
Databases will Visualize Queries too∗

Wolfgang Gatterbauer
University of Washington, Seattle†

ABSTRACT
Visual Query Languages study ways to help users compose
queries with visual metaphors. Information Visualization
studies automatic visualization techniques to help users un-
derstand and analyze data. Query Management focuses on
ways to help users manage and re-use existing queries. We
observe that there is a related research question across those
three topics which has not received much attention, namely
that of Query Visualization: How to visually represent a
query to help users quickly understand its intent? Here we
argue that the involved challenges are still markedly different
from those of the other three, that a solution can consider-
ably improve the usability of DBMSs, and that the topic is
thus worthy of attention. We envision, that in a few years,
there will be free, modular, and lightweight tools available
that allow users to visualize and interpret their queries.

1. QUERY INTERPRETATION IS HARD
Query Interpretation is the problem of reading and un-

derstanding an existing query. It is often as hard as Query
Composition, i.e. creating a new query [22]. Just like under-
standing program code, query interpretation requires guess-
ing the line of thought of the query composer, making con-
nections between attributes of tables, while keeping in mind
the schema and aliases of tables. Hence, query interpreta-
tion requires significant comprehension of SQL and is even
used for testing purposes [24].

Recently, several projects have focused on building Query
Management Systems that help users issue queries by lever-
aging an existing log of queries. Known systems to date
include CQMS [17, 18], SQL QuerIE [3, 1], DBease [20],
and SQLshare [10]. All of those are motivated by making
SQL composition easier and thus databases more usable [16],
especially for non-sophisticated database users.

An essential ingredient for such systems is a query browse

†New contact info: gatt@cmu.edu
∗Title strongly inspired by Ioannidis and Simitsis [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

Query	
  Composi-on	
  

Query	
  Interpreta-on	
   SELECT	
  A	
  
FROM	
  R	
  
WHERE	
  B	
  not	
  in	
  

	
  (SELECT	
  D	
  
	
  FROM	
  S)	
  	
  

Figure 1: Interpreting an existing query is often as
hard as composing a new query (red = hard).

facility, i.e. an interaction mode that allows the user to
quickly understand and choose between several queries pro-
posed by the system. Here, the optimal computer human
interaction is similar to that for text snippets for search
engines [23]: the computer searches through many and pro-
poses a few (high recall), the human browses through a few
and chooses one (high precision). As the queries are shown,
their representation should be: (i) representative, so users
can grasp the essence of the result from its snippet, (ii)
distinguishable, so users can differentiate between queries
with little effort, (iii) small, enough so users can quickly
browse several query representations, while being (iv) self-
contained, so users can understand it without other help
(four goals taken from [12]). In other words, the query rep-
resentation should capture the query intent1 very concisely.

Query representation. There are 4 principal options
to help users interpret an existing query: (1) Visual ma-
nipulation of text : Clients to major DBMSs, such as SQL
server management studio and pgAdmin for PostgreSQL,
have been long highlighting different syntactic constructs or
aligning query blocks and clauses. It is helpful, yet not suf-
ficient to help users understand a query’s intention fast.

(2) Translation into natural language: Ioannidis et al. [13,
14, 19] propose to explain queries in natural language. They
convincingly argue that automatically creating effective free-
flowing text from queries is difficult and the overall task
quite different from previous work on creating natural lan-
guage interfaces to DBMSs.

(3) Illustration with example instances: Olston et al. [21]
study the problem of generating example intermediate data
for data flow programs that quickly illustrates the semantics
of the operators to users. This approach could be applied
to illustrating SQL queries with example input and output.

(4) Visualizing the query : Query visualization creates a
diagrammatic representation of an existing SQL query. It
is thus the reverse of visual query languages which allow

1The term query intent captures the high-level goal of the query,
independent of the actual choice of syntax.

