



But even a ‘perfect’ RSF model might not predict a
value greater than some low value.

Of the methods that we reviewed under Section

2 for presence/absence data, none of the standard

statistics for logistic regression are appropriate.

We propose a method that evaluates prediction

success from RSF models built with presence/

available data using a form of k -fold cross

validation.

3.3. Robustness

The same issues that limit the robustness of

models constructed from used/unused data plague

models constructed from use/available designs.

However, for presence/available data we cannot

use out-of-sample binary classification success as
was possible for used/unused designs.

3.4. Case study 2: grizzly bear habitat selection

We evaluated within-home-range resource selec-

tion for grizzly bears (U. arctos ) in wilderness

areas of the Greater Yellowstone Ecosystem

(GYE) of Wyoming, Montana, and Idaho, USA.
We stratified bear presence data into two ecologi-

cal seasons following Mattson et al. (1998) (1)

summer or early hyperphagia (15 July�/31 Au-

gust); and (2) fall or late hyperphagia (1 September

to denning). Here we used presence/availability

data to fit a RSF model of the form of Eq. (1). Our

objective for this case study was to evaluate model

prediction using a RSF model based on a presence/
available design.

3.4.1. Bear and habitat variables

We used 1072 VHF radiotelemetry locations

from 92 grizzly bears gathered between 1989 and

1997 (after the fires of 1988). Availability of

resources was sampled using 10 318 randomly

generated points in a GIS. Environmental pre-

dictor variables included elevation from a digital
elevation model (DEM), the square (Gaussian

transformation) of elevation, greenness derived

from a tasseled-cap transformation of spectral

reflectance from a Landsat image, and habitat

cover type following aggregate functional habitats

outlined by Mattson et al. (1998). In total, 17

separate habitat classes were delineated, with dry
Douglas fir forests representing the reference

category for comparison, because categorical

dummy variable coding required one habitat to

be removed. An indicator contrast was used where

estimated coefficients were based on their compar-

ison with this reference category.

3.4.2. Statistical analysis

We divided the data, by season (early hyper-
phagia and late hyperphagia), into cross-valida-

tion groups following a k -fold partitioning design

(Fielding and Bell, 1997; Hastie et al., 2001).

Huberty’s (1994) rule of thumb was used to

determine the model training-to-testing ratio.

Based on this rule, a testing ratio of 20% was

determined and a k -fold partition of five groups

considered. Using cross-validation procedures, we
trained our model iteratively on four of the five

data sets using logistic regression. Validation was

based on the remaining testing set. We estimated

all 19 parameters of interest (greenness, 16 habi-

tats, elevation, and elevation2) in full models. Since

habitat was a categorical variable, we used dry

Douglas fir forests as the reference category. All

habitat estimates are in comparison with this
reference.

To examine model performance, we investigated

the pattern of predicted RSF scores for partitioned

testing data (presence-only) against categories of

RSF scores (bins). A Spearman-rank correlation

between area-adjusted frequency of cross-valida-

tion points within individual bins and the bin rank

was calculated for each cross-validated model.
Area-adjusted frequencies in this case were simply

the frequency of cross-validated use locations with

a bin adjusted (divided) by the area of that range

of RSF scores available across the landscape. An

area-adjusted frequency of 1.0 would indicate that

cross-validated use locations occurred at rates

expected by chance. A model with good predictive

performance would be expected to be one with a
strong positive correlation, as more use locations

(area-adjusted) would continually be falling within

higher RSF bins. To determine bin size and

number, we divided predictions into 20 equal-

interval bins scaled between the minimum and

maximum scores. We further simplified the 20 bins
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into 10 more-or-less equal sample sized bins, since
rare RSF bins were occurring at the tail distribu-

tions of scores. These bins were often without

validation points or reliable samples of available

scores and, thus, warranted merging. A number of

different approaches can be employed to stratify

bins, including histogram-equalized stretches that

base bin levels on frequency of occurrence (Lille-

sand and Kiefer, 1994).

3.4.3. Results

During summer (early hyperphagia), grizzly

bears selected for areas of high greenness, low

elevation, and mesic forest-opening habitats. In

comparison, during the fall (late hyperphagia)

season, bears selected for high elevation sites along
with fen, grouse-whortleberry, and whitebark pine

communities. Resource switching, following the

phenology of foods, was the likely cause of

seasonal differences. Bears were likely using green

herbaceous foods during early hyperphagia, while

keying in on berries and whitebark pine nuts

during fall (late hyperphagia).

Area-adjusted frequencies displayed significant
positive rank values (Spearman-rank correlation)

across RSF bins for summer and fall seasons

(Table 4). Although the summer model was

slightly more significant overall, there was greater

variation within k -folded sets, particularly at high

RSF values (Fig. 3). All individual summer model

sets, however, demonstrated significant Spearman-

rank correlations, indicating little evidence for

poor model performance. In fall (late hyperpha-
gia) we also found significance for all model sets,

although individual sets appeared to be more

consistent. Frequencies for fall models, however,

displayed stronger differentiation between low and

high RSF bins (Fig. 4). By comparison, a number

of the summer models were not stable at high RSF

bins as evidenced by decreasing frequency values.

