
WiSeDB: A Learning-based Workload Management
Advisor for Cloud Databases

Ryan Marcus
Brandeis University

ryan@cs.brandeis.edu

Olga Papaemmanouil
Brandeis University

olga@cs.brandeis.edu

ABSTRACT
Workload management for cloud databases deals with the tasks of
resource provisioning, query placement, and query scheduling in a
manner that meets the application’s performance goals while min-
imizing the cost of using cloud resources. Existing solutions have
approached these three challenges in isolation while aiming to op-
timize a single performance metric. In this paper, we introduce
WiSeDB, a learning-based framework for generating holistic work-
load management solutions customized to application-defined per-
formance goals and workload characteristics. Our approach relies
on supervised learning to train cost-effective decision tree models
for guiding query placement, scheduling, and resource provision-
ing decisions. Applications can use these models for both batch and
online scheduling of incoming workloads. A unique feature of our
system is that it can adapt its offline model to stricter/looser per-
formance goals with minimal re-training. This allows us to present
to the application alternative workload management strategies that
address the typical performance vs. cost trade-off of cloud services.
Experimental results show that our approach has very low training
overhead while offering low cost strategies for a variety of perfor-
mance metrics and workload characteristics.

1. INTRODUCTION
Cloud computing has transformed the way data-centric applica-

tions are deployed by reducing data processing services to com-
modities that can be acquired and paid for on-demand. Despite the
increased adoption of cloud databases, challenges related to work-
load management still exist, including provisioning cloud resources
(e.g., virtual machines (VMs)), assigning incoming queries to pro-
visioned VMs, and query scheduling within a VM in order to meet
performance goals. These tasks strongly depend on application-
specific workload characteristics and performance goals, and they
are typically addressed by ad-hoc solutions at the application level.

A number of efforts in cloud databases attempt to tackle these
challenges (e.g., [8, 9, 15, 17, 18, 19, 26, 28, 29]). However, these
techniques suffer from two main limitations. First, they do not pro-
vide holistic solutions but instead address only individual aspects
of the problem, such as query admission [26, 28], query placement

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

to VMs [9, 17, 18], query scheduling within a VM [8, 9], or VM
provisioning [15, 17, 19, 29]. Since these solutions are developed
independently of each other, their integration into a unified frame-
work requires substantial effort and investment to “get it right” for
each specific case. Second, while a broad range of latency-related
performance metrics are covered by these systems (e.g., query re-
sponse time [8, 9, 18, 29], average query latency [18]), each of-
fers solutions tuned only for a specific metric. Adapting them to
support a wider range of application-specific metrics (e.g., max la-
tency, percentile metrics) is not a straightforward task.

Expanding on our vision [21], we argue that cloud-based
databases could benefit from a workload management advisor ser-
vice that removes the burden of the above challenges from applica-
tion developers. Applications should be able to specify their work-
load characteristics and performance objectives, and such a service
should return a set of low-cost and performance-efficient strategies
for executing their workloads on a cloud infrastructure.

We have identified a number of design goals for such an advi-
sor service. First, given an incoming query workload and a per-
formance goal, the service should provide holistic solutions for
executing a given workload on a cloud database. Each solution
should indicate: (a) the cloud resources to be provisioned (e.g.,
number/type of VMs), (b) the distribution of resources among the
workload queries (e.g., which VM will execute a given query), and
(c) the execution order of these queries. We refer to these solutions
collectively as workload schedules.

Second, to support diverse applications (e.g., scientific, finan-
cial, business-intelligence, etc), we need a customizable service
that supports equally diverse application-defined performance cri-
teria. We envision a customizable service that generates workload
schedules tuned to performance goals and workload characteristics
specified by the application. Supported metrics should capture the
performance of individual queries (e.g., query latency) as well as
the performance of batch workloads (e.g., max query latency of an
incoming query workload).

Third, since cloud providers offer resources for some cost (i.e.,
price/hour for renting a VM), optimizing schedules for this cost
is vital for cloud-based applications. Hence, any workload man-
agement advisor should be cost-aware. Cost functions are avail-
able through contracts between the service providers and their cus-
tomers in the form of service level agreements (SLAs). These cost
functions define the price for renting cloud resources, the perfor-
mance goals, and the penalty to be paid if the agreed-upon perfor-
mance is not met. A workload management service should consider
all these cost factors while assisting applications in exploring per-
formance/cost trade-offs.

This paper introduces WiSeDB ([W]orkload management
[Se]rvice for cloud [DB]s), a workload management advisor

780

for cloud databases designed to satisfy the above requirements.
WiSeDB offers customized solutions to the workload management
problem by recommending cost-effective strategies for executing
incoming workloads for a given application. These strategies are
expressed as decision-tree models and WiSeDB utilizes a super-
vised learning framework to “learn” models customized to the ap-
plication’s performance goals and workload characteristics. For
an incoming workload, WiSeDB can parse the model to identify
the number/type of VMs to provision, the assignment of queries to
VMs, and the execution order within each VM, in order to execute
the workload and meet the performance objective with low-cost.

Each model is cost-aware: it is trained on a set of performance
and cost-related features collected from minimum cost schedules
of sample workloads. This cost accounts for resource provision-
ing as well as any penalties paid due to failure to meet the perfor-
mance goals. Furthermore, our proposed features are independent
from the application’s performance goal and workload specifica-
tion, which allows WiSeDB to learn effective models for a range of
metrics (e.g., average/max latency, percentile-based metrics). Fi-
nally, each model is trained offline once, and can be used at run-
time to generate schedules for any workload matching the model’s
workload specifications. Given an incoming batch workload and a
decision model, WiSeDB parses the model and returns a low cost
schedule for executing the workload on cloud resources.

WiSeDB leverages a trained decision model in two additional
ways. First, the training set of the model is re-used to generate a
set of alternative models for the same workload specification, but
stricter or more relaxed performance criteria. Several models are
presented to the user, along with the cost estimate for each as func-
tion of the workload size. This allows applications to explore the
performance vs. cost trade-off for their specific workloads. Second,
each model can be adjusted (with small overhead) during runtime
to support online scheduling of queries arriving one at a time.

The contributions of this work can be summarized as follows:
1. We introduce WiSeDB, a workload management advisor for

cloud databases. We discuss its design and rich functionality,
ranging from recommendations of alternative workload exe-
cution strategies that enable exploration of performance vs.
cost trade-offs to resource provisioning and query schedul-
ing for both batch and online processing. All recommenda-
tions are tuned for application-defined workload characteris-
tics and (query latency-related) performance goals.

2. We propose a novel learning approach to the workload man-
agement problem. WiSeDB learns its custom strategies by
collecting features from optimal (minimum cost) schedules
of sample workloads. We rely on a graph-search technique
to identify these schedules and generate a training set in a
timely fashion. Furthermore, we have identified a set of
performance and cost-related features that can be easily ex-
tracted from these optimal solutions and allow us to learn ef-
fective (low-cost) strategies for executing any workload for
various performance metrics.

3. We propose an adaptive modeling technique that generates
alternative workload execution strategies, allowing applica-
tions to explore performance vs. cost trade-offs.

4. We leverage the trained models to schedule batch workloads
as well as to support online scheduling by efficiently gener-
ating low-cost models upon arrival of a new query.

5. We discuss experiments that demonstrate WiSeDB’s ability
to learn low-cost strategies for a number of performance met-
rics with very small training overhead. These strategies offer
effective solutions for both batch and online scheduling in-
dependently of workload and performance specifications.

Da
ta
	M

an
ag
em

en
t	A

pp
lic
at
io
n

Schedule	Generator

Model	Generator

1.	Query	Templates	
Performance	Goal

IaaS
Provider...

Virtual		Machines

3.	Runtime	Workload	&	Strategy

5.	Schedule	Execution

Strategy	Recommendation
2.	Alternative	Strategies	&	Cost

Original	
Model

Original	
Training	Set

4.	Workload	Schedule

Figure 1: The WiSeDB system model

We first discuss WiSeDB’s system model in Section 2 and then
define our optimization problem in Section 3. We introduce our
modeling framework in Section 4 and the adaptive modeling ap-
proach in Section 5. Section 6 discusses WiSeDB’s runtime func-
tionality. Section 7 includes our experimental results. Section 8
discusses related work and we conclude in Section 9.

2. SYSTEM MODEL
Our system is designed for data management applications de-

ployed on an Infrastructure-as-a-Service (IaaS) cloud (e.g., [1, 2]).
These providers typically offer virtual machines (VMs) of different
types (i.e., resource configurations) for a certain fee per renting pe-
riod. We assume this deployment is realized by renting VMs with
preloaded database engines (e.g., PostgreSQL [3]) and that queries
can be executed locally on any of the rented VMs. This property is
offered by fully replicated databases.1

Workload Specification Applications begin their interaction
with WiSeDB by providing a workload specification indicating the
query templates (e.g., TPC-H templates [4]) that will compose their
workloads. In analytical applications, incoming queries are gener-
ally instances of a small number of templates, and queries of the
same template have similar performance properties (i.e., latency)
because they access and join the same tables [25]. In practice,
WiSeDB’s approach is agnostic to the tables accessed or joined
and cares only about the latency of each template, i.e., queries with
identical latency can be treated as instances of the same template.

