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Abstract

Land managers need cost-effective methods for mapping and characterizing forest fuels quickly and accurately. The launch

of satellite sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The

objective of this research is to evaluate the accuracy and utility of imagery from the advanced spaceborne thermal emission and

reflection radiometer (ASTER) satellite sensor, and gradient modeling, for mapping fuel layers for fire behavior modeling with

FARSITE and FLAMMAP. Empirical models, based upon field data and spectral information from an ASTER image, were

employed to test the efficacy of ASTER for mapping and characterizing crown closure and crown bulk density. Surface fuel

models (National Forest Fire Laboratory (NFFL) 1–13) were mapped using a classification tree based upon three gradient layers;

potential vegetation type, cover type, and structural stage. The final surface fuel model layer had an overall accuracy of 0.632

(KHAT = 0.536). Results for the canopy fuel empirical models developed here suggest that vegetation indices incorporating

visible wavelengths (i.e. the green red vegetation index (GRVI)) are suitable for predicting crown closure and crown bulk density

(r2 = 0.76. and 0.46, respectively).
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1. Introduction

Wildland fire is an important issue facing local and

regional land managers in the United States. Fires

occurring in many parts of the western United States

today are often more severe than fires that occurred
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before the advent of effective fire suppression and

intensive land use (Arno and Brown, 1989; Hessburg

et al., 2000). Increased fire size and severity coupled

with an increase in the number of people living in the

wildland–urban interface has resulted in millions of

dollars of damage to property and loss of life

throughout the western United States in recent years.

In 2002 and 2003, federal agencies spent an estimated

$1.6 and $1.3 billion on fire suppression, respectively
.
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(NIFC, 2003). Current estimates suggest that there are

more than 15 million hectares of wildlands at risk to

catastrophic wildfire (GAO, 1999). As human

populations move closer to the edges of wildlands,

their lives and property become increasingly threa-

tened by wildfire. To reduce fire risk to people and

their homes, land managers must prioritize areas for

fire mitigation and hazardous fuels reduction.

In 2000, the US Department of Agriculture, the US

Department of Interior and the National Association of

State Foresters collaborated to develop the National

Fire Plan (www.fireplan.gov). Along with post-fire

rehabilitation and maintaining firefighting prepared-

ness, the goals of the National Fire Plan include

reducing fuels in at-risk areas, particularly in and

around the wildland–urban interface (Bisson et al.,

2003). More recently, the Healthy Forests Restoration

Act facilitates hazardous fuels reduction and forest and

rangeland restoration (Starbuck et al., in press). Each

year, initiatives such as the National Fire Plan and

Healthy Forests Restoration Act provide funds to local

fire districts to increase fire suppression capabilities and

implement fuels reduction projects (USDA, 2003). In

order to utilize these funds efficiently, land managers

need cost-effective methods for mapping and char-

acterizing fire fuels quickly and accurately. Some of the

approaches with the best potential for accomplishing

this involve the integration of remote sensing (RS),

geographic information system’s (GIS), and environ-

mental gradientmodeling. Such analyses could provide

consistentmaps of fire fuel conditions across a diversity

of land ownerships, and provide a means to update such

maps at regular intervals.
2. Previous work

2.1. Fuels mapping

Some of the most important factors influencing fire

hazard and fire risk are the type, composition, and

distribution of fuels (Chuvieco and Congalton, 1989).

Wildland fuels are typically divided into three strata:

ground fuels, surface fuels, and crown fuels (Pyne et al.,

1996). Ground fuels consist of roots, duff, and buried

woody debris. Fires burning in this stratum usually

exhibit slow rates of spread. Surface fuels are composed

of leaf litter, coarse woody debris, seedlings, saplings,
and herbaceous vegetation. Most wildland fires start in,

and are carried by, surface fuels. Overstory trees and

shrubs comprise the crown fuel strata. Fires burning in

the crown fuel strata are often extremely intense and

nearly impossible to control (Pyne et al., 1996). Since

fuel stratum relationships are extremely complex, fire

managers often describe fuels by grouping vegetation

communities, based upon similar potential fire beha-

vior, into fuel types (Riano et al., 2002) or fuel models

(e.g. National Forest Fire Laboratory (NFFL 1–13)

(Anderson, 1982). However, since the distribution and

accumulation of fuels is highly variable (Brown and

Bevins, 1986) and highly dependent upon vegetation

type, stand history, and disturbance regime (Keane

et al., 2001; Brandis and Jacobson, 2003), fuel quantity

and distribution are not often directly related to

vegetation types (Pyne et al., 1996).

2.2. Field mapping of fuels

Fuels can be mapped through extensive field

inventory with sampling and statistical inference.

Although these techniques are successful, the amount

of time and money required render their implementa-

tion impractical for many land managers (Miller et al.,

2003). The development of remote sensing technolo-

gies could potentially reduce the cost and time required

to map fuels on the ground (Keane et al., 2001) by

providing a continuous dataset from which to assess

fuel conditions across entire landscapes. In addition,

remote sensing technology has the potential to update

fuel maps quickly and consistently in areas where

conditions are dynamic due to logging, fire, or other

changes and disturbances.

2.3. Remote sensing of crown fuels

Traditionally, interpretation of aerial photography

coupled with field data has been the primary method

used to map fire-related tree crown variables (Riano

et al., 2003) such as crown bulk density, crown

closure, and canopy height. More recently empirical

methods, which are less labor intensive, have been

used to estimate these variables from Landsat thematic

mapper (TM) and systeme probatoire d’observation de

la terre (SPOT) high resolution visible (HRV) data

(Riano et al., 2003). For example, Franklin et al.