1498



Text	
   Visual	
  (graphics)	
  

Sequen&al	
  

Sequen&al	
  

Sequen&al	
  

Parallel	
  Interpret	
  
(Read)	
  

Compose	
  
(Write)	
  

User	
  Ac&on	
  

Communica&on	
  Medium	
  

Figure 2: Composing a query with a visual query
language is as sequential as composing it with SQL.
Interpreting a visual (whether of information or a
query) is the only modus in which a user can act on
information in parallel and thus fast (green = easy).

users to compose a query. To the best of our knowledge,
there is currently no system available that allows users to
quickly visualize an existing query. The two projects that
come closest in spirit are the Query Graph Model (QGM)
developed for Starbust [8] and Visual SQL [15] developed
for teaching students the SQL syntax. The former was not
targeted towards helping users understand the query intent,
but rather actual query plans, and its full specification was
never released.2 The latter currently does not support the
reverse transformation from SQL-code into Visual SQL.

The vision. In contrast to the heading of this section,
the main thesis of this paper is that option (4) above is the
one best suited for query interpretation, and that query in-
terpretation is actually not hard if queries are accompanied
by an appropriate visual representation of the query intent.
The vision is that in a few years from now, major DBMSs
will support query visualization and that this functionality
will considerably facilitate query re-use and refinement.

2. QUERY VISUALIZATION: NOT YET AN-
OTHER VISUAL QUERY LANGUAGE

Humans are good at understanding complex structures
from visuals, and thus the idea that a visual query language
(VQL) would facilitate composition of queries is quite old
(the 1997 survey of Catarci et al. [2] cites over 150 papers).
So why have visual query languages not taken off at large?3

We believe that the primary reason4 and stumbling block for
VQLs lies in Fig. 2: Humans are better in interpreting than
composing visuals because visual composition is an inher-
ently sequential process.5 Hence, even in theory, there is no

2Personal communication with the authors.
3The Picasso project by Haritsa [9] focuses on visualizing and
comparing the speed of execution plan and is not directly related.
4A second reason is that graphs are more ambiguous than text,
i.e. it is more difficult to be precise with a visual representation
than with text. This is another justification for the idea in Fig. 8,
namely that composition is better done in text (more precise), but
interpretation with a visual (focus on intuition over precision).
5The argument in short: all human input methods (composition)
are sequential, whether resulting in text or a graphics. Visual per-
ception is the only human sense (interpretation) that can work in
parallel, and it works dominantly by spatial arrangement of in-
formation. While reading text is also a visual activity, the spatial
arrangement of the letters requires a sequential scan of the text
(note that reading spatially arranged text can be partly parallel;
compare option “visual manipulation of text” as query represen-

Data	
   Queries	
  

_______________	
  

Informa*on	
  
Visualiza*on	
  

Visual	
  Query	
  
Languages	
  

Query	
  
Visualiza*on	
  

Target	
  to	
  Visualize	
  

Interpret	
  
(Read)	
  

Compose	
  
(Write)	
  

User	
  Ac*on	
  

Figure 3: Visual Query Languages allow a user to
compose queries. In contrast, Query Visualization
helps the user understand an existing query just as
Information Visualization helps understand data.

dramatic speed-up by using a visual language. In practice,
the user interaction is quite cumbersome: users must be able
to interactively construct and manipulate expressions in the
visual language and connect graphical elements together to
establish graphical relationships. In turn, the program must
provide appropriate interpretations of mouse and keyboard
events, and it is difficult to build formal grammars and com-
pilers for two-dimensional drawing areas. In sum, solutions
to these graphical requirements are intricate and inherently
difficult to implement and use [25].

Hence, we do not suggest to create yet another VQL! We
consider the reverse goal of VQLs, namely that of helping
users interpret an existing query (Fig. 3). In programming
languages, this distinction is known as the difference be-
tween visual programming for developing a program and
program visualization for analyzing an existing program or
software. Yet similar to translating queries into text, this
explicit reverse functionality has not drawn much attention
for visual query languages. Also, query visualization is re-
lated to Information Visualization which focuses on helping
users understand and analyze data [4]. Both focus on help-
ing users understand complex relationships through visual-
izations; the difference is in their respective targets (Fig. 3).

