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ABSTRACT
Continuous queries over data streams typically produce large
volumes of result streams. To scale up the system, one
should carefully study the problem of delivering the result
streams to the end users, which, unfortunately, is often over-
looked in existing systems. In this paper, we leverage Dis-
tributed Publish/Subscribe System (DPSS), a scalable data
dissemination infrastructure, for efficient stream query re-
sult delivery. To take advantage of DPSS’s multicast-like
data dissemination architecture, one has to exploit the com-
mon contents among different result streams and maximize
the sharing of their delivery. Hence, we propose to merge
the user queries into a few representative queries whose re-
sults subsume those of the original ones, and disseminate the
result streams of these representative queries through the
DPSS. To realize this approach, we study the stream query
containment theories and propose efficient query grouping
and merging algorithms. The proposed approach is non-
intrusive and hence can be easily implemented as a mid-
dleware to be incorporated into existing stream processing
systems. A prototype is developed on top of an open-source
stream processing system and results of an extensive per-
formance study on real datasets verify the efficacy of the
proposed techniques.

1. INTRODUCTION
The results of stream queries are typically in the form

of continuous streams, whose delivery from the processing
server to the end users is bandwidth consuming and hence
should be carefully handled. Unfortunately, this problem
is often overlooked in existing systems, which often assume
the result streams are directly sent to the users from the
server. Such an architecture cannot scale to a large popu-
lation of users. Scaling up stream query result delivery is
an important stepping stone towards massive stream query
processing.
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1.1 Motivating Scenario
The work in this paper is initiated to resolve a perfor-

mance issue that we faced for deploying a stream process-
ing system shared by environmental scientists from mul-
tiple institutions in the Swiss-Experiment project (http:
//www.swiss-experiment.ch). In the project, environmen-
tal scientists are deploying a number of sensor stations to
study the environmental changes and to provide alerts if
needed (e.g., avalanche alert, etc). An on-going effort of the
project is to share the sensor data to other scientists and
to the public over the world via Microsoft’s SensorMap [25].
This potentially requires the processing of a huge number
of real-time stream queries. Delivering their results to the
massive end users is one of the challenging problems of this
platform.

To solve this issue, we propose to leverage the existing
scalable data dissemination infrastructure, namely distributed
pub/sub system (DPSS) [8], for query result delivery. A
DPSS is typically backed by a number of brokers. Users
express their data interest as user subscriptions which are
propagated to the brokers. The data sources need not keep
track of all the end users, and instead they only push the
messages to their neighboring brokers, which cooperate with
other brokers to disseminate the messages to the end users.
Messages are routed within the network based on their con-
tent instead of explicitly specified destinations. With such a
loosely coupled architecture, DPSS is shown to be scalable
to a large number of users.

One can adapt a DPSS to disseminate the query result
streams as follows. In a stream processing system, one query
result stream is generated for each query. Hence, a unique
identifier can be assigned to each query result stream. Then
a user’s subscription (i.e. the user’s data interest) can be
composed by specifying this unique identifier to retrieve the
query result stream. However, such a straight-froward ap-
proach is inefficient and involves large communication over-
head. This is because the result streams could have overlap
contents. Disseminating these streams individually incurs
many duplicate data transfers.

To illustrate the problem, Table 1 lists a few queries spec-
ified using CQL [31]. These queries are extracted and sim-
plified from the typical snow drift monitoring tasks of the
scientists. Consider the join queries, Q1 and Q2, presented
in Table 1. We can see the overlaps in the result streams gen-
erated forQ1 andQ2. Consider an overlay network structure
depicted in Figure 1(a). Suppose nodes n3 and n4 post two
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Figure 1: Result stream delivery

Table 1: Example Queries

Q1: SELECT S2.*
FROM Station1 [Range 30 Minutes] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

Q2: SELECT S1.snowHeight, S1.timetamp,
S2.snowHeight, S2.timestamp

FROM Station1 [Range 1 Hour] S1,
Station2 [Now] S2

WHERE S1.snowHeight > S2.snowHeight
Q3: SELECT S2.*, S1.snowHeight, S1.timestamp

FROM Station1 [Range 1 Hour] S1,
Station2 [Now] S2

WHERE S1.snowHeight > S2.snowHeight

queries Q1 and Q2 respectively and node n1 is responsible
for processing them. Using traditional techniques, their re-
sult streams, s1 and s2, are transmitted separately as shown
in Figure 1(a). Hence the overlapping contents of s1 and s2
are transmitted twice over the link between n1 and n2 (n2

is involved here because it is the neighboring broker of n1

in the DPSS).
Note that existing multi-query optimization techniques,

such as [24], cannot solve this problem. For instance, one
shared join operator can be created for the above two queries.
However this join operator still generates two separate result
streams for the aforementioned queries respectively.