(2003) mapped various stand attributes, including

http://www.fireplan.gov/
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canopy height and crown closure, through implementa-

tion of empirical relationships between single band

Landsat reflectance and canopy characteristics. Miller

et al. (2003) successfully mapped structural stage

classes inArizona by running Landsat TMdata through

a clustering algorithm. Xu et al. (2003) examined the

relationship between crown closure and Landsat single

band reflectance as well as the relationship between

crown and vegetation indices. They concluded that

visible wavelengths were better suited for predicting

crown closure than near-infrared or mid-infrared

wavelengths. This was attributed to the phenological

stage of the grass understory (senesced) at the time of

image acquisition (late summer).

2.4. Remote sensing of surface fuels

The inability of optical sensors, such as Landsat TM

andmulti-spectral scanner (MSS), to penetrate the forest

canopy (Miller et al., 2003) limits their utility for

mapping surface fuels where tree canopies are present

(Keane et al., 2000). As a result, most studies using

remote sensing to characterize surface fuels first classify

an image into vegetation categories, then and assign fuel

types or fuel models to each category (Keane et al.,

2001). Chuvieco and Salas (1996) characterized fuel

types through the classification of Landsat TM data.

Chuvieco and Congalton (1989) and Castro and

Chuvieco (1998) used similar methods to map fuel

types in Spain and Chile, respectively. Wilson et al.

(1994) applied maximum likelihood decision rules to a

LandsatMSS image to directly classify fuel types across

Wood Buffalo National Park, Canada. Riano et al.

(2002) improved a fuel type classification by incorpor-

ating two seasonal Landsat TM images, to account for

phenological differences in vegetation, into a classifica-

tion algorithm. Remotely sensed hyperspectral data

have also been used to map fuel types and vegetation

moisture content for a chaparral community in Southern

California (Roberts et al., 1998; Roberts et al., 2003).

2.5. Gradient modeling of fuels

Gradient modeling refers to the use of environ-

mental gradients (topographical, biogeochemical,

biophysical, and vegetational) to model the occur-

rence of natural phenomena (Keane et al., 2000) such

as vegetation types (Curtis, 1959) or the distribution of
soil types (Jenny, 1941; McSweeney et al., 1994). This

approach has been used with moderate success in the

classification of fuel types and fuel loading (Kessell,

1979; Keane et al., 2001).

Environmental gradients can be broken into three

types: indirect gradients, direct gradients, and resource

gradients (Austin and Smith, 1989). Indirect gradients,

such as elevation, do not directly influence vegetation

types or fuel types. However, elevation influences

temperature gradients (direct gradient), which have a

direct influence on vegetation. Resource gradients

refer to gradients such as nutrients and water, which

are utilized by vegetation (Austin and Smith, 1989;

Keane et al., 2002). Direct and resource gradients are

extremely useful when mapping ecological phenom-

ena, but have been under utilized in natural resource

disciplines due to complexities associated with their

parameterization (Keane et al., 2002). Instead, indirect

gradients, such as potential vegetation type (PVT), are

used as surrogates for direct and resource gradients.

The PVT of a site is dictated by both direct and

resource gradients, which ultimately impact the

vegetation type and fuel loading (amount of fuel

present in terms of weight per unit area) occurring on a

site (Kessell, 1979). High fuel loading, for example, is

often found where biomass production exceeds

microbial decomposition (characterized by moisture

and temperature gradients) and where it has been a

long time since the last major fire or other disturbance

(Keane et al., 2001). Indirect gradient modeling has

been used to model fuel characteristics in Glacier

National Park, Montana (Kessell, 1979). However,

modeling landscape attributes directly on resource

gradients is rarely performed due to difficulties

associated with the identification and quantification

of these gradient types (Keane et al., 2002).

2.6. Integrated fuels mapping

The integration of remote sensing and gradient

modeling may increase the accuracy of fuels mapping

projects. For example, Keane et al. (2002) integrated

remote sensing and gradient modeling to map fuels

across the Gila National Forest in New Mexico. This

approach incorporates three indirect gradient layers

(the vegetation triplet): potential vegetation type

(PVT), cover type (CT), and structural stage (SS).

PVT is a site classification based upon the climax
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Table 1

ASTER specifications (adapted from Abrams, 2003)

Spectral region Spatial

resolution (m)

Channel Bandwidth

(mm)

Visible–near-infrared

(VNIR)

15 1 0.52–0.60

15 2 0.63–0.69

15 3 0.76–0.86

Short-wave Infrared

(SWIR)

30 4 1.60–1.70

30 5 2.145–2.185

30 6 2.185–2.225

30 7 2.235–2.285

30 8 2.295–2.369

30 9 2.360–2.430

Thermal infrared

(TIR)

90 10 8.125–8.475

90 11 8.475–8.825

90 12 8.925–9.275

90 13 10.25–10.95

90 14 10.94–11.65
vegetation that would be found on a site in the absence

of disturbance (Keane et al., 2000; Smith et al., 2003).

CT describes the dominant species found on a site, and

SS refers to the current canopy structure of a site (e.g.

multiple or single canopy layer). PVT is directly

related to the biophysical setting of a site, which

ultimately determines site productivity and decom-

position rate, and therefore has a large impact on fuel

characteristics (Keane et al., 2000). CT is important

for fuels mapping because dead woody debris and

litter are directly related to the dominant tree species

found on the site (Keane et al., 2000). The potential of

a surface fire spreading to the crown is highly

dependent upon the vertical structure of the stand,

which is described here by SS. This triplet approach

has been used to assess the hazard of forest disease

outbreak and vulnerability to fire in the Columbia

basin (Hessburg et al., 2000). It has been used in the

Gila National Forest and the Selway-Bitteroot Wild-

erness to map fuels and input layers required to run

FARSITE (Keane et al., 2000; Keane et al., 2001).