Performance Goals Applications also specify their performance
goals for their workloads as functions of query latency. Perfor-
mance goals can be defined either at the query template level or
workload level. Currently, we support the following four types of
metrics. (1) Per Query Deadline: users can specify an upper la-
tency bound for each query template (i.e., queries of the same tem-
plate have the same deadline). (2) Max Latency Deadline: the user
expresses an upper bound on the worst query response time in a
query workload. (3) Average Deadline: sets an upper limit on the
average query latency of a workload. (4) Percentile Deadline: spec-
ifies that at least x% of the workload’s queries must be completed
within t seconds. These metrics cover a range of performance goals
typically used for database applications (e.g., [8,18,26,28]). How-
ever, WiSeDB is the first system to support them within a single
workload management framework.

Performance goals are expressed as part of a Service-Level-
Agreement (SLA) between the IaaS provider and the application
that states (a) the workload specification, (b) the performance goal,
and (c) a penalty function that defines the penalty to be paid to the
1Partial replication/data partitioning models can also supported by specify-
ing which data partitions can serve a given query.

781

application if that goal is not met. Our system is agnostic to the de-
tails of the penalty function, incorporating it into its cost-model as
a “black box” function that maps performance to a penalty amount.

The architecture of the WiSeDB Advisor is shown in Fig-
ure 1. Workload and performance specifications are submitted to
WiSeDB, which trains a decision model, a.k.a. strategy (Model
Generator). The training set for this model is also leveraged to gen-
erate alternative decision models (strategies) for stricter and more
relaxed performance goals (Strategy Recommendation). These
strategies are presented to the user along with a cost function that
estimates the monetary cost of each strategy based on the frequency
of each query template in a given workload.

Given an incoming workload at runtime, the application esti-
mates the expected cost and performance of executing these work-
loads using our proposed strategies and chooses the one that bet-
ter balances performance needs and budget constraints (Execution
Strategy). WiSeDB identifies (a) the type/number of VMs to be
provisioned, (b) the assignment of queries to these VMs and (c) the
execution order of the queries within each VM, in order to to ex-
ecute the incoming workload based on the chosen strategy. This
step is executed by the Schedule Generator which can generate
these workload schedules for both batch workloads as well as sin-
gle queries as they arrive (online scheduling). Applications execute
their workloads according to WiSeDB’s recommendations. They
rent VMs as needed and add queries to the processing queue of
VMs according to the proposed schedule.

3. PROBLEM DEFINITION
Here, we formally define our system’s optimization goal and

discuss the problem’s complexity. Applications provide a set of
query templates T = {T1, T2, . . . } as the workload specifica-
tion and a performance goal R. Given the set of query templates
T , WiSeDB generates decision models for scheduling workloads
with queries instances drawn from T . Let us assume a workload
Q = {qx1 , qy2 , . . . } where each query qji ∈ Q is an instance of the
template Tj ∈ T . Given a workload Q and one of the generated
decision models, WiSeDB identifies a schedule S for executing Q.

We represent a VM of type i, vmi, as a queue vmi =
[qx1 , q

y
2 , . . .] of queries to process in that order and we represent

a schedule S = {vmi
1, vm

j
2, . . . } of the workload Q as a list of

VMs such that each VM contains only queries from Q. Hence,
each schedule S indicates (1) the number and type of VMs to be
provisioned, (2) the assignment of each query qij ∈ Q to these
VMs and (3) the query execution order on each VM, vmi

j ∈ S. A
complete schedule assigns each query in Q to one VM.

We denote the latency of a query qxj (of template Tx) when exe-
cuted on a VM of type i, vmi

k, as l(qxj , i). Latency estimates can
be provided by either the application (e.g., by executing representa-
tive queries a-priori on the available VM types) or by using existing
prediction models (e.g., [10,11]). Queries assigned to a VM can be
executed immediately or can be placed in a VM’s processing queue
if no more concurrent queries can be processed.2

Figure 2 shows two possible schedules for a workload of four
queries drawn out of two templates. The first scenario uses three
VMs while the second executes the queries on two VMs. Based
on our notation, the first schedule is expressed as S1 = {vm1 =
[q22 , q

1
1], vm2 = [q23], vm3 = [q24]}, where as the second scenario

is expressed as S2 = {vm1 = [q11 , q
2
2], vm2 = [q23 , q

2
4]}.

Cost Model To calculate the monetary cost of processing a
workload, we assume each VM of type i has a fixed start-up cost
2Most DBMSs put an upper limit on the number of concurrent queries,
referred to as multiprogramming level.

t=0

!" deadline !# deadline

$##

Scenario	1

Scenario	2

VM1

VM2

VM3

VM1

VM2

violation	period	 (%&&)

t=1m t=2m t=3m

$""

$'"

$("

$## $""

$'" $("

violation	period	 (%)&)

Figure 2: Two different schedules for Q = {q11 , q22 , q23 , q24}

f i
s, as well as a running cost f i

r per unit of time (i.e. the price for
renting the VM for that time unit). We also assume a penalty func-
tion p(R,S) that estimates the penalty for a given schedule S and
performance goal R. Without loss of generality (and similarly to
the model used by IaaS providers [1]), we assume penalties are cal-
culated based on the violation period, i.e., a fixed amount per time
period of violation within a schedule S.

The violation period is the duration of time that the performance
goal R was not met. If the goal is to complete queries of a given
template within a certain deadline (per query deadline goal), the
violation period for each query is measured from the time point it
missed its deadline until its completion. Figure 2 shows an example
of this case. Let us assume that queries of template T1 have an ex-
ecution time of 2 minutes and queries of T2 execute with 1 minute.
The figure shows the violation periods for the second scenario (for
q22 , q

2
4) assuming that the deadline of template T1 is 3 minute and

for T2 is 1 minutes (the first scenario does not have any violations).
For the maximum latency metric, where no query can exceed

the maximum latency, the violation period is computed in the same
way. For an average latency performance goal, the duration of the
violation period is the difference between the desired average la-
tency and the actual average latency of each query. For a percentile
performance goal that requires x% of queries to be complete in
y minutes, the violation period is the amount of time in which
100− x% of the queries had latencies exceeding y minutes.

Problem Definition Given a workload Q = {qx1 , qy2 , . . . },
where qji is of template Tj , and a performance goal R, our goal
is to find a complete schedule S that minimizes the total monetary
cost (provisioning, processing, and penalty payouts costs) of exe-
cuting the workload. We define this total cost, cost(R,S), as:

cost(R,S) =
∑

vmi
j∈S

f i
s +

∑
qm
k

∈vmi
j

f i
r × l(qmk , i)

+ p(R,S)

(1)
Problem Complexity Under certain conditions, our optimization
problem becomes the bin packing problem, where we try to “pack”
each query into one of the available “VM-bins”. For this reduc-
tion, we need to assume that (1) the number of query templates
is unbounded, (2) infinite penalty, p(R,S) = ∞, if the perfor-
mance goal is violated, and (3) the start-up cost f i

s is uniform across
all VM types. Under these conditions, the problem is NP-Hard.
However, these assumptions are not valid in our system. Limit-
ing the number of query templates relaxes the problem to one of
polynomial complexity, but still not computationally feasible [27].

Two common greedy approximations to this optimization prob-
lem are the first-fit decreasing (FFD) [22] and first-fit-increasing
(FFI) algorithms, which sort queries in decreasing or increasing or-
der of latency respectively and place each query on the first VM
where the query “fits” (incurs no penalty). If the query will not

782

fit on any VM, a new VM is created. Existing cloud management
systems have used FFD (e.g., [7]) for provisioning resources and
scheduling queries. However, it is often not clear which of these
greedy approaches is the best for a specific workload and perfor-
mance goal. For example, when applied to the workload and per-
formance goals shown in Figure 2, FFD schedules all queries on
their own VM, which offers the same performance as scenario 1
but uses an additional VM (and hence has higher cost). A bet-
ter approximation would be FFI, which produces the schedule that
is depicted in scenario 1, scheduling the four queries across three
VMs without violating the performance goal.

Furthermore, there might be scenarios when none of these ap-
proximations offer the best solution. For example, consider work-
loads consisting of three templates, T1, T2, T3 with latencies of
four, three, and two minutes respectively. Assume we have two
queries of each template, q11 , q12 of template T1, q23 , q24 of template
T2, and q35 , q36 of template T3 and we wish to keep the total execu-
tion time of the workload below nine minutes. FFD will find the
schedule SFFD = {[q11 , q12], [q23 , q24 , q35], [q36]}, while FFI would
find the schedule SFFI = {q35 , q36 , q23], [q24 , q11], [q12]}. However, a
better strategy is one that attempts to place an instance of T1, then
an instance of T2, then an instance of T3, then create a new VM, re-
sulting in the schedule S′ = {[q11 , q23 , q35], [q12 , q24 , q36]}, which has
a lower cost because it provisions one less VM.