To resolve this issue, we have to send one result stream s3
to n2, which is the superset of both s1 and s2, and “split”
s3 into two separate streams s1 and s2 at node n2. This
approach is illustrated in Figure 1(b). One can implement
this approach by re-engineering a “specialized” stream pro-
cessing engine to generate one result stream for multiple
queries. However, such an intrusive approach is undesirable
as it requires complex “low-level” software development and
tightly coupled interactions between the processing engine
and the overlay network.

This paper proposes a query reformulation approach, which
is relatively simple and easy to be implemented as a mid-
dleware between an existing stream processing engine and
a DPSS. In our approach, for a group of queries that have
overlapping results, the system composes a new query Q,
called representative query, that contains all the queries in
its group, i.e. the result of Q is a superset of the result of
its group members. For example, instead of submitting Q1

and Q2 individually, we create a new query Q3 listed in Ta-
ble 1, which contains Q1 and Q2, and we submit Q3 to the
processing engine at n1. The result stream s3 will be “split”
at n2 by using the filtering mechanism within the DPSS.

1.2 Contributions
In summary, we have made the following contributions:
• We study the problem of stream query containment

with a focus on window predicates, which do not exist in
traditional SQL queries. The containment theorems are
not limited to this work and could benefit future studies on
stream query processing, such as multi-query optimization.
• Based on the containment theorems, we propose the

query merging algorithm, which is meant to be simple in
order to be executed efficiently at run time.
• We consider the situation that queries are inserted and

terminated frequently and propose an efficient query group-
ing optimization and re-optimization mechanism. Queries
are organized into a multi-tree data structure based on their
containment relationship. This enables the adaptation al-
gorithm to efficiently determine whether it is necessary to
re-optimize the current grouping.
• A prototype system is implemented on top of an open

source stream processing system. Extensive experiments
running on real datasets show that our approach is both
efficient and effective.

1.3 Layout
The rest of this paper is organized as follows. Related

work is first reviewed in Section 2. Then Section 3 presents
the assumptions and the system model for this paper. Sec-
tion 4 addresses the problem of how to generate the repre-
sentative queries and the user subscriptions. Query grouping
and its maintenance issues are addressed in Section 5. Sec-
tion 6 provides an extensive performance evaluation study to
verify our approach. Finally, Section 7 concludes the paper
with a discussion on the future work.

2. RELATED WORK
This paper is mainly related to the research activities in

two areas: data stream processing systems and distributed
publish/subscribe systems.

2.1 Data Stream Processing Systems
Stream processing has attracted much attention from the

database community due to its vast applicability. There
exist many efforts to enhance the scalability of these sys-
tems. One direction is to exploit the sharing computation
among the queries. For instance, Madden et al. [24] and
Chen et al. [14] proposed to share the join and filter oper-
ations among multiple queries and Arasu et al. [4], Zhang
et al. [33] and Krishnamurthy et al. [22] studied the com-
putation sharing of sliding-window aggregates. While these
methods are effective in making the computation resources
scalable, they do not consider the data communication as-
pect. This paper complements the literatures by exploiting
the sharing among queries to minimize the cost of result
delivery. Our approach can co-exist with existing computa-
tion sharing algorithms within a stream system due to its
non-intrusiveness.

There are also literatures about employing a number of
distributed servers to share processing load. The authors
of [3] studied the problem of how to place the query opera-



tors to the widely distributed servers. In [32], the operator
placement problem in a locally distributed system is investi-
gated. Our approach is also complementary to these type of
efforts. It can be used to disseminate the result streams of
the queries/operators allocated to a processing server to its
downstream destinations in a distributed stream processing
system.