2.7. Fuels mapping objective

Remote sensing-based fuels mapping has typically

employed one of the Landsat sensors (MSS, TM, or

ETM+) to map fuels characteristics (Riano et al.,

2003). Although these sensors are effective, and

widely applicable to many environmental mapping

and monitoring situations, the development and

launch of new sensors with improved spatial and

spectral resolutions may improve the accuracy

(Chuvieco and Congalton, 1989) and reduce the cost

(Zhu and Blumberg, 2001) of forest fuels mapping.

ASTER, a sensor aboard NASA’s Terra platform (see

specifications Table 1), has untested potential for

characterizing and mapping forest fuels. The visible

and near-infrared telescope (VNIR), which collects

data with a spatial resolution of 15 m in the green

(0.52–0.60 mm), red (0.63–0.69 mm), and near-infra-

red (0.76–0.86 mm) portions of the electromagnetic

spectrum, should be particularly useful for obtaining

information about vegetation (Rowan and Mars,

2003), and may prove successful in mapping fuel

characteristics.

The objective of this paper is to evaluate the

accuracy and utility of ASTER imagery coupled with

gradient modeling for mapping fuels layers for fire
modeling with FARSITE (Finney, 1998) and FLAM-

MAP (Finney et al., 2003), which are modeling

programs used to spatially simulate and predict fire

behavior based upon inputs depicting topography (i.e.

elevation, slope, aspect), fuels (surface and crown),

and weather (i.e. wind, humidity). This paper

describes and evaluates methods used to spatially

predict surface fuel models (NFFL 1–13, Anderson,

1982) and crown fuel characteristics (crown bulk

density and crown closure) required to run FARSITE

and FLAMMAP. We create potential vegetation type,

cover type, and structural stage indirect gradient

layers, which are implemented as predictor layers

within the surface fuel model classification process.

Field data from a Moscow Mountain study area in

Idaho are then used to evaluate the results of the

surface fuels mapping process through a quantitative

accuracy assessment. In addition, canopy fuel related

variables are predicted across the Moscow Mountain

study area through the implementation of empirical

relationships between spectral vegetation indices and

field measurements quantifying canopy fuels.
3. Materials and methods

3.1. Study area

Moscow Mountain (Fig. 1), the extreme western

extension of the Clearwater Mountains, is located
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Fig. 1. Moscow Mountain study area—an ASTER image displayed in a 3 (NIR), 2 (red), 1 (green) false color composite.

Table 2

Strata classification break values

Strata breaks Elevation (m) Solar insolation (W/m2)

Low <896 <7063

Medium 896–978 7063–7276

High >978 >7276
approximately 9 km northeast of the city of Moscow,

Idaho (Latitude 468440N, Longitude 1168580W). This

area encompasses approximately 25,000 ha of mixed

temperate conifer forest and is topographically diverse,

with gentle to moderately steep slopes on many

different aspects. There are also many homes, build-

ings, and private properties interspersed with large

tracts of forestland. This area’s diverse management

history and land ownership has created a complex

mosaic of forest structure and fuel, making it an

excellent location to test the efficacy of satellite sensor

imagery for mapping forest fuels. Some parts of the

forest have been loggedmultiple times; others have had

little logging or no logging. Prescribed burning is used

often as part of forest management practices on some,

but not all lands to accomplish site preparation and

other vegetation management goals. For instance, the

University of Idaho’s Experimental Forest implements

prescribed burns across 1–2% of their forest annually.

The resulting mixed conifer forests are very diverse in

species composition and forest structure, and surface

and crown fuel loading vary greatly.

3.2. Sample design

One hundred and sixty-two field plots were located

using a two-stage (stratified systematic) sample

design. For the first stage, nine strata were constructed

based upon unique combinations of three elevation
strata and three solar insolation strata. Elevation and

solar insolation were chosen because they quantify

biophysical gradients (e.g. temperature, moisture, and

energy) over the study area. They also characterize the

biophysical potential of a site, and therefore have a

large impact upon fuel dynamics such as fuel type,

fuel loading, and fuel moisture content (Keane et al.,

2000). Solar insolation was calculated from a 30 m

USGS digital elevation model (DEM) for the growing

season (mid-April–late September) using the solar

analyst (HEMI, 2000) software package. Solar

insolation and elevation were each partitioned into

three individual strata (Table 2) using a quantile

classifier (33%). The resulting strata were then crossed

to provide nine unique combinations of the three solar

insolation and three elevation strata for each 30 m grid

cell. For the second sampling stage, leaf area index

(LAI) values, derived from an empirical model using

the normalized difference vegetation index (NDVI)

derived from a Landsat enhanced thematic mapper

(ETM+) image (Pocewicz et al., 2004), were

calculated within each of the nine strata and ranked
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from low to high. Pixels were then systematically

selected across each stratum’s LAI gradient. Sampling

in such a manner produced spatially random plot

locations across the full range of canopy conditions

throughout the study area.

3.3. Data collection

The development of new technologies, and the

need for up-to-date fuels information, has lead to the

creation of new initiatives aimed at mapping and

monitoring fuels and fire effects nationwide. In order

to be effective, such initiatives need to collect data in a

consistent manner. As a result, the USDA Forest

Service developed a new sampling protocol, called fire

effects monitoring and inventory protocol (FIRE-

MON) (http://fire.org/firemon/). This new sampling

protocol is structured so it is applicable to many fuel

and vegetation conditions.