WiSeDB departs from the “one-strategy-fits-all” approach used
by standard approximation heuristics. Instead, it offers effective
scheduling strategies for custom performance goals and workload
specifications by learning heuristics tailored to the application’s
needs. We next describe how WiSeDB identifies such strategies.

4. DECISION MODEL GENERATION
WiSeDB relies on supervised learning to address our workload

management problem. Next, we describe this process in detail.

4.1 Approach Overview
Given an application-defined workload specification (i.e., query

templates and a performance goal), WiSeDB generates a set of
workload execution strategies that can be used to execute incoming
query workloads with low cost and within the application’s perfor-
mance goal. Formally, our goal is to identify strategies that mini-
mize the total cost as defined in Equation 1. Towards this end, our
framework generates samples of optimal schedules (i.e., that min-
imize the total cost) and relies on decision tree classifiers to learn
“good” strategies from these optimal solutions.

Our framework is depicted in Figure 3. Initially, we create a
large number of random sample workloads, each consisting of a
small number of queries drawn from the query template definitions.
Our next step is to identify the optimal schedule for each of these
sample workloads. To do this efficiently, we represent the problem
of scheduling workloads as a graph navigation problem. On this
graph, edges represent query assignment or resource provisioning
decisions and the weight of each edge is equal to the cost of that
decision. Hence, each path through the graph represents decisions
that compose some schedule for the given workload. Finding the
optimal schedule for that workload is thus reduced to finding the
shortest path on this graph. Next, for each decision within an op-
timal schedule, we extract a set of features that characterize this
decision. We then generate a training set which includes all col-
lected features from all the optimal schedules across all sample
workloads. Finally, we train a decision tree model on this train-
ing set. The learning process is executed offline and the generated
models can be used during runtime on incoming workloads. Next,
we describe these steps in detail.

Performance	
Goal		R Sample

Workload
Generation

Feature	
Extraction

Model	
LearningQuery	Templates

T	=	{T1,	T2,…}

Optimal	Schedule	
Generation

Optimal
Schedules

Feature	Generation	
(per	sample	workload)

Training	Data
Collection

Workload	
Management	

Model

Model	Generation

Graph	
Construction

Figure 3: Generation of the decision model

4.2 Workload Sampling
WiSeDB first generates sample workloads based on the

application-provided query templates T . We createN random sam-
ple workloads, each containingm queries. Here, N andmmust be
sufficiently large so that query interaction patterns emerge and the
decision tree model can be properly trained. However,mmust also
be sufficiently small so that for each sample workload we can iden-
tify the optimal schedule in a timely manner.

In order to ensure that our sampling covers the space of possible
workloads, we rely on uniform direct sampling of the query tem-
plates. If the sampling is not uniform, the decision tree may not be
able to learn how two query templates interact, or the decision tree
may have very little information about certain templates. Further-
more, we generate a large number of samples in order to ensure that
our workload samples will also include workloads that are imbal-
anced with respect to the number of unique templates they include.
This allows WiSeDB to handle skewed workloads.

4.3 Optimal Schedule Generation
Given a set of sample workloads, WiSeDB learns a model based

on the optimal schedules for these workloads. To produce these
optimal solutions, we represent schedules as paths on a weighted
graph, and we find the minimum cost path on this graph. This
graph-based approach provides a number of advantages. First, each
“best” path represents not only an optimal schedule, but also the
steps taken to reach that optimal schedule. The information rel-
evant to each optimal decision is captured by each vertex’s state.
Second, a graph representation lends itself to a natural way of elim-
inating redundancy in the search space via careful, strategic path
pruning. Finally, the well-studied nature of shortest-path problems
enables the application of deeply-understood algorithms with desir-
able properties. Next, we describe our graph construction in detail,
and highlight these advantages.

Graph Construction Given a sample workload Q =
{qx1 , qy2 , . . . }, we construct a directed, weighted graph G(V,E)
where vertices represent intermediate steps in schedule generation,
i.e., partial schedules and a set of remaining queries to be sched-
uled. Edges represent actions, such as renting a new VM or assign-
ing a query to a VM. The cost (weight) of each edge will be the
cost of performing a particular action (e.g., the cost of starting a
new VM). We refer to this as a scheduling graph.

Formally, each vertex v ∈ V has a schedule for some queries of
the workload, vs = {vmi

1, vm
k
2 , . . . }, which includes the VMs to

be rented for these queries. Each VM j of type i, vmi
j , is a queue

of queries that will be processed on that VM, vmi
j = [qxk , q

y
m, ...].

Hence, vs represents possible (potentially partial) schedules for the
workload Q. Each v also has a set of unassigned queries from Q,
vu, that must still be placed onto VMs.

The start vertex, A ∈ V , represents the initial state where all
queries are unassigned. Therefore, Au includes all the queries in
the given workload and As is empty. If a vertex g ∈ V has no
unassigned queries, we say that vertex g is a goal vertex and its
schedule gs is a complete schedule.

783

A

Au:{!"" ,	!## ,!$# }
VM1:	[]

B
Bu:{!## , !$# }
VM1:	[!""] C

Cu:{!"" ,!$# }
VM1:	[!##]D

Du:{!## ,!$# }
VM1:	[!""]
VM2:	[] E

Eu:{!$# }
VM1:	[!"" ,!##]

G Gu:{}
VM1:	[!"" ,	!## ,!$#]F

Fu:{!$# }
VM1:	[!"" ,!##]
VM2:	[]

… …

… …

Su:{!"" ,	!## ,!$# }

Figure 4: A subgraph of a scheduling graph for two query templates and
Q = {q11 , q22 , q23}. G is one goal vertex

An edge in E represents one of two possible actions:
1. A start-up edge (u, v, i) represents renting a new VM of type
i, vmi

j . It connects a vertex u to v where v has an additional
empty VM, i.e., vs = us ∪ vmi

j . It does not assign any
queries, so uu = vu. The weight of a start-up edge is the
cost to provision a new VM of type i: w(u, v) = f i

s.
2. A placement edge (u, v, qxy) represents placing an unas-

signed query qxy ∈ uu into the queue of a rented VM in
vs. It follows that vu = uu − qxy . Because WiSeDB is ag-
nostic to the specifics of any particular query, the placement
of an instance of query template Tx is equivalent to placing
any other instance of Tx. Therefore, we include only a single
placement edge per query template even if the template ap-
pears more than once in uu. The cost of an edge that places
query qxy into a VM of type i is the execution time of the
query multiplied by the cost per unit time of the VM, plus
any additionally incurred penalties:

w(u, v) =
[
l(qxy , i)× f i

r

]
+ [p(R, vs)− p(R, us)] (2)

Figure 4 shows part of a scheduling graph for a workload Q =
{q11 , q22 , q23}. A represents the start vertex and G represents a goal
vertex.3 At each edge, a query is assigned to an existing VM (AB,
AC ,BE, EG), or a new VM is created (BD, EF). The path
ABEG represents assigning the three queries, q11 , q22 , q23 , to be ex-
ecuted in that order on vm1.

The weight of a path from the start vertex A to a goal vertex g
will be equal to the cost of the complete schedule of the goal ver-
tex, cost(R, gs), for a given performance goal R. Since all com-
plete schedules are represented by some goal state, searching for a
minimum cost path from the start vertexA to any goal vertex g will
provide an optimal schedule for the workload Q.

Graph Reduction To improve the runtime of the search algo-
rithm, we reduce the graph in a number of ways. First, we include
a start-up edge only if the last VM provisioned has some queries
assigned to it, i.e., we allow renting a new VM only if the most re-
cently provisioned VM is not empty. This eliminates paths that pro-
vision VMs that are never used. Second, queries are assigned only
to the most recently provisioned VM, i.e., each vertex has outgoing
placement edges that assign a query only to the most recently added
VM. This reduces the number of redundant paths in the graph, since
each combination of VM types and query orderings is accessible by
only a single instead of many paths. This reduction can be applied
without loss of optimality, e.g. without eliminating any goal ver-
tices. Due to space constraints, the proof is included in [20].
3The dotted vertex represents the provisioning of the first VM which is always the
first decision in any schedule.

Search Heuristic WiSeDB searches for the minimum cost path
(i.e., optimal schedule) from the start vertex to a goal vertex using
the A* search algorithm [14] which offers a number of advantages.
First, it is complete, meaning that it always finds an optimal solu-
tion if one exists. Second, A* can take advantage of an admissible
heuristic, h(v), to find the optimal path faster. An admissible h(v)
provides an estimate of the cost from a vertex v to the optimal goal
vertex that is always less or equal to the actual cost, i.e., it must
never overestimate the cost. For any given admissible heuristic, A*
is optimally efficient, i.e., no other complete search algorithm could
search fewer vertices with the same heuristic.