We have recently proposed a query allocation scheme in a
companion paper [34]. In [34], we employed a distributed
publish/subscribe system to disseminate the stream data
from the data sources to the processing servers and focused
on optimizing the allocation of the queries to the servers
in order to achieve both load balancing and communica-
tion minimization. On the other hand, this paper solves
the other aspect of the problem by leveraging the pub/sub
system to deliver the query results and focuses on merging
queries within each individual node.

Another direction in scalable stream processing is to shed
the excessive workload when the data arrived much faster
than what the system can handle. Reference [30] presented
an input tuple shedding strategy to maximize the query re-
sult quality. Authors in [6] proposed another tuple shedding
strategy to minimize the loss of aggregate accuracy that
would be incurred by the shedding. While one can adopt
a similar strategy when the server runs out of bandwidth to
deliver query results, it sacrifices the accuracy of the results.
Our approach tries to adopt a better result delivery architec-
ture, namely DPSS, to avoid (or minimize) the occurrence
of such cases.

2.2 Distributed Pub/Sub Systems
Many literatures have been focused on the scalability of

distributed pub/sub systems. For instance, efficient match-
ing of events with subscriptions within a broker is studied
in [2]. Authors in [8, 10, 9] presented the architecture design
of a DPSS with a number of widely distributed brokers. Our
approach leverages these existing efforts to enhance the scal-
ability of a stream processing system. Detecting subscrip-
tion containments [27, 19] and merging subscriptions [16]
has also been explored in traditional DPSSs. However, the
subscriptions considered are only simple selection predicates
and hence cannot be applied to our problem.

There are also very recent efforts to extend pub/sub sys-
tems to support more complex subscription types, such as
range-MIN (or MAX or DISTINCT) in [12], select-natural-
join in [13], and XML stream filtering [17]. However, these
literatures focus on specific query types; it lacks a system-
atic study of general SQL-like queries. Furthermore, oper-
ators such as window joins and window aggregates, which
are heavily used in many stream applications, have not been
discussed in previous work.

3. PRELIMINARIES
The whole system consists of a stream processing server,

a DPSS infrastructure, and a number of end users. It is as-
sumed that the end users have limited computing power and
can only perform simple operations such as projection and
selection. Complex operations like window joins and window
aggregates can only be processed at the processing server.
Furthermore, to loosen the coupling between the server and
the DPSS, we assume the server has little knowledge of the
internal overlay structure of the DPSS.

3.1 DPSS
A subscription in the DPSS is a triple 〈S,P,F〉. S is a

set of stream names, which indicates the streams that are of
interest to the subscriber. Only data from these streams
would match the subscription. In our system, a unique
stream name is assigned to each result stream of a query
running in the processing engine. Hence the users can re-
trieve their query results by subscribing to the correspond-
ing result streams. P specifies a few selected attributes from
the streams in S that are of interest to the subscriber. Fi-
nally, F is a set of filters over the streams within S. Data
from the streams that satisfy these filters will be sent to the
subscriber.

In the DPSS, subscriptions are forwarded from the sub-
scribers to the data source. On the way of the forwarding, an
intermediate node aggregates all the subscriptions that are
received before forwarding to its upper stream neighbor(s).
Furthermore, each node will build their own routing table
based on the subscriptions it has. Upon receiving a message,
the routing table is used to determine which downstream
neighbor(s) the message should be sent to. If the message
matches any subscription forwarded from a neighbor, it will
be delivered to that neighbor. It can be seen that, even if
there are more than one subscribers behind that neighbor
interested in the same message, it will be sent only once.

3.2 Continuous Stream Queries
An SPJ query Q is assumed to contain the following com-

ponents:
(1) Strm(Q): the set of streams involved by the query Q,
{s1, s2, · · · }, which typically appear in the FROM clause of
the SQL string.