Actual and potential vegetation type, surface fuel

model, slope, and aspect were assessed and recorded

at each of the 162 field plots. An intensive inventory of

surface and crown fuels was conducted at 81 of the

162 field plots with sampling procedures adapted from

the FIREMON sampling protocol. A 405 m2 fixed-

radius plot, which has a radius of 11.35 m (Fig. 2), was

used for tree measurements. The diameter at breast

height (DBH), percent live crown, species, distance
Fig. 2. Plot layout diagram: SF1–4, surface fuel transects; D1–4,

densiometer reading locations; SP1–3, vegetation subplot locations.
from plot center, bearing, and quadrant (NE, SE, SW

or NW) was recorded for every tree or snag �2.7 cm

DBH within the fixed-radius plot. A variable radius

plot (15 m2/ha) was used to identify large, influential

trees or snags outside the fixed-radius plot. The same

variables were recorded for each tree or snag captured

in the variable radius plot. Height, height to live

crown, and both the major and minor crown diameters

were measured for the trees with the largest and

smallest DBH for each species within each quadrant.

Crown density was measured using a spherical

densiometer at the northern, eastern, southern, and

western corners of the fixed-radius plot (Fig. 2).

Downed woody debris (DWD) was measured along

four transects (Fig. 2). One-hour fuels (DWD 0–

0.64 cm diameter) and 10-h fuels (DWD 0.64–

2.54 cm diameter) were tallied along the first 1.8 m

of each transect. One hundred-hour fuels (DWD 2.54–

7.62 cm diameter) were tallied along the first 4.6 m of

each transect. The diameter of 1000-h fuels

(DWD > 7.62 cm diameter) was recorded along the

entire length of each transect. Litter and duff depths

were measured 4.6 m from the beginning of each

16.1 m transect. Visual estimates of percent canopy

cover by vegetation class (sapling, seedling, shrub

(tall, medium and low), grass, forb, fern, moss/lichen,

and litter) were made within four 4 m � 4 m subplots

centered over the midpoint of each DWD transect (8 m

from beginning).

After collection, the data were divided randomly

into two datasets: a classification dataset (66% of the

original data or 107 plots), and an accuracy assessment

dataset (33% of the original data or 55 plots).

3.4. Data analysis

3.4.1. Preprocessing

A Level 1B (VNIR registered radiance at the

sensor) ASTER image, acquired on September 10,

2002, was imported into the ERDAS Imagine (Leica,

2004) image processing software using the built-in

ASTER import dialog. Geometric correction was

performed and radiance values were converted to top-

of-atmosphere reflectance. Since this study only used

imagery acquired at a single point in time, and low

atmospheric water content and clear skies were

present at the time of image acquisition, an atmo-

spheric correction was not performed. Vegetation

http://fire.org/firemon/
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Table 3

Classification schemes

Classification Variable

Potential vegetation

type (PVT)

Pseudotsuga menziesii (PSME)

Abies grandis (ABGR)

Thuja plicata (THPL)

Cover type (CT) Grass

Shrub

Pinus ponderosa/Pseudotsuga

menziesii (PIPO/PSME)

Pseudotsuga menziesii/Abies grandis

(PSME/ABGR)

Abies grandis/Thuja plicata

(ABGR/THPL)

Water

Structural stage (SS) Open stem exclusion (OSE)

Stand initiation (SI)

Young multi-story (YMS)

Old multi-story (OMS)

Water
indices, such as the normalized difference vegetation

index (NDVI [NIR � R/NIR + R]), simple ratio (SR

[NIR/R]), and green–red ratio vegetation index (GRVI

[green � red/green + red]), were calculated from the

processed ASTER image.

A 10-m USGS DEM was resampled to the same

resolution as the ASTER image (15 m) using a nearest

neighbor algorithm within ArcGIS. The resampling

procedure was performed to ensure each input layer

(CT, SS, PVT) and output layer (crown closure, crown

bulk density, and surface fuel model) had the same

spatial resolution.

3.4.2. Surface fuel model layer development

Surface fuel models were mapped across the study

area by implementing the aforementioned ‘‘vegetation

triplet’’ (PVT, SS, CT) (Keane et al., 2000). A

supervised classification (maximum likelihood) rou-

tine was used to map CT and SS from the ASTER

imagery. The PVT and final surface fuel model layers

were developed using a classification tree algorithm

within the S-Plus1 (Insightful, 2000) statistical

software package. The classification tree algorithm

uses training sets to develop classification rules by

recursively partitioning training data into categories,

with each split chosen to maximize differences

between the two resultant groups (Lawrence and

Wright, 2001), and sub-setting the training data into

more homogenous groups. Classification trees are

ideal for modeling and mapping landscape attributes

such as PVTs and surface fuel models because the data

inputs can be either categorical or continuous and are

not required to meet traditional statistical assumptions

such as normality or homoscedasticity (Keane et al.,

2002). Classification trees are also able to deal with

nonlinearity and are fairly easy to implement and

interpret as compared to other multivariate techniques

(McBratney et al., 2003). In addition, the decision

rules created through classification trees can be

interpreted and linked to environmental process across

entire landscapes. A detailed discussion of the

techniques used to produce each layer follows.