The heuristic function is problem specific: in our system, the
cost of a path to v is the cost of the schedule in vs, cost(R, vs),
thus it is calculated differently for different performance goals R.
Hence satisfying the admissiblity requirement depends on the se-
mantics of the performance metric. Here, we distinguish mono-
tonically increasing performance metrics from those that are not.
A performance goal is monotonically increasing if and only if the
penalty incurred by a schedule us never decreases when adding
queries. Formally, at any assignment edge connecting u to v,
p(R, vs) ≥ p(R, us). Maximum query latency is monotoni-
cally increasing performance metric, since adding an additional
query on the queue of the last provisioned VM will never decrease
the penalty. Average latency is not monotonically increasing, as
adding a short query may decrease the average latency and thus
the penalty. For monotonically increasing performance goals, we
define a heuristic function h(v) that calculates the cheapest possi-
ble runtime for the queries that are still unassigned at v. In other
words, h(v) sums up the cost of the cheapest way to process each
remaining query by assuming VMs could be created for free4:

h(v) =
∑

qxy∈vu

min
i

[
f i
r × l(qxy , i)

]
(3)

LEMMA 4.1. For monotonically increasing performance goals,
the search heuristic defined in Equation 3 is admissible.

PROOF. Regardless of performance goals, query classes, or VM
performance, one always has to pay the cost of renting a VM for the
duration of the queries. More formally, every path from an arbitrary
vertex v to a goal vertex must include an assignment edge, with cost
given by Equation 2, for each query in vu and for some VM type i.
When the performance goal is monotonically increasing, the term
p(R, vs)− p(R, us) is never negative, so h(v) is never larger than
the actual cost to the goal vertex.

4.4 Feature Extraction
After we have generated the optimal schedules for each of the

sampled workloads, we generate the training set for our decision
tree classifier. The training set consists of (decision, features)
pairs indicating the decisions that was made by A* while calculat-
ing optimal schedules and performance/workload related features
at the time of the decision. Each decision represents an edge in
the search graph, and is therefore a decision to either (a) create a
new VM of type i, or (b) assign a query of template Tj to the most
recently created VM.

We map each decision (edge) (u, v) in the optimal path to a set
of features of its origin vertex u since there is a correspondence be-
tween a vertex and the optimal decision made at that vertex. Specif-
ically, for a given vertex u, the edge selected in the optimal path is
independent of u’s parents or children but depends on the unas-
signed queries uu and the schedule so far, us. Hence, we extract
4For performance goals that are not monotonically increasing, we do not use a heuris-
tic, which is equivalent to using the null heuristic, h(v) = 0.

784

features from each of the vertices in all the optimal paths we col-
lected for all of the N sample workloads.

Feature Selection One of the main challenges of our framework
is to identify a set of efficiently-extracted features that can lead to a
highly effective decision model. Here, the space of candidate fea-
tures is extremely large, as one could extract features relating to
queries (e.g., latency, tables, join, predicates, etc.), the underlying
VM resources (CPU, disk, etc.), or combinations thereof. Since
even enumerating all possible features would be computationally
difficult, finding the optimal set of features is not feasible. There-
fore, we focus on features that (1) are fast to extract, (2) capture
performance and cost factors that may affect the scheduling deci-
sions, and (3) have appeared in existing workload scheduling and
resource provisioning heuristics [7, 8, 18].

We have experimentally studied numerous features which helped
us form a set of requirements for the final feature set. First, our
selected features should be agnostic to the specifics of the query
templates and performance goals. This will allow our framework
to be customizable and enable it to learn good strategies indepen-
dently of the query templates and performance metric expressed by
the application. Second, effective features must be unrelated to the
size of the workload, since the large workload sizes encountered at
runtime will not be represented in the training sample workloads,
whose size is restricted in order to obtain the optimal schedules in
a timely manner (e.g. tracking the exact number of unassigned in-
stances of a particular template will not be useful, as this value will
be very small during training and very large at runtime). Third,
features must be independent from one another to avoid extracting
redundant information. For example, the wait time in a given VM
is related to the number of queries assigned to that VM, and we
observed that including only one of these metrics in our feature list
was sufficient to give us low-cost schedules.

Based on these observations, we extract the following features
for each vertex v along the optimal path:

1. wait-time: the amount of time that a query would have
to wait before being processed if it were placed on the most
recently created VM. Formally, wait-time is equal to the
execution time of all the queries already assigned to the last
VM. This feature can help our model decide which queries
should be placed on the last added VM based on their dead-
line. For example, if a machine’s wait time has exceeded
the deadline of a query template, it is likely that no more
queries of this template should be assigned to that VM. Al-
ternatively, if a machine’s wait time is very high, it is likely
that only short queries should be assigned.

2. proportion-of-X: the proportion of queries on the
most recently created VM that are of query template X.
In other words, proportion-of-X is the ratio be-
tween the number queries of template X assigned to
the VM and the total number of queries assigned to
the VM. For example, if the VM currently has four
queries assigned to it, with one of those queries be-
ing of template T1 and three being of template T2, then
we extract the features proportion-of-T1=0.25 and
proportion-of-T2=0.75. We only need to consider
the most recently created VM because the assignment edges
in the reduced graph only assign queries to the most recent
VM. Since each sample workload contains only a limited
number of queries, keeping track of the exact number of in-
stances of each query template would not scale to large work-
loads. Therefore, we track the proportion instead.

3. cost-of-X: the cost incurred (including any penalties) by
placing a query of template X on the most recently created

>=	2 <	2

(3)	have-T2

(1)	wait-time

(2)	new-VM

Y

(4)	cost-T2

N

(5)	assign-T1
<	100

(6)	assign-T2

>=	100

(7)	have-T1
Y

(8)	assign-T1

N

(9)	new-VM

u: {!"",	!#$}
m={VM1:	[!$$]}

u={!#$}
m={VM1:	[!$$, !""]}

u={!#$}
m={VM1:	[!$$, !""],	VM2:	[]}

m=	{VM1:	[!$$, !""],	VM2:	[!#$]

Initial u: {!"", !$$,	!#$}
m={VM1:	[]}

Step	1

Step	2	

Step	3

Step	4	

Figure 5: An example decision model

VM. cost-of-X is equal to the weight of the outgoing
assignment edge for template X. This allows our model to
check the cost of placing an instance of a certain query tem-
plate and, based on its value, decide whether to assign an-
other query to the last rented VM or create a new VM.

4. have-X: whether or not a query of template X is still unas-
signed. This feature helps our model understand how the
templates of the unassigned queries affects the decisions on
the optimal path. If there is no instance of some query tem-
plate Tj unassigned, then the model places one of the remain-
ing templates. If an instance of Tj exists, the model might
prefer to schedule that as opposed to any other template.

We note that while these features are not enough to uniquely
identify a vertex and thus learn the exact conditions that lead to the
optimal schedule, they can shed light on the workload/performance
conditions related to the optimal decision. Furthermore, although
we cannot claim that these features will always allow WiSeDB
to learn effective heuristics, our experimental results indicate that
these features allow WiSeDB to learn a reasonable cross-section
of the scheduling algorithm space, and that they are expressive
enough to generate scheduling strategies capable of efficiently han-
dling commonly used performance goals.

4.5 Workload Management Model
Given a training set, WiSeDB uses a decision tree learner to gen-

erate a workload management model. Figure 5 shows an example
model defined for two query templates T1 and T2. Each feature
node (orange node) of the decision tree represents either a binary
split on a numeric or boolean feature. The decision nodes (white
nodes) represent the suggested actions.

The right side of Figure 5 shows how the decision tree is used
to come up with the schedule for a workload Q = {q11 , q22 , q23}.
Each query in T1 has a latency of two minutes and the goal is to
execute it within three minutes. Instances of T2 have a latency of
one minute and the goal is for each instance to be completed within
one minute. For simplicity, we assume VMs of a single type and
that queries are executed in isolation.

Given this workload, the tree is parsed as follows. In the first
node (1), we check the wait time, which is zero since all queries
are unassigned, hence we proceed to node (3). The workload has
queries of template T2 and therefore we proceed to node (4). Here
we calculate the cost of placing an instance of T2. Let us assume the
cost is is less than 100 (no penalty is incurred), which leads to node
(6) which assigns an instance of T2 to the first VM. Since we have
more queries in the workload we next re-parse the decision tree. In
node (1) we check the wait time on the most recent VM which is
now 1 minute (the runtime of queries of T2) so we move to node
(3). Since we have one more query of T2 unassigned, we move to
(4). Now the cost of assigning a query of T2 is more than 100 since
the new query would need to wait for q21 to complete (and thus
incur a penalty). Hence, we move to node (7) and we check if there
are any unassigned instances of T1. Since there are (q11), we assign

785

q11 to the last VM. We re-parse the tree in the same way and by
following nodes (1)→(2), then again as (1)→(3)→(4)→(7)→(9),
so we assign the remaining query q23 onto a new VM.

Each model represents a workload scheduling strategy. Given a
batch of queries, the model in Figure 5 will place an instance of
T2, then an instance of T1, and then create a new VM. This process
will repeat itself until queries of T1 or T2 are depleted from the
incoming batch. When all instances from one of the templates are
assigned, single instances of the remaining template will be placed
on new VMs until none remain.