(2) Window(Q): a set of window predicates {w1, w2, · · · },
one for each stream in Strm(Q). For brevity, this paper
only discusses time-based sliding window, while other types
of window can be treated similarly. The value of a time
stamp is assumed to be a non-negative integer. A window
predicate is defined as follows:

Definition 3.1. A window predicate wi takes an input
stream si and three non-negative integer parameters:
• begini ∈ [0,+∞): the starting time of the query
• intervali ∈ [0,+∞): the interval of the window
• slidei ∈ [1,+∞): the sliding step of the window
It defines a temporal relation R(τ) = {t|t ∈ si & 0 ≤
τ − t.timestamp < intervali} at each time instance of τ =
begini + n · slidei, where n is a non-negative integer.
For example, in Figure 2, the window predicate on s1 defines
a temporal relation on each time instance τ ∈ 0, 10, 20 · · ·.
For instance, at τ = 20 and τ = 30, it defines two tempo-
ral relation containing tuples within the rectangle drawn in
Figure 2(a) and Figure 2(b) respectively.

(3) Pred(Q): the predicate specified by Q, which appear
in the WHERE clause of the SQL string. Pred(Q) is as-
sumed to be in the disjunctive normal form: σ1 ∨ · · · ∨ σi ∨
· · · ∨ σn, where σi is the conjunction of one or more atomic
predicate. An atomic predicate could be in one of the forms
attr.op.value and attr1.op.attr2 and involves the attributes
from one (a selection predicate) or two streams (a join pred-
icate).

(4) Attr(Q): the set of attributes selected by Q.
An aggregate queryQ takes one input stream, which could

be the output of a SPJ query. In summary, Q contains the
following components:



(1) Strm(Q): the input stream of Q;
(2) Window(Q): the window predicate defined on the in-

put stream;
(3) Groupby(Q): the set of grouping attributes;
(4) Agg(Q): the set of aggregate functions;
(5) Having(Q): the filters applied over the groups;
(6) Attr(Q): the set of selected attributes.

3.3 Approach Overview
The server partitions the queries into a number of groups

such that queries inside each group have overlapping results.
For each group, one representative query Q that contains all
the member queries Qi is generated.Only the representative
queries are inserted into the underlying query engine and
result streams of these queries are pushed into the DPSS.

To allow the users to retrieve the query result streams of
the individual queries, subscriptions are also generated and
sent to the users. The users register these subscriptions to
the DPSS, which efficiently delivers the result streams back
to the users.

In the example presented in Section 1, the following two
subscriptions are sent to n2 by n3 and n4 respectively:
• p1: S = {s3},P = {S2.∗},F = {−30(minute) ≤

S1.timestamp− S2.timestamp ≤ 0}.
• p2: S = {s3},P = {S1.snowHeight, S1.timetamp,

S2.snowHeight, S2.timestamp},F = {}
Tuples that pass p1 are sent to n3 and those that pass p2

are sent to n4.

4. QUERY MERGING
This section first studies the stream query containment

problem and then presents the query merging algorithms
based on query containment theorems developed. Finally it
presents the algorithm to generate the subscriptions for the
users to retrieve the result from the DPSS.

4.1 Stream Query Containment
Query containment and equivalence is a fundamental prob-

lem which has been extensively studied in the literature. For
example, [11] and [29] studied the conjunctive select-project-
join queries and union thereof; [15] and [26] discussed the
aggregate queries; [21] studied queries with arithmetic com-
parison predicates; [7] investigated problems of recursive
queries. We, however, need to extend these techniques to
the continuous stream query context. On the other hand,
some related literatures studied the use of views to answer
user queries [18]. This direction addresses how to rewrite a
query such that the given views of the underlying relations
can be utilized to answer the original query. Our work is
the other way round. We have to compose a “view” of the
streams that can be utilized to answer multiple queries using
the simple filtering mechanism in a DPSS.

First of all, we have to extend the query containment and
equivalence definition of traditional queries to continuous
stream queries. Traditionally, query containment and equiv-
alence under set semantics is defined as follows.

Definition 4.1. A query Q1 is contained by another query
Q2, denoted by Q1 v Q2, if for all database instances D,
Q1(D) is a subset of Q2(D), i.e. Q1(D) ⊆ Q2(D), where
Qi(D) is the result of evaluating Qi over D. Q1 and Q2 are
equivalent if Q1 v Q2 and Q2 v Q1.