3.4.2.1. Potential vegetation type layer develop-

ment. PVT (series level groups of habitat types based

upon Cooper et al. (1991) (Table 3) was mapped

across our study area through the implementation of

classification tree decision rules using topographic
variables (elevation, slope, and aspect) and basic soils

information (presence or absence of volcanic ash cap)

as independent variables at each field plot within the

classification dataset. PVT classification rules were

derived from a classification tree using slope, aspect,

and elevation as predictor variables. Elevation, slope,

and aspect were chosen to classify PVT because they

are surrogates for biophysical setting, and therefore

directly influence the vegetation community composi-

tion (Smith et al., 2003) and ultimately surface fuel

models. Areas corresponding to water bodies were

masked out from the PVT classification. Optimal tree

size was determined by examining cost complexity

plots produced via the prune function in S-Plus1.

Local forest managers emphasized that the

presence of volcanic ash cap soil types, which have

higher nutrient levels and water holding capacities

(Page-Dumroese et al., 1996), strongly influence the

occurrence of the western redcedar (Thuja plicata)

PVT across the study area. Therefore, US Department

of Agriculture Natural Resource Conservation Service

(USDA NRCS) digital soils maps (USDA NRCS,

2003) depicting the presence or absence of volcanic

ash cap soils were also incorporated into the suite of

potential explanatory variables used in the decision

tree modeling. The final PVT classification rules

(Fig. 3) were then applied across the entire study area

to create the final PVT layer (Fig. 4).
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Fig. 3. Potential vegetation type (PVT) classification tree decision rules. Predictor variables used in the classification include ash cap soil

(present or absent), elevation (m), slope (%), and aspect (degree).
3.4.2.2. Cover type and structural stage layer

development. Cover types, adapted from the Idaho

GAP analysis vegetation classification scheme (GAP,

2004) (Table 3), and structural stages, based upon the

Interior Columbia Basin Management Project’s

(ICBMP) structural stage classification scheme (O’Hara

et al., 1996) (Table 3), were mapped across theMoscow

Mountain study area through the implementation of a

maximum likelihood supervised classification algo-

rithm in ERDAS IMAGINE1 (Leica, 2004). Field data

(107 plots) were used as training data within the

maximum likelihood classification algorithm.

The final PVT, CT, and SS layers (Fig. 4) were

input as predictor variables to a classification tree

algorithm used to derive surface fuel model classifica-

tion rules based upon the field data. These classifica-

tion rules (Fig. 5) were then applied across the entire

study area to create the final surface fuel model (FM)

layer (Fig. 6).

3.4.3. Crown fuel layer development

Empirical models (ordinary least squares regres-

sion), based upon field data and ASTER satellite data,

were employed to test the efficacy of ASTER satellite

data for mapping and characterizing crown closure

and crown bulk density. Crown closure and crown bulk

density were calculated at the plot level based upon
field densiometer measurements (for crown closure)

and the forest vegetation simulator (Stage, 1973, for

crown bulk density). Single band reflectances (green,

red, and near-infrared (NIR)) and vegetation indices

(NDVI, GRVI and SR) were tested as predictor

variables. Model coefficients were extracted (Table 4)

from the best model for each response variable and

incorporated into an algorithm to create the final

crown closure and crown bulk density layers (Fig. 6).

3.5. Accuracy assessment and model evaluation

The accuracy assessment data set (55field plots)was

used to quantitatively assess the accuracy of each layer

(PVT, CT, SS, and surface FM) produced through the

surface fuels mapping process. Error matrices quanti-

fying overall accuracy, omission errors, and commis-

sion errors were examined to evaluate the accuracy and

performance of each classification (Congalton and

Green, 1999). In addition, the kappa statistic (KHAT)

(Cohen, 1960), which determines if classification

results are significantly better than results arrived at

by pure chance (i.e. a random result) (Lillesand and

Kiefer, 1994; Jensen, 1996; Congalton and Green,

1999), was derived for each classification.

The performance of each empirical model for

crown fuel prediction was evaluated based upon the
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Fig. 4. Moscow Mountain surface fuel model predictor layers. (A) Potential vegetation types (PVT), (B) cover types (CT), (C) structural stages

(SS).
coefficient of determination (r2), root mean square

error (RMSE), and the Akaike Information Criterion

(AIC, Akaike, 1974) statistics. AIC evaluates model fit

by penalizing the residual deviance by the number of

parameters contained in the model (Akaike, 1974;

Gessler et al., 2000). Single AIC values have no

meaning. However, when compared between compet-

ing models, lower AIC statistics indicate better fitting

models (Breck et al., 2003). The delta AIC (Di)

statistic is commonly used to assess the statistical

difference between competing models, and is calcu-
lated as (Burnham and Anderson, 1998):

DAICi ¼ AICi �minðAICÞ;

where AICi is the value for an individual competing

model and min(AIC) is the minimum AIC value

among the competing models. In general, DAICi � 2

2 for a competing model indicates substantial support

for that model, DAICi between 3 and 7 indicates

moderate support, and DAICi > 10 indicates very

little support for the model (Burnham and Anderson,

1998; Breck et al., 2003).
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Fig. 5. Surface fuel model (FM) classification tree decision rules. Predictor variables used in the classification include CT, SS, and PVT.