5. ADAPTIVE MODELING
It is often desirable to allow users to explore performance/cost

trade-offs within the space of possible performance goals [24]. This
can be achieved by generating different models for the same work-
load with stricter/looser performance goals and thus higher/lower
costs. However, WiSeDB tunes its decision model for a specific
goal. Changes in this goal will trigger WiSeDB to re-train the
model, since changes in performance goal lead to different optimal
schedules and hence different training sets. Therefore, generating a
set of alternative decision models for numerous performance con-
straints could impose significant training overhead.

To address this challenge, WiSeDB employs a technique that
adapts an existing model trained for a given workload and perfor-
mance goal to a new model for the same workload and stricter per-
formance goals. Our adaptive modeling requires little re-training
since it leverages the fact that two decision models will share sig-
nificant parts of their training sets if they were trained for the same
query templates T and similar performance goals. Our approach
relies on the adaptive A* algorithm [16], which reuses information
from one graph to create a new search heuristic, h′(v), to search
another graph with identical structure but increased edge weights.

Graph Reuse Let us assume a model α trained for templates
T and goal R and a desired new model α′ trained for the same
templates T but a different performance goal R′. Without loss of
generality, we only consider cases where the performance goal R′

is stricter than R, since one can start with a substantially loose per-
formance goal than the one requested and restrict it incrementally.

In order to generate a new model α′, WiSeDB re-uses the train-
ing data of the existing model α as follows. For each sample work-
load used for α, it modifies its corresponding scheduling graph G
by updating the weights to reflect the new performance goal R′.
Specifically, start-up edges maintain the same cost (the cost to start
a new VM), while the cost of placement edges increase due to a
stricter performance goals and hence higher penalty fees. Formally,
the new cost of an assignment edge (u, v, qxy) that places an unas-
signed query qxy ∈ uu into the queue of a rented VM in vs is:

w(u, v) +
[
p(R′, vs)− p(R, vs)

]
−
[
p(R′, us)− p(R, us)

]
To identify the minimum cost path on the updated graph, we use

a new heuristic. For metrics that are monotonically increasing, the
new heuristic h′ is expressed in terms of the original one h as:

h′(v) = max [h(v), cost(R, g)− cost(R, v)]

For performance goals that are not monotonically increasing, like
average latency, we simply drop the h(v) term, giving h′(v) =
cost(R, g)− cost(R, v).

We use h′ to find the optimal schedule for each of α’s sample
workloads (i.e., we search for the minimum cost paths on each sam-
ple’s scheduling graph G with the updated weights). These new
paths will serve as training samples for α′. Intuitively, h′(v) gives
the cost of getting from vertex v to the optimal goal vertex under
the old performance goal R. Since the new performance goal is

strictly tighter than R, h′(v) cannot overestimate the cost, making
it an admissible heuristic. Next, we prove this formally.

LEMMA 5.1. h′(v) is an admissible heuristic, i.e, it does not
overestimate the cost of the schedule vs at the vertex v.

PROOF. Based on our cost formula (Equation 1), for any sched-
ule s generated by the model α, the new performance goal R′ will
only affect the penalty (i.e., since stricter performance goals on the
same schedule can lead only to more violations). Therefore:

∀s(p(R′, s) ≥ p(R, s)) (4)

To map this into our scheduling graph, let us consider the set of ver-
tices along an optimal path to a goal vertex g for one sample work-
load discovered used for the training of α. For any particular vertex
v, we know from Equations 1 and 4 that cost(R′, v) ≥ cost(R, v).
In other words, the cost of that vertex’s partial schedule will cost
more if we have a stricter performance goal. Since this holds for
all vertices on the optimal path, it also holds for the optimal goal
vertex g under α. Hence, if the performance goal becomes stricter,
the cost of the final schedule can only increase.

Furthermore, for any vertex v along the optimal path to g, we
know that the minimum possible cost to go from v to g is exactly
cost(R, g)− cost(R, v). If the edge weight can only increase due
to a stricter performance goal, then the cost to go from v to g under
R must be less than or equal to the cost to go form v to g un-
der R′. Formally, since cost(R′, v) ≥ cost(R, v), it follows that
cost(R′, g)− cost(R′, v) ≥ cost(R, g)− cost(R, v).

While the optimal goal vertex for a set of queries may be differ-
ent under R than under R′, the cost of the optimal vertex g′ under
R′ is no less than the cost of the optimal vertex g under R, because
gs was optimal underR. Intuitively, if there was some vertex γ and
complete schedule γs of a workload underR′ with a lower cost than
optimal schedule gs, then γs would also have a lower cost than gs
under R, which contradicts that gs is optimal. Therefore the cost
from any vertex v under R′ to the unknown optimal goal vertex g′

is no less than the cost to get from v to g under R:

cost(R′, g′)− cost(R′, v) ≥ cost(R, g)− cost(R, v)

Hence cost(R, g)− cost(R, v) is admissible since it never overes-
timates the actual cost to get from a vertex v to the unknown goal
vertex g′ under the performance R′.

Since h′(v) is admissible, answers produced by using it are guar-
anteed by the A* algorithm to be correct [14]. The improved
heuristic is able to find the optimal solution much faster, as we
will demonstrate experimentally in Section 7. This approach saves
WiSeDB from searching the entire scheduling graph for each new
model, which is the step with the dominating overhead.

6. RUN TIME FUNCTIONALITY
Using our adaptive modeling approach, WiSeDB recommends

to the application a set of decision models (a.k.a. workload man-
agement strategies) for scheduling incoming queries. During run-
time, the user selects a model with a desirable performance vs. cost
trade-off. Given a batch query workload, WiSeDB uses the selected
model to generate the schedule for that workload. The same model
can also be used for online scheduling where queries arrive one at a
time. The system remains in this mode until the user either wishes
to switch strategy or has no more queries to process.

6.1 Strategy Recommendation
While generating alternative decision models, our goal is to iden-

tify a small set of k models that represent significantly different

786

0m

VM1

1m 2m 3m

t1

VM1

!""

t2

0.5m

t3

At	t1

At	t2

1.5m

t4

VM1

VM2

At	t3

4m

!"" !#"

!"" !$"

!#"

Figure 6: Online scheduling example

performance vs. cost trade-offs. To achieve this we first create
a sequence of performance goals in increasing order of strictness,
R = R1, R2, . . . , Rn, in which the application-defined goal R is
the median. For each goal Ri ∈ R, we train a decision model (by
shifting the original model as described in Section 5) and calcu-
late the average cost of each query template over a large random
sample workload Q. Then, we compute the pairwise differences
between the average cost of queries per template of each perfor-
mance goal Ri ∈ R using Earth Mover’s Distance [6]. We find
the smallest such distance between any pairs of performance goals,
EMD(Ri, Ri+1), and we remove Ri+1 from the sequence. We
repeat this process until only k performance goals remain.

A similar technique was also used in [24] where it was shown
that it produces a desirable distribution of performance goals (or
“service tiers”) that represent performance/cost trade-offs. How-
ever, unlike in [24], we do not need to explicitly execute any work-
loads in order to compute the expected cost of a particular strategy.
Instead, for each strategy, WiSeDB provides a cost estimation func-
tion that takes as a parameter the number of instances per query
template. Users can easily experiment with different parameters
for incoming workloads and can estimate the expected cost of exe-
cuting these workloads using each of the proposed strategies.

6.2 Batch Query Scheduling
Given one of the recommended strategies and a batch of queries

to be executed on the cloud, WiSeDB uses the strategy and pro-
duces a schedule for this workload. A detailed example of this
process was given in Section 4.5. The schedule indicates the num-
ber and types of VMs needed, the assignment of queries to VMs
and the query execution order in each VM. The application is then
responsible for executing these scheduling decisions on the IaaS
cloud infrastructure. In the event that the workload includes a query
that cannot be exactly matched to one of the templates given in
the workload specification, WiSeDB will treat the unknown query
as an instance of the query template with the closest predicted la-
tency. While queries of unseen templates are obviously not ideal,
this solution ensures that queries of unseen templates will at least
be placed appropriately based on their latency, since two queries
with identical latency are identical to WiSeDB.

6.3 Online Query Scheduling
WiSeDB can also handle non-preemptive online query schedul-

ing. We will describe how WiSeDB handles the general case of
online scheduling and then we will discuss two optimizations.

General Online Scheduling Let us assume a decision model α
trained for a performance goalR and templates T . We also assume
that a user submits queries, {qx1 , qy2 , . . . , } at times {t1, t2, . . . }
respectively. Online scheduling can be viewed as a series of suc-
cessive batch scheduling tasks where each batch includes a single
additional query. The first query is scheduled at time t1 as if it was
a batch. When query qxi arrives at ti, we create a new batch Bi

containing the queries that have not started executing by ti and use
the model to re-schedule them along with query qxi .

Scheduling Bi as a batch using the same decision model might
not offer low-cost solutions. This is because this batch includes
queries that have been sitting in the queue, and hence their expected
latency is now higher than what was assumed when training the
model. Formally, at any given time ti, any query qxy that has yet
to run will have a wait time of (ti − ty) and thus a final latency of
l′(qxy , k) = l(qxy , k) + (ti − ty), where k is the type of the VM on
which qxy was assigned and ty is the arrival time of qxy . To address
this, WiSeDB treats qxy as if it were of a “new” template which
has the same structure at Tx but its expected latency is l′(qxy , k).
Then, it trains a new decision model for the augmented template
set that includes this “new” template. This new model will provide
schedules that account for the elapsed wait time of qxy .