However, continuous stream queries generate result con-
tinuously and hence this traditional definition is no longer
applicable. To address this problem, we extend the defini-
tion as follows. First it is assumed that there is an appli-
cation discrete time domain T where the timestamps of the
input stream data are drawn from. We denote the temporal
result data set of a query Q evaluated on a stream instance
S at the time instance τ ∈ T be Q(S, τ), which is the result
of evaluating Q over all the data from S with timestamps
smaller or equal to τ . Furthermore, let S be the whole set
of streams. We have the following definition.

Definition 4.2. A continuous stream query Q1 is con-
tained by another continuous stream query Q2, denoted by
Q1 v Q2, if for all stream instances S, Q1(S, τ) ⊆ Q2(S, τ)
at any application time instance τ . Q1 and Q2 are equivalent
if Q1 v Q2 and Q2 v Q1.

Now the problem is how to determine the containment
relationship between two continuous stream queries. The
major difference between continuous stream queries and tra-
ditional database queries is the introduction of window se-
mantics. Note that if all window predicates in a continuous
stream query have an infinite time interval, then the two
containment problems are equivalent. This paper assumes
that there is an approach to determine containment relation-
ship between two traditional database queries, and develops
the theorems to deal with the window predicates.

Furthermore, it is assumed that all the window predicates
in a single query have a common sliding step and a common
starting time. This covers most real application scenarios
and simplifies the query merging algorithms. (Note that the
sliding steps and starting times of different queries could be
different.)

First, we have the following lemma stating the conditions
that two tuples could be joined in a window-based join op-
erator.

Lemma 4.1. For a query with only a window-based join
operation of two streams s1 and s2 with window sizes of
interval1 and interval2 respectively and a common sliding
step “slide” and a common query starting time “begin”, two
tuples t1 from s1 and t2 from s2 can generate a join result
tuple t if and only if all the following conditions are true:

(1) they satisfy the join predicates;

(2) −1 · interval1 ≤ t1.ts− t2.ts ≤ interval2.

(3) t1.ts > n2 · slide − interval1, where n2 = d(t2.ts −
begin)/slidee

(4) t2.ts > n1 · slide − interval2, where n1 = d(t1.ts −
begin)/slidee. �

Within Lemma 4.1, condition (2) basically says that the
two joined tuples should appear in the corresponding win-
dow intervals. For instance, in Figure 2(a), tuple “14” from
s2 is the earliest tuple from s2 that can be joined with tuple
“20” from s1. However, this condition alone cannot guaran-
tee the correctness. For example, in Figure 2(b), tuple “23”
from s1 cannot join with tuple “22” from s2 based on the
window predicate definition. Condition (3) and (4) are used
to deal with such cases. They ensure that there exists a
pair of temporal relations at a particular time instance that
contain the two tuples respectively.
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Figure 2: Window join query Q between two streams s1
and s2, with begin(Q) = 0, slide(Q) = 10, interval1(Q) = 5
and interval2(Q) = 7. Only the timestamps of the arrived
tuples are drawn.

Theorem 4.1. A select-project-join (SPJ) continuous query
Q1 is contained by another SPJ continuous query Q2 iff they
satisfy either conditions (1) ∧ (2) ∧ (3) ∧ (4) or conditions
(1) ∧ (2) ∧ (3) ∧ (5) ∧ (6):

(1) Q∞1 v Q∞2 , where Q∞i is a query resulted from setting
all the window sizes of Qi as ∞;

(2) begin(Q1) ≥ begin(Q2);

(3) ∀i, intevali(Q1) ≤ intervali(Q2), where intervali(Qj)
is the window size of the ith stream involved in Qj;

(4) ∀i, 1 ≤ slide(Q2) ≤ max (1, intervali(Q2)− intervali(Q1)),
where slide(Q2) is the sliding step of Q2.

(5) ∃m ∈ [1,∞), s.t. begin(Q2)+m·slide(Q2)−begin(Q1) ≤
mini(intervali(Q2)− intervali(Q1)).