Table 4

Crown fuel regression models with coefficients and model fit statistics

Response variable Intercept b variable 1 b variable 2 r2 RMSE AIC DAIC p-value

(1) Crown closure 223.58 �6.02 Greena 0.71 18.33% 722.31 15.81 <0.001

(2) Crown closure 144.32 �4.86 Reda 0.75 16.87% 708.52 2.02 <0.001

(3) Crown closure 126.82 �1.56 NIRb 0.08 32.35% 816.64 110.14 0.006

(4) Crown closure �96.36 278.65 NDVIa 0.69 18.91% 727.50 21.00 <0.001

(5) Crown closure 2.29 375.51 GRVIa 0.76 16.68% 706.67 0.17 <0.001

(6) Crown closure �45.79 27.93 SRa 0.65 20.11% 737.70 31.20 <0.001

(7) Crown closure �22.97 66.61 NDVINS 297.00 GRVIa 0.77 16.56% 706.50 – <0.001

(8) Bulk density 0.2072 �0.0076 Reda 0.46 0.0493 kg/m3 �260.24 2.29 <0.001

(9) Bulk density 0.3339 �0.0103 Greena 0.40 0.052 kg/m3 �251.27 11.26 <0.001

(10) Bulk density 0.1916 �0.0027 NIRb 0.06 0.065 kg/m3 �214.29 48.24 0.02

(11) Bulk density �0.1642 0.4274 NDVIa 0.40 0.0516 kg/m3 �252.40 10.13 <0.001

(12) Bulk density �0.0153 0.5926 GRVIa 0.47 0.0485 kg/m3 �262.53 – <0.001

(13) Bulk density �0.0957 0.0453 SRa 0.43 0.0507 kg/m3 �255.44 7.09 <0.001

(14) Bulk density �0.0258 0.0277 NDVINS 0.56 GRVIa 0.47 0.049 kg/m3 �260.58 1.95 <0.001

NS: not significant.
a Significant at the 0.001 probability level.
b Significant at the 0.01 probability level.

Table 5

Overall accuracy statistics

Layer Overall accuracy Kappa

Potential vegetation type (PVT) 0.684 0.504

Structural stage (SS) 0.684 0.589

Cover type (CT) 0.719 0.632

Fuel model (FM) 0.632 0.536
4. Results and discussion

4.1. Classification accuracies

Overall classification accuracies (Table 5) were

0.719 (KHAT = 0.632) for CT, 0.684 (KHAT = 0.589)

for SS, and 0.684 (KHAT = 0.504) for PVT. The final

surface FM classification had an overall accuracy of
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Fig. 6. Moscow Mountain fuel layers. (A) Surface fuel models (FM) (NFFL 1–13), (B) crown closure (%), (C) crown bulk density (kg/m3).
0.623 (KHAT = .536). Omission and commission errors

for categories within each classification (Table 6) were

also relatively low.

Classification confusion did occur between the

ABGR/PSME and PIPO/PSME categories within the

CT classification, which is likely the result of spectral

overlap between the ABGR/PSME and PIPO/PSME

categories. A relatively large amount of confusion also

occurred between the young multi-story (YMS) and

old multi-story (OMS) structural stages, as well as

between the structural stages. Again, this is the result
of the spectral similarity of these categories. Higher

accuracies could be obtained by combining spectrally

similar cover types (e.g. ABGR/PSME and PIPO/

PSME) and structural stages (e.g. YMS and OMS).

However, this would likely decrease the overall

accuracy of the final surface fuel model classification

by decreasing the number of predictor variables the

classification tree can use to differentiate fuel models.

In order to determine if the classification tree

employed to model PVT produced ecologically

meaningful decision rules, the predicted PVT layer
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Table 6

Classification error statistics

Class category Omission error Commission error

PVT-PSME 0.318 0.2

PVT-ABGR 0.375 0.163

PVT-THPL 0.296 0.1

CT-Grass 0.09 0.087

CT-Shrub 0.333 0.104

CT-THPL/ABGR 0.136 0.057

CT-PIPO/PSME 0.714 0.04

CT-ABGR/PSME 0.8 0.058

CT-Water 0 0

SS-OSE 0.1 0.106

SS-SI 0.5 0.043

SS-YMS 0.579 0.052

SS-OMS 0.067 0.214

SS-Water 0 0

FM-1 0.09 0.086

FM-5 0.333 0.104

FM-8 0.75 0.049

FM-9 0.28 0.021

FM-10 0.214 0.21
was intersected with each classification input (Fig. 7).

According to the decision rules, the least moisture

tolerant PVT, PSME, occurs on drier aspects (south-

erly and westerly), moderate slopes (<20%), lower

elevations (<1000), and where volcanic ash cap is

absent. The THPL PVT (moist sites) occurs in moister

sections of the study area (i.e. elevations >900 m

where volcanic ash cap is present), while the ABGR

PVT (moderately moist sites) typically occurs on

northeasterly aspects, with moderate slopes (<20%),

in areas of relatively low elevation (<1000 m), and is

not dictated by the presence or absence of volcanic ash

cap.

The classification tree employed to model surface

fuel models also produced logical decision rules

(Fig. 8). Surface FM 1 (grass) occurs on the grass CT

in the open stem exclusion structural stage, and is

typically on the PSME PVT. Surface FM 2 (shrub) is

most commonly found on the shrub CT in the stand

initiation SS, and is relatively insensitive to changes in

PVT. Fuel models 8 (short needle conifer) and 9 (long

needle conifer) most commonly occur on the PSME/

ABGR and PIPO/PSME cover types in the young

multi-story SS. However, FM 8 is typically found on

the ABGR and THPL potential vegetation types, while

FM 9 occurs on the PSME PVT most often. FM 10
occurs on the THPL/ABGR CT in the old multi-story

structural stage, and typically on the ABGR and THPL

potential vegetation types.