2.1 Principles of Query Visualization
Query Visualization has the potential to help users quickly

understand and distinguish between a set of given queries.
Not only does the interaction fit the optimal value of visual-
ization (Fig. 2), it also enhances the user experience without
replacing the current model of interaction for composing a
query in SQL, i.e. by text. Now, the challenge of query vi-
sualization is to find the appropriate visual metaphors which
(i) allow users to quickly understand a query’s intent, (ii)
can be easily learned by users, and (iii) are extensible to
more expressive queries. In addition, any query visualization
needs an automatic translation from SQL to the visualiza-
tion, including a visually-appealing automatic arrangement
of nodes of the visualization.

We believe that users can learn to interpret visualized
queries by seeing examples without much active focus. This
is similar to what is known in language learning theory as the
difference between the active and the generally larger passive
vocabulary: Actively reproducing newly learned content is
generally more difficult than passively recognizing such con-

tation from before). Hence, visual interpretation of graphics is
the fastest communication method to or from humans, and it
only works that well in one way.

1499



SELECT A
FROM R
WHERE B not in

(SELECT D
FROM S)

SELECT A
FROM R
WHERE not exists

(SELECT *
FROM S
WHERE B=D)

Figure 4: Two queries which are equivalent except
if the column S.b contains NULL values. Ignoring
this one case, they are equivalent. Hence, the query
intent can be shown by the same representation.

tent. Further, we propose that the development of the visual
alphabet should follow three practical guiding principles:

(1) Existing metaphors as starting point : Most database
users have seen UML diagrams before. A simple conjunctive
query should not be visualized much differently from what
is currently used for showing database schemas.

(2) Minimal visual complexity : The alphabet should con-
tain only a minimum number of visual constructs, those
which are possibly overloaded and ambiguous like in nat-
ural language. This simplicity may come at the expense of
not distinguishing special cases, such as dealing with NULL
values during joins (see Fig. 4 for an example6). Tools that
help users cope with the inherent syntactic difficulty fall un-
der the category of SQL debugging (e.g., see [7]).

(3) Progressive complexity : As in entropy encoding (e.g.
with Fano codes), visual constructs for more common logical
operators should be designed with lower visual complexity
than less common ones. For example, almost all database
queries use the logical AND in their first-order logic trans-
lation (e.g. joins, EXISTS, IN), but only few use OR (e.g.
OR, UNION). If infrequent query constructs become increas-
ingly complex to read, this progression does not decrease
the overall usability, but rather assures that more often used
constructs are simple to read, in turn.

3. OUR SUGGESTION: QUERYVIZ
When developing QueryViz [5], our own SQL visualiza-

tion, we not only followed the guidelines listed before, we
have also been influenced and guided by several existing
ideas: We started from UML and its familiar notations for
data modeling, then enhance the visual representation in a
progressive way. Conjunctive queries (single query blocks)
have the lowest visual complexity and are represented as
shown in figure Fig. 5. In contrast to SQL, which is mod-
eled after the relational tuple calculus, this representation
is related to the relational domain calculus. The advantage
is that no aliases are needed and each attribute of a table is

6This tolerated ambiguity is related to the ambiguity of language.
Being exhaustive in enumerating all special cases makes explana-
tions cumbersome and unpleasant. Compare to the idea of default
logic in AI: “Bird Tweety flies” (except if Tweety is a penguin);
“Those two queries are equal” (except if an input table is empty
or contains a NULL value Fig. 4). Ignoring those special cases
simplifies communicating a query’s principal intent.