(6) slide(Q1) = k · slide(Q2), where k is a positive integer.
�

The essential idea of Theorem 4.1 is, if Q1 is contained
by Q2, then for every time instance τ1 at which a temporal
relation Ri

1(τ1) is defined for each stream by the window
predicates in Q1, there exists at least another time instance
τ2 at which a temporal relation Ri

2(τ2) is defined for each
stream by the window predicates in Q2 and Ri

2(τ2) contains
Ri

1(τ1).
Conditions (1)-(3) are easy to understand. First, Q2 has

to contain Q1 without considering the window predicates.
Second Q2 has to begin earlier than Q1 and Q2’s window
intervals should be as large as the corresponding ones in Q1.

Condition (4) says that the sliding step of Q2 is smaller
than the difference of the two window intervals defined on
the same stream. Figure 3 illustrates the reasoning behind
this. It can be seen that the temporal relation defined by Q2

at τ = 20, R2(18) (shown in Figure 3(b)) does not contain
the one defined by Q1, R1(20) (shown in Figure 3(a). But,
as long as the sliding step of Q2 is smaller than the differ-
ence between the two window intervals, there would exist a

1410 11 13 15 17 19 2016
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1410 11 13 15 17 19 2016 22

(a) Q1 at τ=20

(b) Q2 at τ=18

(c)  Q2 at τ=22

Figure 3: Temporal relations defined by two queries on
the same stream. The parameters are interval(Q1) =
4, interval(Q2) = 8, and slide(Q2) = 4.
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(b) Q2, τ=20

Figure 4: Temporal relations defined by two queries on
the same stream. The parameters are interval(Q1) =
5, interval(Q2) = 8, slide(Q1) = 6, and slide(Q2) = 3.

time instance τ such that R1(18) ⊂ R2(τ). For example,
Figure 3(c) shows that actually R2(22) contains R1(20).

Conditions (5) and (6) state the case that the windows
of the two queries slide synchronously. Figure 4 shows an
example. Here, R2(20) contains R1(19) as shown in Fig-
ure 4(a) and (b). Furthermore, as their sliding steps fulfill
Condition (6), this containment pattern will repeat in the
future time instances. Figure 4(c) and (d) illustrate the sit-
uation at another time instance.

Theorem 4.2. A continuous stream query Q1 with a generic
aggregate function is contained by another continuous stream
aggregate query Q2 iff all the following conditions are true:

(1) Q∞1 v Q∞2 , where Q∞i is a query resulted from setting
all the window sizes of Qi as ∞;

(2) begin(Q1) ≥ begin(Q2);

(3) ∀i, intervali(Q1) = intervali(Q2), where intervali(Qj)
is the window size of the ith stream in query Qj;

(4) slide(Q1) = k · slide(Q2) where k is a positive integer.

This reasoning of Theorem 4.2 is similar to Theorem 4.1.
Hence, for brevity, we shall not reiterate here.



4.2 Query Merging Algorithms
Recall that, in our approach, the server maintains a num-

ber of query groups such that queries inside each group have
overlapping results and it is beneficial to merge these queries
into one representative query Q that contains all the mem-
ber queries Qi.

With the lemma and theorems developed in the previous
section, we can generate the representative query for a group
of queries as presented in the following subsections.

4.2.1 Merging SPJ Queries
The function to merge two SPJ queries is presented in Al-

gorithm 1. It takes two queries as its input parameters and
returns a query that contains them. In this paper, we only
consider merging queries involving the same set of streams
to avoid incurring large processing overhead. Line 3 enforces
this constraint.

Algorithm 1: Merging two SPJ queries

MergeSPJ(Q1, Q2)1

begin2

if Strm(Q1) 6= Strm(Q2) then return error;3

if Q1 v Q2 then4

Q← Q2;5

Attr(Q)← Attr(Q1) ∪Attr(Q2);6

if Q1 6= Q2 then7

Attr(Q)← Attr(Q)∪ attributes in8

Pred(Q1);