Figure 6 shows an example. Here, a model α is trained for one
template T1. Instances of T1 have a latency of 2m. We assume
queries arrive in the order: {q11 , q12 , q13}. WiSeDB first schedules
query q11 , which arrived at t1, as a batch B1 = {q11}. At t2, q12 ar-
rives and WiSeDB creates a batchB2 = {q12} for it and generates a
schedule using model α which assigns it to the first VM, right after
the first query. At time t3, when one more query q13 arrives, q12 has
not yet started executing, so we create a new batch B3 = {q12 , q13}.
However, even though q12 and q13 are of the same template, they
have different execution times: q13 has a latency of 1 minute, but q12
has a latency of 1 + (t3 − t2) minutes since it has been waiting for
(t3−t2) minutes. Using model α, which has been trained to handle
queries of with an execution time of one minute, might not produce
a desirable (low-cost) schedule for B3. So, we train a new model,
α′, whose workload specification includes an “extra” template for
instances of T1 with latency of 1+ (t3 − t2) minutes. α′ places q13
after q11 on the first VM and q12 onto a new VM.

6.3.1 Retraining Optimizations
A substantially fast query arrival rate could rapidly create “new

templates” as described above, causing a high frequency of retrain-
ing. Since training can be expensive, we offer two optimizations to
prevent or accelerate retraining.

Model Reuse Upon arrival of a new query, WiSeDB creates a
new decision model which take into account the wait times of the
queries submitted so far but not already running. WiSeDB strives
to reuse models, aiming to reduce the frequency of retraining. In
the above example, let us assume a new query q14 arrives at t4, at
which point we need to generate a schedule for B4 = {q13 , q14} (q11
and q12 are running). If (t3 − t2) = (t4 − t3), then the previously
generated model α′ can be reused to schedule B4, since the “new”
template required to schedule q13 is the same as the “new” template
previously used to schedule q12 .

Next, let us consider the general case. We define ω(i) to be the
difference in time between the arrival of oldest query that has not
started processing at time ti and the arrival of the newest query
at time ti. Clearly, the absolute time of a workload’s submission
is irrelevant to the model: only the difference between the current
time and the time a workload was submitted matters. Formally, if
ω(i) = ω(j), then Bi and Bj can be scheduled using the same
model. In practice, Bi and Bj can be scheduled using the same
model if the difference between ω(i) and ω(j) is less than the error
in the query latency prediction model. By keeping a mapping of
ω(x) to decision models5, WiSeDB can significantly reduce the
amount of training that occurs during online scheduling.

Linear Shifting For some performance metrics, scheduling
queries that have been waiting in the queue for a certain amount
of time is the same as scheduling with a stricter deadline. This can
5Experimentally, we found that this mapping can be stored using a few MB since each
decision tree is relatively small.

787

significantly reduce the training overhead as the new models could
reuse the scheduling graph of the previous ones as described in Sec-
tion 5. Consider a performance goal that puts a deadline on each
query to achieve a latency of three minutes. If a query is scheduled
one minute after submission, that query can be scheduled as if it
were scheduled immediately with a deadline of two minutes.

This optimization can be applied only to linearly shiftable per-
formance metrics. In general, we say that a metric R is linearly
shiftable if the penalty incurred underR for a schedule which starts
queries after a delay of n seconds is the same as the penalty in-
curred under R′ by a schedule that starts queries immediately, and
where R′ is a tightening of R by some known function of n. For
the metric of maximum query latency in a workload, this function
of n is the identity: the penalty incurred under some goal R after a
delay of n seconds is equal to the penalty incurred underR′, where
R′ is R tightened by n seconds.

7. EXPERIMENTAL RESULTS
Next we present our experimental results, which focus on evalu-

ating WiSeDB’s effectiveness to learn low-cost workload schedules
for a variety of performance goals, as well as its runtime efficiency.

7.1 Experimental Setup
We implemented WiSeDB using Java 8 and installed it on an In-

tel Xeon E5-2430 server with 32GB of RAM. The service generates
scheduling strategies for a database application deployed on 6 In-
tel Xeon E5-2430 servers that can host up to 24 VMs with 8GB of
RAM each. This private cloud emulates Amazon AWS [1] by using
query latencies and VM start-up times measured on t2.medium
EC2 instances. By default, our experiments assume a single type
of VM unless otherwise specified.

Our database application stores a 10GB configuration of the
TPC-H [4] benchmark on Postgres [3]. Query workloads consist
of TPC-H templates 1 - 10. These templates have a response time
ranging from 2 to 6 minutes, with an average latency of 4 minutes.
We set the query processing cost to be the price of that instance
(fr = $0.052 per hour), and we measured its start-up cost experi-
mentally based on how long it took for the VM to become available
via connections after it entered a “running” state (fs = $0.0008).

We trained our models on N = 3000 sample workloads with
a size of m = 18 queries per workload, with queries executed in
isolation. Higher values for N and m added significant training
overhead without improving the effectiveness of our models while
lower ones resulted in poor decision models. We generated our
models using the J48 [5] decision tree algorithm and used them to
generate schedules for incoming workloads. Our experiments vary
the size of these workloads as well as the distribution of queries
across the templates. Each experiment reports the average cost over
5 workloads of a given size and query distribution.

Performance Metrics. Our experiments are based on four per-
formance goals: (1) Max requires the maximum query latency in
the workload to be less than x minutes. By default, we set x = 15,
which is 2.5 times the latency of the longest query in our work-
load. There is a charge of 1 cent per second for any query whose
latency exceeds x minutes. (2) PerQuery requires that each query
of a given template not exceed its expected latency by a factor of
x. By default, we set x = 3 so that the average of these deadlines
is approximately 15 minutes, which is 2.5 times the latency of the
longest query. There is a charge of 1 cent per second in which any
query exceeds x times its predicted latency. (3) Average requires
that the average latency of a workload is x minutes. We set x = 10
so that this deadline is 2.5 times the average query template latency.
There is a charge of a number cents equal to the difference between

the average latency of the scheduled queries and x. (4) Percent re-
quires that y% of the queries in the workload finish within x min-
utes. By default, we set y = 90 and x = 10. If y% of queries
finish within x minutes, there is no penalty. Otherwise, a penalty
of one cent per second is charged for time exceeding x minutes.

7.2 Effectiveness Results
To demonstrate the effectiveness and versatility of our approach,

we compare schedules generated by WiSeDB with optimal sched-
ules and known heuristics that have been shown to offer low-cost
solutions for specific performance metrics.

Optimality Since our scheduling problem is computationally ex-
pensive, calculating an optimal schedule for large workloads is not
feasible. However, for smaller workload sizes, we can exhaustively
search for an optimal solution. Figure 7a shows the final cost for
scheduling workloads of 30 queries uniformly distributed across
10 query templates. We compare schedules generated by WiSeDB
with the optimal schedule (Optimal) for all our performance met-
rics. Our schedules are within 8% of the optimal for all metrics.
These results were similar when we varied the size of the work-
loads between 20 and 30 queries, and when we relaxed or tight-
ened the SLAs [20]. We omit the graph due to space constraints.
We conclude that WiSeDB is able to learn effective strategies for
scheduling incoming TPC-H workloads for various performance
metrics independently of the size of the runtime workloads and the
strictness of the performance goal.

Multiple VM Types We also trained decision models assum-
ing the availability of multiple VM types. Figure 7b shows the
cost of WiSeDB schedules against the optimal schedule with one
(WiSeDB 1T) and two (WiSeDB 2T)VM types. The first type
is the t2.medium EC2 type and the second is the t2.small
type. With the TPC-H benchmark, queries that require less RAM
tend to have similar performance on t2.medium and t2.small
EC2 instances. Since t2.small instances are cheaper, it makes
sense to place low-RAM queries on t2.small instances. The re-
sults reveal that even when the learning task is more complex (us-
ing more VM types adds more edges to the scheduling graph and
thus more complexity to the problem), WiSeDB is able to learn
these correlations and generate schedules that perform within 6%
of the optimal on average. Additionally, the performance always
improved when the application was given access to a larger number
of VM types. Hence, WiSeDB is able to leverage the availability
of various VM types, learn their impact on specific performance
goals, and adapt its decision model to produce low-cost schedules.

Metric-specific Heuristics We now evaluate WiSeDB’s effec-
tiveness in scheduling large workloads of 5000 queries. Here, an
exhaustive search for the optimal solution is infeasible, so we com-
pare WiSeDB’s schedules with schedules produced by heuristics
designed to offer good solutions for each performance goals. First-
Fit Decreasing (FFD) sorts the queries in descending order and then
places each query into the first VM with sufficient space. If no
such VMs can be found, a new one is created. FFD is often used
as a heuristic for classic bin-packing problems [22], indicating that
it should perform well for the Max metric. First-Fit Increasing
(FFI) does the same but first sorts the queries in ascending or-
der, which works well for the PerQuery and the Average query
latency metrics [27]. Pack9 first sorts the queries in ascending
order, then repeatedly places the 9 shortest remaining queries fol-
lowed by the largest remaining query. Pack9 should perform well
with the Percent performance goal because it will put as many
of the most expensive queries into the 10% margin allowed.