SELECT F.person
FROM Frequents F, Likes L, Serves S
WHERE F.person = L.person
AND F.bar = S.bar
AND L.drink = S.drink

Figure 5: Visualizing a conjunctive query closely fol-
lows an all-familiar UML notation. Q: Find persons
who frequent some bar that serves some drink they
like. There is nothing really new here.

immediately recognized.
For increasing complexity of nested queries, we are in-

spired by a body of work on diagrammatic reasoning sys-
tems [11]. Diagrammatic notations are itself is inspired by
the influential existential graph notation by Charles Sanders
Peirce and exploit topological properties, such as enclosure,
to represent logical expressions and set-theoretic relation-
ships, mainly for monadic relations. QueryViz now incor-
porates visual metaphors from diagrammatic reasoning into
relational UML graphs and adapts them where necessary or
appropriate. Figure 6 shows a more complex SQL query.
The natural language translations of this and the conjunc-
tive query are equally complex and have the same length.
Similarly, Fig. 6 shows an only slightly increased visual com-
plexity (13% more visible elements) over Fig. 5. In contrast,
SQL has become quite more complex (167% more words).

Since QueryViz is modeled on the first order logic query
intent of SQL, it follows a set semantics and not the com-
mon bag semantics as in SQL. As consequence, it ignores
the DISTINCT operator completely. We further simplified
the visual representation by adding a universal quantifier, a
construct that does not exist as such in SQL. As example,
the representation from Fig. 6 can be further simplified to
the one in Fig. 7. This representation now has only 7% more
visible elements than the conjunctive query from Fig. 5.

Another concept borrowed from diagrammatic reasoning
is a default reading order [6]. Note from Fig. 7 how the
arrows between the relations correspond to the natural lan-
guage translation. Without such, there would be no natu-
ral order placed on the existential and universal quantifiers.
There are more ideas to QueryViz (such as how to handle
logical OR, and how to overload the semantics of the arrow,
etc.) which will be treated in a more detailed paper.

3.1 From theory to practice
All figures in this paper are drawn with an implementation

of QueryViz [5]. We encourage the reader to try it. An inter-
active online version is available at http://queryViz.com. It
currently supports only a limited SQL grammar (see the web
page for details). Still, this online interface and its usage are
proof that query visualization can have a very lightweight
interaction. The user does not have to specify anything up-

1500

http://queryViz.com


SELECT F.person
FROM Frequents F
WHERE not exists

(SELECT *
FROM Serves S
WHERE S.bar = F.bar
AND not exists

(SELECT L.drink
FROM Likes L
WHERE L.person = F.person
AND S.drink = L.drink))

Figure 6: Visualizing a nested query still fol-
lows familiar UML notations, but now adds visual
metaphors for @ (dashed box) and reading order (ar-
rows). Q: Find persons who frequent some bar that
serves only drinks they like ≡ ... some bar that serves
no drink that is not liked by them.

Figure 7: The visualization from Fig. 6 can be fur-
ther simplified by using another visual metaphor for
∀ (double-lined box), a logical and intuitive operator
that does not exist in SQL. Q: Find persons who fre-
quent some bar that serves only drinks they like ≡ ...
some bar so that all drinks served are liked by them.

front and can just copy the SQL query and the schema into
the two available forms (note that the schema could be au-
tomatically inferred from the query). We are soon extending
it with the visual metaphor for groupings and will then eval-
uate it with massive users studies on Amazon Turk.

Going forward to more expressive query visualizations, we
have not yet solved all problems (such as for nested disjunc-
tions of depth bigger than 2, or outer joins). All that, and
even alternative outline algorithms (e.g. using a metric that
captures visual homogeneity) will be future work. At the
end of our project, we intend to make our code available
as open-source, so people can build and extend it with im-
proved solutions.

4. THE VISION IN A NUTSHELL

Query	
  Composi-on	
  

Query	
  Interpreta-on	
  

SELECT	
  A	
  
FROM	
  R	
  
WHERE	
  B	
  not	
  in	
  

	
  (SELECT	
  D	
  
	
  FROM	
  S)	
  	
  

S 
D 

R 
A 
B 

sel 
A 

Query	
  Vi-­‐	
  
sualiza-on	
  

Query	
  Re-­‐	
  
finement	
  

Figure 8: The vision: In the near future, DBMSs
will visualize queries too, and not just data (as in
information and scientific data visualization). This
feature will allow iterative query refinement and will
enhance the usability of databases.