else if Q2 < Q1 then9

Q← Q1;10

Attr(Q)← Attr(Q1) ∪Attr(Q2);11

Attr(Q)← Attr(Q)∪ attributes in Pred(Q2) ;12

else13

Strm(Q)← Strm(Q1);14

Pred(Q)← Pred(Q1) ∪ Pred(Q2);15

begin(Q)← min (begin(Q1), begin(Q2));16

slide(Q)← max(slide(Q1), slide(Q2));17

gcd← GCD(slide(Q1), slide(Q2));18

foreach stream si ∈ Strm(Q) do19

diff ← intervali(Q1)− intervali(Q2);20

intervali(Q)←21

max(intervali(Q1), intervali(Q2));
if intervali(Q1) > interval(Q2) then22

s← slide(Q1);23

else if intervali(Q1) < interval(Q2) then24

s← slide(Q2);25

else26

s← min(slide(Q2), slide(Q1));27

slide← min(s,max(gcd, diff));28

Attr(Q)← Attr(Q1) ∪Attr(Q2);29

Attr(Q)← Attr(Q)∪ attributes in Pred(Q1) or30

Pred(Q2);

return Q;31

end32

Lines 4-12 deal with the situation that one of the input
queries Qi contains the other Qj . In this case, the function
simply return Qi. But note that the containment checking
here does not consider which attributes are selected by the

two queries. Therefore, we have to combine the attribute se-
lection lists of both queries (line 29). Furthermore, to allow
retrieval of the results of Qj from that of Qi, the attribute
list Q is extended with those appear in Pred(Qj) (line 30)

Lines 13-28 perform the merging of two queries that do not
contain each other They merge the predicates, stream win-
dows and the selected attributes one after another. Among
these, lines 19-28 refine the sliding step of Q step by step
based on Theorem 4.1. Note that the merged predicates
might be further reduced if some of them are covered by the
others. Minimizing the number of predicates is a traditional
NP hard problem, which attracts much attention [11, 23].
We will just adopt these results.

4.2.2 Merging aggregate queries
Based on Theorem 4.2, only only queries with the same

input stream, the same Group By attributes and the same
window intervals are considered for merging. The algorithm
is straight-forward, so we leave it out of this paper.

4.3 Subscription Generation
As the result streams of only the representative queries

will be delivered over a DPSS, users have to register sub-
scriptions to the DPSS to retrieve the results that are of
interest to them. This subsection presents how to generate
such subscriptions.

Suppose Q is the representative query for a query group
and Qi is one of the members of this group. The algorithm
first initialize the subscription with the Q’s result stream
name, and then it adds the selected attribute list and pred-
icates of Qi. After that, filters are added to check whether
the result tuples satisfy the window predicate defined by Qi.
These filters are generated based on Lemma 4.1. Again the
filters here could be further optimized, which is out of the
scope of this paper.

Algorithm 2: Subscription Generation

SubGen(Q,Qi)1

begin2

Sub.S ← {Result(Q)};3

Sub.P ← Attr(Qi);4

Sub.F ← Pred(Qi);5

n← the number of stream involved in Qi;6

bg ← begin(Qi);7

sl← slide(Qi);8

for j = 1;j < n; j + + do9

for k = j + 1;k <= n;k + + do10

Sub.F ← Sub.F∧11

(−1 · inv[j] ≤ tsj − tsk ≤ inv[k])∧12

tsj > d(tsk − bg)/sle ∗ sl − inv[j]∧13

tsk > d(tsj − bg)/sle ∗ sl − inv[k];14

return Sub;15

end16

5. QUERY GROUPING
With the above algorithms, one can merge a query group

and efficiently deliver the query results to the individual
users. This section investigates how to partition the queries



into multiple groups. In particular, we study the optimiza-
tion algorithms and maintenance mechanisms of query group-
ing under the context that queries are frequently inserted
and terminated.

5.1 Benefit Estimation
The first problem of optimizing query grouping is how to

estimate the benefit of merging a query group. The benefit
considered in this paper is the amount of data communica-
tion overhead that can be saved. A common cost metric is
adopted here:

P
i li · ci, where li is the transmission latency

of the ith link in the overlay network of the DPSS and ci is
the communication traffic per unit time on li.

To accurately estimate the benefit of merging a query
group, one can count the data transfer rate on each over-
lay link if we know the exact data dissemination tree. Un-
fortunately, in a large scale network, it is hard to maintain
information in such a detail.

As the problem of how to maintain network structure
knowledge in a scalable way is out of the scope of this paper,
we only adopt a cost model assuming little knowledge of the
network. Since the actual cost is counted in experimental
results, this actually biases against our method. Moreover,
if more network knowledge exists, the cost model can be re-
placed with a more accurate one without much change of
our algorithms.