TheCT, SS, PVT, and surface FM layers produced in

this studyhave overall accuracies (Table 5) similar to, or

exceeding, studies producing comparable layers. For

example, Keane et al. (2002) obtained an overall

accuracy of 0.36 (KHAT = 0.31) for CT, an overall

accuracy of 0.52 (KHAT = 0.39) for SS, an overall

accuracy of 0.57 (KHAT = 0.45) for PVT, and an overall

accuracy of 0.55 (KHAT = 0.45) for surface FM through

the implementation of similar classification methodol-

ogies (gradient modeling and Landsat Satellite sensor

data, 30-m spatial resolution) across the Gila National

Forest, New Mexico. Rollins et al. (2004) predicted

surface fuel models by incorporating additional

environmental gradients (created through simulation

modeling and Landsat satellite data) into a classifica-

tion tree and achieved an overall accuracy of 0.56

(KHAT = 0.34) across the Kootenai River Basin of

northwestern Montana. Roberts et al. (2003) attained

higher accuracies (overall accuracy of 0.79, KHAT =

0.72) by classifying fuel types in southern California

using airborne hyperspectral data (AVIRIS).

The differences in accuracies between this study

and studies producing similar layers are likely the

result of differences in the number of categories within

each classification, as well as the relative size of the

study areas, and the complexity of vegetation and

terrain within each study area. For example, Keane

et al. (2002) classified 24 cover types, 12 structural

stages, seven potential vegetation types and 10 surface

fuel models across the Gila National Forest, an area

much larger (>one million hectares) and more

complex in both vegetation and topography than the

Moscow Mountain study area (25,000 ha, seven cover

types).

4.2. Empirical relationships and crown fuel

prediction

Green and red reflectances had strong negative

correlations with both crown closure and crown bulk

density (Table 7), while the NIR reflectance exhibited

a weak negative correlation (Pearson’s Correlation

Coefficient) with both crown closure and crown bulk

density. Xu et al. (2003) reported similar correlations

between Landsat single band reflectance and crown
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Fig. 7. PVT decision rule results. Graph A—percent occurrence of PVT by aspect, graph B–percent occurrence of PVT by slope (%), graph C—

percent occurrence of PVT by elevation (m), graph D—percent occurrence of PVT by volcanic ash cap.
closure. They attributed negative correlations between

visible reflectances (green and red) and crown closure

to a senesced understory at the time of image

acquisition. A senesced understory component is
Table 7

Pearson’s correlation coefficients

Variable Crown closure correlation Bulk density correlation

Green �0.842 �0.692

Red �0.868 �0.687

NIR �0.297 �0.322

NDVI 0.830 0.635

GRVI 0.871 0.710

SR 0.805 0.647
highly reflective across the visible and NIR wave-

lengths as compared to a photosynthetically active tree

canopy. Therefore, as canopy cover decreases,

reflectance across the visible and NIR wavelengths

increases. Since vegetation index values increase with

an increase in photosynthetically active vegetation,

positive correlations between these indices and crown

fuel variables are expected. Each vegetation index

examined in this study did indeed exhibit strong

positive correlations with both crown closure and

crown bulk density. However, the GRVI index had a

stronger correlation with both crown closure and

crown bulk density than did the NDVI and SR indices.

The weaker correlations between vegetation indices
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Fig. 8. Surface fuel model (FM) decision rule results. Graph A—

percent occurrence of FM by PVT, graph B—percent occurrence of

FM by CT, graph C—percent occurrence of FM by SS. 1–10 refer to

NFFL fuel model numbers.
incorporating the NIR reflectance (i.e. NDVI and SR)

and canopy variables were the result of the weak

correlations between NIR reflectance and canopy fuels

variables.

In total, seven regression models (Table 4) for each

response variable (crown closure and crown bulk

density) were compared. Green and red reflectances

had a strong relationship to both crown closure and

crown bulk density (r2 > 0.71 and r2 > 0.46, respec-

tively). The relationship between NIR reflectance and

canopy fuel characteristics was poor (canopy closure
r2 = 0.08 and crown bulk density r2 = 0.06). The

model containing both the GRVI and NDVI vegetation

indices (model 7) as predictors of crown closure

obtained the highest r2, lowest RMSE, and lowest AIC

values compared to the other crown closure models

(models 1–3). However, since model 5 contained

fewer terms and the DAIC indicated no substantial

difference between model 5 and model 7 (i.e.

DAIC < 2), model 5 was selected as the optimum

model for predicting crown closure. For crown bulk

density models 12 and 14 attained similar r2 statistics.

However, since model 12 attained the lowest RMSE,

the lowest AIC, and contained fewer terms, it was

selected as the optimal model for predicting crown

bulk density.

Prior studies have used remote sensing to provide

estimates of crown closure. For example, Franklin

et al. (2003) demonstrated that significant relation-

ships exist between Landsat band five (MIR) and

crown closure for two conifer species (jack pine:

r2 = 0.30, p < 0.005; white spruce: r2 = 0.32,

p < 0.005). However, when jack pine was considered

alone, a stronger relationship (r2 = 0.66, p < 0.005)

was achieved with band 4 (NIR) and crown closure.

Franklin et al.’s (2003) study was limited in that it only

examined relationships between single Landsat bands

and crown closure. Xu et al. (2003) investigated

correlations between single band Landsat reflectance

and several vegetation indices derived from Landsat

and found that indices such as NDVI were strongly

related to crown closure (r2 = 0.69, p < 0.05). The

current study demonstrates that the use of vegetation

indices that incorporate visible and near-infrared

reflectances produce relationships similar in strength

to those achieved by Franklin et al. (2003) and Xu

et al. (2003). However, use of vegetation indices

incorporating visible wavelengths (GRVI) solely or in

combination with vegetation indices incorporating

near-infrared wavelengths (NDVI) achieve the stron-

gest relationships (r2 > 0.76, p < 0.005). As sug-

gested by Xu et al. (2003), this is likely due to the

senesced state of the grass understory during the time

of image acquisition. Relationships between crown

fuel variables and remotely sensed imagery acquired

at different times of the year may be quite different

than the relationships presented herein.