The database community discovers that query visualiza-
tion is a well-defined and worthy research area for increasing
the usability of databases, quite similar to explorative infor-
mation visualization. Different approaches for query visual-
ization are developed and demo implementations are avail-
able. Focus is again on speed and effectiveness, that of trans-
mitting a query’s intent fast and correctly to a user. Those
goals can easily be tested with user studies for new visual al-
phabets. Large sets of benchmark queries are available, and
query visualization has become an integral part of major
DBMSs. Hence, databases visualize queries too (Fig. 8).

Acknowledgement. I thank Jonathan Danaparamita for
working with me on QueryViz, and YongChul Kwon for
valuable discussions over the course of this research. The
work is supported in part by NSF grant IIS-0915054.

5. REFERENCES
[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal,

D. On, N. Polyzotis, and J. S. V. Varman. SQL QueRIE
recommendations. PVLDB, 3(1):1597–1600, 2010.

[2] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query
systems for databases: A survey. J. Vis. Lang. Comput., 8(2):215–260, 1997.

[3] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommendations
for interactive database exploration. In SSDBM, pp. 3–18, 2009.

[4] C. Chen. Information visualization: beyond the horizon. Springer, New York,
2nd ed edition, 2006.

[5] J. Danaparamita and W. Gatterbauer. Queryviz: Helping users
understand SQL queries and their patterns. In EDBT, pp. 558–561, 2011.

[6] A. Fish and J. Howse. Towards a default reading for constraint diagrams.
In Diagrams, pp. 51–65, 2004.

[7] T. Grust, F. Kliebhan, J. Rittinger, and T. Schreiber. True
language-level SQL debugging. In EDBT, pp. 562–565, 2011.

[8] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible
query processing in Starburst. In SIGMOD, pp. 377–388, 1989.

[9] J. R. Haritsa. The Picasso database query optimizer visualizer. PVLDB,
3(2):1517–1520, 2010.

[10] B. Howe and G. Cole. SQL is dead; long live SQL: Lightweight query
services for ad hoc research data. In 4th Microsoft eScience Workshop, 2010.

[11] J. Howse. Diagrammatic reasoning systems. In ICCS, pp. 1–20, 2008.
[12] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet generation in XML

search. In SIGMOD, pp. 315–326, 2008.
[13] Y. E. Ioannidis. From databases to natural language: The unusual

direction. In NLDB, pp. 12–16, 2008.
[14] Y. E. Ioannidis and A. Simitsis. DBMSs should talk back too. In CIDR,

2009.
[15] H. Jaakkola and B. Thalheim. Visual SQL – high-quality ER-based query

treatment. In ER (Workshops), pp. 129–139, 2003.
[16] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,

and C. Yu. Making database systems usable. In SIGMOD, pp. 13–24, 2007.
[17] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and

D. Suciu. A case for a collaborative query management system. In CIDR,
2009.

[18] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: A
context-aware SQL-autocomplete system. PVLDB, 4(1):22–33, 2010.

[19] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Explaining structured
queries in natural language. In ICDE, pp. 333–344, 2010.

[20] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng. DBease: Making databases
user-friendly and easily accessible. In CIDR, pp. 45–56, 2011.

[21] C. Olston, S. Chopra, and U. Srivastava. Generating example data for
dataflow programs. In SIGMOD, pp. 245–256, 2009.

[22] P. Reisner. Human factors studies of database query languages: A survey
and assessment. ACM Comput. Surv., 13(1):13–31, 1981.

[23] A. Tombros and M. Sanderson. Advantages of query biased summaries in
information retrieval. In SIGIR, pp. 2–10, 1998.

[24] J. D. Ullman. Improving the efficiency of database-system teaching. In
SIGMOD, pp. 1–3, 2003.

[25] K. Zhang. Visual languages and applications. Springer, New York, 2007.

1501


	1 Query Interpretation is hard
	2 Query Visualization: Not yet another visual query language
	2.1 Principles of Query Visualization

	3 Our Suggestion: QueryViz
	3.1 From theory to practice

	4 The Vision in a nutshell
	5 References