Figure 7c shows the performance of WiSeDB compared to these
approaches. The results show that there is no single simple heuris-

788

 0

 10

 20

 30

 40

 50

 60

PerQuery Average Max Percent

C
o

s
t

(c
e

n
ts

)

Performance Goal

WiSeDB
Optimal

(a) Optimality for various performance metrics

 30

 35

 40

 45

 50

 55

PerQuery Average Max Percent

C
o

s
t

(c
e

n
ts

)

Performance Goal

WiSeDB 1T
Optimal 1T

WiSeDB 2T
Optimal 2T

(b) Optimality for multiple VM types

 120

 130

 140

 150

 160

 170

 180

 190

 200

PerQuery Average Max Percent

C
o

s
t

(d
o

lla
rs

)

Performance Goal

FFD
FFI

Pack9
WiSeDB

(c) Comparison with metric-specific heuristics

Figure 7: Effectiveness results for various performance metrics

 0

 20

 40

 60

 80

 100

 120

PerQuery Average Max Percent

T
im

e
 (

s
)

Performance Goal

5 Templates
10 Templates
15 Templates
20 Templates

(a) Training time vs. # of query templates

 0

 20

 40

 60

 80

 100

 120

 140

PerQuery Average Max Percent

T
im

e
 (

s
)

Performance Goal

1 Type
5 Types

10 Types

(b) Training Time vs. # of VM types

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

T
im

e
 (

s
)

SLA Shift (% of maximum strictness)

PerQuery
Average

Max
Percent

(c) Overhead of adaptive modeling

Figure 8: Training overhead of WiSeDB

tic that is sufficient to handle diverse performance goals. Our
service offers schedules that consistently perform better than all
other heuristics. This indicates that WiSeDB outperforms stan-
dard metric-specific heuristics, i.e., its training features are effec-
tive in characterizing optimal decisions and learning special cases
of query assignments and orderings with the VMs that fit better with
each performance goal.

7.3 Efficiency Results
Training Overhead WiSeDB trains its decision models offline.

The training time depends on the number of templates in the work-
load specification as well as the number of different VM types
available through the IaaS provider. Figure 8a shows how long
it takes to train models for our four performance metrics, a single
VM type, and varying numbers of query templates. For this exper-
iment, we used additional query templates from the TPC-H bench-
mark. Here, the higher the number of query templates, the longer
the training process since additional query templates represent ad-
ditional edges that must be explored in the scheduling graph. In the
most extreme cases, training can take around two minutes. In more
tame cases, training takes less than 20 seconds. In Figure 8b, we fix
the number of query templates at 10 and vary the number of VM
types available. Again, at the extreme ends we see training times
of up to two minutes, with tamer multi-VM type cases taking only
30 seconds. Hence, WiSeDB can learn metric-specific strategies in
timely manner while each model needs to be trained once offline
and can be applied to any number of incoming workloads.

WiSeDB can adaptively train decision models by tightening the
performance goal of its original model (Section 5). Figure 8c shows
the retraining time when tightening the performance constraint by a
factor of p. In general, we tighten a performance goal by a percent-
age p using the formula t+(g− t)∗ (1−p), where t is the strictest
possible value for the performance metric, and g is the original con-
straint (described in Section 7.1). For example, the Max goal has
an original deadline of 15 minutes, and, since the longest template
in our workload specification is 6 minutes, the strictest possible

deadline is 6 minutes. Tightening the Max goal by 33% means
decreasing the deadline from 15 to 12 minutes.

Figure 8c shows that all four metrics can be tightened by up to
40% in less than a second. Tightening a constraint by a larger per-
centage takes more time since the number of training samples that
have to be retrained increases. This is most immediately clear for
the Max metric. The jump at 37% shift represents a large por-
tion of the training set that needs to be recalculated. With tight-
ening by only 20%, the optimal schedules used for training do not
need to be modified, but a tightening by 40% causes more viola-
tions and hence new optimal schedules need to be re-calculated.
PerQuery and Percent have curves that behave similarly. For
the Averagemetric it holds that that any training sample that must
be retrained when tightening by y% will also need to be retrained
when tightening by x%, where x ≥ y. Hence each point on the
Average curve can be thought of as being the previous point plus
a small δ, where δ is the number of additional samples to retrain
and the curve approximates a Gaussian cumulative density func-
tion. In most cases, WiSeDB generates a set of alternative models
that explore the performance vs. cost trade-off though stricter or
more relaxed performance goals in under a minute.

7.4 Batch & Online Query Scheduling
Batch Scheduling WiSeDB’s models are used during runtime

to generated schedules for incoming query batches. Section 7.2
discussed the effectiveness of these schedules. Figure 9a shows
the time required to generate schedules for workloads of various
sizes. WiSeDB scales linearly with the number of queries and it
can schedule up to 30,000 queries in under 1.5 seconds. WiSeDB’s
decision trees were usually shallow (height h < 30), so each de-
cision to assign a query or to provision a new VM can be made
quickly. The runtime complexity of generating schedules using a
decision model is bounded by O(h × n), where h is the height of
the decision tree and n is the number of queries in our batch. We
note that the scalability of WiSeDB does not depend on the num-
ber of VMs (the number of VM to be rented is an output of our

789

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10K 20K 30K

T
im

e
 (

s
)

Workload Size

WiSeDB

(a) Scheduling overhead vs. batch size

0%

2%

4%

6%

8%

10%

0 0.25 0.5 0.75 1

%
 c

o
s
t

a
b

o
v
e

 o
p

ti
m

a
l

Arrival Delay (s)

PerQuery
Average

Max
Percent

(b) Effectiveness of online scheduling

0

5

10

15

20

25

30

35

40

45

PerQuery Max Average Percent

T
im

e
 s

p
e

n
t

s
c
h

e
d

u
lin

g
 (

s
)

Performance Goal

Shift + Reuse
Shift

Reuse
None

(c) Average overhead for online scheduling

Figure 9: Batch and online query scheduling experiments

models). We thus conclude that WiSeDB’s decision models scale
linearly and can be used to schedule efficiently very large batch
workloads.

Online Scheduling WiSeDB also supports online scheduling by
training a new model with additional query templates when a new
query arrives. Section 6.3 describes our approach as well as two
optimizations for reducing the frequency of model re-training. The
model reuse optimization (Reuse) can be applied to all four per-
formance metrics. The linear shifting optimization (Shift) can
only be used for the Max and PerQuery metrics.

Figure 9b shows the performance (cost) of WiSeDB compared
to an optimal scheduler for various query arrival rates and perfor-
mance metrics. For each metrics, we generate a set of 30 queries
and run them in a random order, varying the time between queries.
More time between queries means that the scheduler can use fewer
parallel VMs, thus reducing cost. The results demonstrate that
WiSeDB compares favorably with the optimal. In all cases, it gen-
erates schedules with costs that are within 10% of the optimal.

Figure 9c shows the impact of our optimizations on average
scheduling overhead, i.e., the average time a query waits before
being assigned to a VM. Here, Shift refers to using only the
shifting optimization, Reuse refers to using only the model reuse
optimization, and Shift+Reuse refers to using both optimiza-
tions. We compare these with None, which retrains a new model
at each query arrival. We use a query arrival rate that is normally
distributed with a mean of 1

4
seconds and standard deviation of 1

8
.

If a query arrives before the last query was scheduled, it waits.
Figure 9c shows that the average query wait time can be reduced

to below a second for the PerQuery and Max performance goals
using both the linear shifting and the model reuse optimization.
The Average and Percent performance goals have substan-
tially longer wait times, at around 5 seconds, but a 5 second delay
represents only a 2% slowdown for the average query. Hence, our
optimizations are very effective in reducing the query wait time, al-
lowing WiSeDB to efficiently reuse its generated models and offer
online scheduling solutions in a timely manner.

7.5 Sensitivity Analysis
Skewed Workloads We also experimented with scheduling

workloads heavily skewed towards some query templates. Fig-
ure 10a shows the average percent increase over the optimal cost
for a workload with varying χ2 statistics [13], which indicates the
skewness factor. The χ2 statistic measures the likelihood that a
distribution of queries was not drawn randomly: 0 represents a uni-
form distribution of queries w.r.t. templates, and 1 represents the
most skewed distribution possible, i.e., a batch which includes only
a single template (while the decision model is trained for workloads
of 10 templates). Even with highly skewed workloads consisting of
almost exclusively a single query template (χ2 ≈ 1), the average
percent-increase over the optimal changes by less than 2%.