Although both seasons appear to predict bear
occurrence well, fall models are considered more

consistent across all RSF bins, with both low

frequency in lower bins and higher frequency in

high bins.

4. Discussion and conclusions

Some form of bootstrapping would appear to be
a useful approach for evaluating predictive suc-

cess, but bootstrapped errors are likely to be too

small because of overlap between the training

dataset and the test sample. An area for develop-

ment would be to devise a bootstrap method

similar to that proposed by Hastie et al. (2001)

(pp. 217�/220) that could be applied to evaluate

prediction success for RSF models.
A number of in-sample and out-of-sample

model evaluation techniques are available for

presence/absence modeling (Fielding and Bell,

1997). Although in-sample resubstitution techni-

ques are frequently used, they have a tendency to

produce over-fitted models, optimistic estimates of

model performance and loss of generality (Chat-

field, 1995). In a number of situations (museum
specimens, herbarium records and animal teleme-

try data), the data used to model the occurrence of

the species follows a presence/available design, not

a presence/absence design (Manly et al., 1993).

There is an important distinction between the two,

because group membership is known in the former

but uncertain in the latter. Additionally, the

presence/available sampling design entails obtain-
ing two samples requiring different statistical

treatment (Manly et al., 1993). Problems can arise

when a confusion matrix (classification table,

ROC, etc.) is used on presence/available data.

Confusion matrices and related methods of Kappa

and ROC are not recommended for presence/

Table 4

Cross-validated Spearman-rank correlations (rs) between RSF

bin ranks and area-adjusted frequencies for individual and

average model sets

Set Summer Fall

rs P rs P

1 0.842 B/0.01 0.936 B/0.001

2 0.915 B/0.001 0.929 B/0.001

3 0.939 B/0.001 0.897 B/0.001

4 0.782 B/0.01 0.951 B/0.001

5 0.867 B/0.002 0.874 B/0.002

Average 0.988 B/0.001 0.972 B/0.001

Results are presented by seasons: summer (early-hyperpha-

gia) and fall (late-hyperphagia).
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available data. Instead, the k -fold cross validation

method that we developed here, or out-of-sample

evaluation techniques are preferred.

In some circumstances, the development of

robust RSF models may be quite straightforward

(e.g. habitat specialists like Northern Spotted

Owls). However, given the spatially and tempo-

rally dynamic nature of habitat selection common

to many species, robust RSF models are not

necessarily expected. If models are not robust, we

believe that there are opportunities to strive for

general models by understanding functional re-

sponses (Mysterud and Ims, 1998; Boyce et al.,

1999) and the influence of environmental variation

on the availability or quality of habitat resources.

A mechanistic approach and analysis of RSF

model evaluation is an important next step that

traditionally has been lacking in most RSF ana-

Fig. 3. Area-adjusted frequency of categories (bins) of RSF scores for withheld locations of grizzly bears for summer (early-

hyperphagia) RSF models in the Greater Yellowstone Ecosystem, USA. Frequency values for individual cross-validation sets (n�/ 5)

are depicted with unique symbols (graph a). Mean (9/S.D.) frequency values by RSF-score bin are illustrated in graph b. A Spearman-

rank correlation for mean frequency values by bins (rs�/0.988, P B/0.001) indicates that the model predicted cross-validated use

locations well.
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lyses (Garshelis, 2000). Understanding such rela-

tionships is of crucial importance in natural

resource management and conservation, because

managers and conservationists are asked to pro-

vide habitat-based models describing the influence

of changing land-use activities on sensitive or rare

species (cumulative effects assessments, population

viability analyses, climate change models, etc.). A

less satisfying but possibly necessary approach is

simply to develop different RSF models for

different seasons, years or localities (Jaberg and

Guisan, 2001). Generalist species, like grizzly

bears, likely will require such an approach, be-

cause substantial differences in selection are ap-

parent between seasons (Boyce and Waller, 2000;

Nielsen et al., 2002) and over regional scales. Our

first case study points to such problems, where

estimated resource selection coefficients were quite

Fig. 4. Area-adjusted frequency of binned cross-validated use locations for fall (late-hyperphagia) RSF models in the Greater

Yellowstone Ecosystem, USA. Frequency values for individual cross-validation sets (n�/ 5) are depicted with unique symbols (graph

a). Mean (9/S.D.) frequency values by bin are illustrated in graph b. A Spearman-rank correlation for mean frequency values by bins

(rs�/0.972, P B/0.001) indicates that the model predicted cross-validated use locations well.
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variable between years, making the generation of
general models (multi-year response) difficult for

most species. Such adaptive behavior by some bird

species encumbers possible application of such

models in natural resource management and con-

servation planning.

In general, RSF models based on presence/

available data are not well evaluated using usual

metrics of classification success. Better model
evaluation is achieved by withholding data (k -

fold partitioning) for testing model predictions or

by comparing RSF predictions using models

developed at other times and places (prospective

sampling). Without such evaluations it is difficult

to interpret the predictive ability of the RSF

model, and therefore, the reliability of these

models as resource management tools.
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