Only a few previous studies have implemented

passive remote sensing or gradient modeling to
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estimate crown bulk density. Keane et al. (2002)

estimated crown bulk density using the ‘‘vegetation

triplet’’ methodology and achieved only a poor

relationship (r2 = 0.35, p < 0.005). A comparison of

this result with the GRVI empirical model (model 6)

demonstrates that a significant improvement

(r2 = 0.47, p < 0.005) is achieved by directly estimat-

ing crown bulk density from this vegetation index.

More recently, active remote sensing platforms such as

light detection and ranging (lidar) have been used to

predict crown bulk density, and in general have

achieved stronger relationships. For example, Riano

et al. (2004) used lidar to estimate crown bulk density

in a scots pine (Pinus sylvestris) forest and achieved a

strong relationship (r2 = 0.80, p < 0.001).
5. Conclusions

Overall, ASTER satellite imagery coupled with

indirect gradient modeling proved to be an effective

tool for mapping and characterizing wildland fire fuels

across the Moscow Mountain study area. The

methodology presented herein identified surface fuel

models and surface fuel model predictor layers (PVT,

CT and SS) with accuracies similar to, or slightly

higher than, those found in the literature.

Employing empirical relationships between

ASTER satellite imagery and field data also proved

successful for mapping crown fuels. The crown fuel

mapping analysis within the current study demon-

strates that significant improvement is achieved

through the use of vegetation indices over single

bands. In addition, predicting crown closure from

vegetation indices relying solely on visible wave-

lengths results in significant improvements the

vegetation indices incorporating NIR reflectance.

ASTER’s 15-m spatial resolution may indeed be

ideal for characterizing crown fuel variables. The

characterization of crown fuel variables from finer

spatial resolution data (e.g. Ikonos at 4 m) may be

problematic due to increases in spectral and spatial

variations associated with sub-canopy shadows (i.e.

single trees represented by multiple pixels; Asner and

Warner, 2003). Conversely, sensors with coarser

resolutions (e.g. Landsat at 30 m) may not identify

discrete tree and non-tree components (i.e. multiple

trees and surface components present within a single
pixel) at a level sufficient for characterizing canopy

fuel conditions. Additionally, the incorporation of

ASTER’s 30 m SWIR bands may provide additional

discrimination between non-photosynthetic vegeta-

tion from background soils. However, we only

purchased the VNIR bands, therefore SWIR or TIR

data was not evaluated.

When planning canopy fuels mapping projects,

managers need to take numerous factors into con-

sideration. If ASTER imagery acquired when the forest

understory is senesced is available, managers may

obtain excellent results using the techniques presented

herein, especially when characterizing canopy fuels

with the GRVI index. Due to the limited availability of

ASTER imagery, and uncertainties associated with the

life span of theASTER sensor, landmanagersmay need

to obtain data acquired by other sensors, such as SPOT

or Landsat. However, differences between the spatial

and spectral resolutions of these sensors and the spatial

and spectral resolutions of the ASTER sensor may

compromise the overall precision and accuracy of the

final fuels layers. As a result, managers must carefully

investigate correlations and relationships between

canopy fuel variables and spectral information acquired

by the sensor used (ASTER, SPOT, or Landsat).

Slightly higher accuracies have been achieved when

classifying fuel types from hyperspectral data (Roberts

et al., 2003). Additionally, studies using lidar to

estimate crown attributes such as crown bulk density

have demonstrated stronger relationships than the

relationships presented herein (Riano et al., 2004).

Higher accuracies using hyperspectral or lidar data are

to be expected given their higher information content.

Future fuelsmapping effortsmaybemore successful by

integrating multispectral satellite data with hyperspec-

tral data, lidar data, or both. However, the availability of

low-cost satellite hyperspectral and lidar datasets is

currently limited, and the costs of acquiring and

analyzing such data from commercial airborne plat-

forms is impractical for most fuels managers.

Direct and resource gradients could provide better

fuel maps than indirect gradients. However, complex-

ities associated with the mathematical and statistical

procedures (ordination, principal components analysis,

canonical correspondence analysis) required to identify

and classify these gradients make their use impractical

for many management applications (Keane et al.,

2002). As a result, managers may prefer to use easily
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quantifiable indirect gradients, such as PVT, when

mapping surface fuels. Since the number of classes

within each gradient directly impacts its accuracy, and

ultimately the accuracy of the final surface fuel

classification, careful consideration must also be given

to how complex (number of classes) gradients should

be; only classes that have the greatest impact on surface

fuels should be chosen.

Recent federal initiatives provide funding to state

and local governments that develop plans for

identifying and mitigating hazards associated with

wildland fire in the urban interface. However, this

funding is only available to communities that develop

spatially explicit assessments of wildfire risk and

hazard. The surface and crown fuel data produced by

this research can be input into fire behavior simulation

programs such as FARSITE (Finney, 1998) and

FLAMMAP (Finney et al., 2003) to assess fire hazard,

and ultimately fire risk, across the Moscow Mountain

study area. Once detailed field data are collected, the

methodology presented herein can be applied to any

study area with relative ease, making it useful for land

managers attempting to carry out fire hazard or fire

risk assessments.
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