To better understand these results, we used WiSeDB to schedule
1000 workloads (instead of our default 5 workloads) under differ-
ent skewness factors for the Max metric. Figure 10b shows both
the average and the range of the cost of these schedules. While
the mean cost remains relatively constant across different χ2 val-
ues (as in Figure 10a), the variance of the cost increases as skew
increases. This is because a very skewed workload could contain a
disproportionate number of cheap or expensive queries, whereas a
more uniform workload will contain approximately equal numbers
of each. WiSeDB’s decision models have variance approximately
equal to that of an optimal scheduler. Hence, WiSeDB’s models per-
form effectively even in the presence of skewed query workloads.

Latency Prediction Accuracy WiSeDB relies on a query la-
tency prediction model to estimate penalty costs. While existing
query performance prediction models [10, 11] can be used, these
often exhibit prediction errors, leading to incorrect estimations of
the penalty costs. Naturally, we expect that the effectiveness of
schedules produced by WiSeDB to decrease as the cost model er-
ror increases, but we discovered that WiSeDB is able to tolerate
a certain level of prediction errors. In fact, the more distinguish-
able templates are with respect to their latency, the higher pre-
diction error WiSeDB can tolerate. This is because WiSeDB ex-
pects queries with similar latencies to be assigned to the same tem-
plate. Therefore, the presence of latency prediction errors causes
some queries to have ambiguous template membership, hindering
WiSeDB’s ability to learn effective models.

Figure 10c demonstrates this conclusion. Here, each σ2 value
refers to the cost model error (standard deviation) as a percentage
of the actual query latency. WiSeDB handles cost model errors less
than 30% very well. This is because, given our template definitions,
the percentage of queries who are assigned to the wrong template
at 30% error, e.g. a query with actual latency similar to template Ti

is mistakenly assigned to template Tj , is 14%. At 40% error, this
percentage rises to 67%, leading to poor scheduling decisions.

8. RELATED WORK
Many research efforts address various aspects of workload man-

agement in cloud databases. iCBS [8] offers a generalized profit-
aware heuristic for ordering queries, but the algorithm considers
assignments to a single VM, and performance goals are limited to
piecewise-linear functions (which cannot express percentile perfor-
mance metrics). In [9], they propose a data structure to support
profit-oriented workload allocation decisions, including schedul-
ing and provisioning. However, their work supports only step-
wise SLAs, which cannot express average or percentile goals.
In [12, 17, 18, 19], they consider the problem of mapping each ten-
ant (customer) to a single physical machine to meet performance
goals, but ordering and scheduling queries is left to the application.
SmartSLA [29] offers a dynamic resource allocation approach for
multi-tenant databases. WiSeDB supports a wider range of metrics

790

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

%
 c

o
s
t

a
b

o
v
e

 o
p

ti
m

a
l

Skew (Χ
2
)

PerQuery
Average

Max
Percent

(a) Sensitivity to skewed runtime workloads

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.2 0.4 0.6 0.8 1

C
o

s
t

(c
e

n
ts

)

Skew (Χ
2
)

WiSeDB (Max)
Optimal (Max)

(b) Workload skewness vs. cost range

 0%

10%

20%

30%

40%

50%

60%

10% 20% 30% 40%

%
 c

o
s
t

o
v
e

r
o

p
ti
m

a
l

Latency Prediction Error

PerQuery
Average

Max
Percent

(c) Optimality for varying cost errors

Figure 10: Sensitivity analysis results

than the above systems and its decision models offers holistic so-
lutions that indicate the VMs to provision, query assignments, and
query execution order. WiSeDB also learns decision models for
various SLA types, as opposed to utilizing a hand-written, human-
tailored heuristic. This brings an advantage of increased flexibility
(changing performance goals without reimplementation) at the cost
of some training overhead.

In [26, 28], they propose admission control solutions that re-
ject queries that might cause an SLA violation at runtime, whereas
our system seeks to minimize the cost of scheduling every query
and to inform the user of performance/cost trade-offs. Even if a
query cannot be processed profitably, WiSeDB will still attempt
to place it in a cost-minimal way. [24] proposes multiple SLAs
with different prices for various query workloads, but leaves query
scheduling up to the application and supports only per-query la-
tency SLAs, whereas we allow applications to define their own
query and workload-level performance metrics.

In [23], they propose monitoring mechanism for resource-level
SLAs, and in [15], they propose an approach for translating query-
level performance goals to resource requirements, but both as-
sume only a single performance metric and leave query schedul-
ing up to the application. WiSeDB takes a query-centric as op-
posed to a resource-centric approach, assuming that a latency pre-
diction model can correctly account of resource oscillations and
query affinity. In [7], they use a hypergraph partitioning approach
to schedule tasks expressed as directed acyclic graphs on cloud in-
frastructures. While WiSeDB contains no notion of query depen-
dency, [7] does not consider performance goals of any type, nor
provisioning additional resources.

9. CONCLUSIONS
This work introduces WiSeDB, a workload management advisor

for cloud databases. To the best of our knowledge, WiSeDB is the
first system to address workload management in an holistic fash-
ion, handling the tasks of resource provisioning, query placement,
and query scheduling for a broad range of performance metrics.
WiSeDB leverages machine learning techniques to learn decision
models for guiding the low-cost execution of incoming queries un-
der application-defined performance goals. We have shown that
these decision models can efficiently and effectively schedule a
wide range of workloads. These models can be quickly adapted
to enable exploration of the performance vs. cost trade-offs inher-
ent in cloud computing, as well as provide online query scheduling
with little overhead. Our experiments demonstrate that WiSeDB
can gracefully adapt to errors in cost prediction models, take advan-
tage of multiple VM types, process skewed workloads, and outper-
form several well-known heuristics with small training overhead.

We have a full research agenda moving forward. We are cur-
rently investigating alternative features for characterizing the opti-
mal assignment decision as well as alternative learning techniques

(e.g., neural networks, reinforcement learning) for the workload
management problem. We are also looking into multi-metric per-
formance goals that combine workload and query level constraints,
as well as dynamic constraints that change based on some external
variable, e.g. time of day.

10. ACKNOWLEDGMENTS
This research was funded by NSF IIS 1253196.

11. REFERENCES
[1] Amazon Web Services, http://aws.amazon.com/.
[2] Microsoft Azure Services, http://www.microsoft.com/azure/.
[3] PostgreSQL database, http://www.postgresql.org/.
[4] The TPC-H benchmark, http://www.tpc.org/tpch/.
[5] Weka 3, http://cs.waikato.ac.nz/ml/weka/.
[6] K. D. Ba et al. Sublinear time algorithms for earth mover’s distance. TCS ’11.
[7] U. V. Catalyurek et al. Integrated data placement and task assignment for

scientific workflows in clouds. In DIDC ’11.
[8] Y. Chi et al. iCBS: Incremental cost-based scheduling under piecewise linear

SLAs. In VLDB ’11.
[9] Y. Chi et al. SLA-tree: A framework for efficiently supporting SLA-based

decisions in cloud computing. In EDBT ’11.
[10] J. Duggan et al. Contender: A resource modeling approach for concurrent query

performance prediction. In EDBT ’14.
[11] J. Duggan et al. Performance prediction for concurrent database workloads. In

SIGMOD ’11.
[12] A. J. Elmore et al. Characterizing tenant behavior for placement and crisis

mitigation in multitenant DBMSs. In SIGMOD ’13.
[13] P. E. Greenwood et al. A guide to chi-squared testing, volume 280. 1996.
[14] P. Hart et al. A formal basis for the heuristic determination of minimum cost

paths. SSC ’68.
[15] V. Jalaparti et al. Bridging the tenant-provider gap in cloud services. In SoCC

’12.
[16] S. Koenig et al. A new principle for incremental heuristic search: Theoretical

results. In ICAPS ’06.
[17] W. Lang et al. Towards multi-tenant performance SLOs. In ICDE ’14.
[18] Z. Liu et al. PMAX: Tenant placement in multitenant databases for profit

maximization. In EDBT ’13.
[19] H. Mahmoud et al. CloudOptimizer: Multi-tenancy for I/O-bound OLAP

workloads. In EDBT ’13.
[20] R. Marcus et al. WiSeDB: A learning-based workload management advisor for

cloud databases. Technical Report, arXiv.org.
[21] R. Marcus et al. Workload management for cloud databases via machine

learning. In CloudDM ’16.
[22] S. Martello et al. Knapsack Problems: Algorithms and Computer

Implementations. 1990.
[23] V. Narasayya et al. SQLVM: Performance isolation in multi-tenant relational

database-as-a-service. In CIDR ’13.
[24] J. Ortiz et al. Changing the face of database cloud services with personalized

service level agreements. In CIDR ’15.
[25] M. Poess et al. New TPC benchmarks for decision support and web commerce.

SIGMOD ’00.
[26] S. Tozer et al. Q-Cop: Avoiding bad query mixes to minimize client timeouts

under heavy loads. In ICDE ’10.
[27] V. Vazirani. Approximation algorithms. 2013.
[28] P. Xiong et al. ActiveSLA: A profit-oriented admission control framework for

database-as-a-service providers. In SoCC ’11.
[29] P. Xiong et al. Intelligent management of virtualized resources for database

systems in cloud environment. In ICDE ’11.

791