More specifically, the stream processing server only keeps
track of the next hop of the delivery path of the result
streams. The benefit of the query merging is estimated as
(
P

i C(Qi)−C(Q))·l, where C(Q) is the data rate (bits/sec)
of the representative query Q’s result stream, while C(Qi)
is the data rate of the member query Qi’s result stream.
Furthermore l is the latency of the common first hop of all
the member query Qi. This implicitly says that only queries
with a common first hop would be merged, which is intu-
itive.

The estimation of result stream rate is a common task re-
quired by most query optimizers. Therefore, existing tech-
niques in stream query optimization [5] can be used for this
purpose. Furthermore, the data statistics required by our
cost model can be shared with the query optimizer and hence
little extra overhead will be incurred to maintain the statis-
tics.

5.2 Query Groups Maintenance
There are a few challenges of the query grouping and our

system addresses them in the following ways:
1. Achieve high benefit. The benefit estimation function

discussed above is used to estimate the benefit of a grouping.
Heuristics are required to derive a good grouping.

2. Incremental grouping. In reality, queries often come
one at a time and should be started running at its submis-
sion. As there is no way to control the order of queries that
come to system, grouping has to be done incrementally.

3. Efficient grouping maintenance. We consider the situa-
tion that queries would be inserted and terminated anytime.
Hence, it is necessary to have an efficient data structure to
maintain the query grouping and to facilitate the decision
making of when and how to re-merge queries. In this paper,
a multi-tree data structure is adopted to serve this purpose.
In this structure, a query tree is built for each query group.
The root of the tree is the representative query of the query

Q'

Q2Q1'

Q5Q3 Q4

Figure 5: An example query tree. This tree represents a
group of query: Q2, Q3, Q4 and Q5. Q′1 is a derived query
constructed by merging Q3 and Q4. Q5 is contained by
Q2. Q′ is the representative query of the whole query group
which is derived by merging Q′1 and Q2.

group. Within the tree, a query Qi is an ancestor of another
one Qj only if Qi contains Qj . Figure 5 shows an example
of such a tree.
As we will see later, such a query tree is helpful in quickly
determining whether the merging of the queries under each
subtree is beneficial and hence whether re-optimization is
required. Furthermore, if some queries in a subtree is ter-
minated, the synthetic queries along the path from the ter-
minated queries to the root might be rewritten, while the
other subtrees need not be modified.

4. Re-placing queries into different groups would change
the user subscriptions and hence may incur many message
exchanges among the nodes in the network in order to mod-
ify the routing table in the DPSS. Hence, we try to avoid
frequent migration of a query from one group to another.
Query grouping is maintained periodically so that the fre-
quency of the changes can be regulated by the length of the
period. Furthermore, a query will be retained in the same
group as long as it is still beneficial to do so.

More details of the algorithms are presented in the rest of
this section.

5.2.1 New query insertion
As mentioned, the ordering of query arrival is in general

out of control and query grouping has to be done as each
query arrives at the system. This section describes proce-
dure of inserting a new query to the query groups.

When a query is first submitted to the system, a query
group is selected by using a greedy algorithm (Algorithm
3, which estimates the benefit of merging the new query
with each existing query group and select the one with the
highest benefit. If no merging has positive benefit, then
a new group is generated. Then the new query is added
to the corresponding query tree structure of the selected
query group or the newly generated group. If the existing
representative query of the group and the new query do not
contain one another, a new representative query is generated
for this query group.

As a side note, query merging may incur query process-
ing overhead. To avoid getting arbitrary high overhead, a
threshold can be used to restrict how much overhead can be
accepted to trade for the communication efficiency. Here,
we use a threshold parameter α, which is the maximum per-
centage of processing overhead that can be accepted. For
example, if α = 0.1, then the system can tolerate 10% of pro-
cessing overhead incurred by query merging. If the merging
incurs the overhead higher than this threshold, then it will



Algorithm 3: Query Insertion

Insert(newQuery)1

begin2

max← 0; toMerge← null;3

foreach rootQ ∈ trees do4

bf ← benefit of merging rootQ with newQuery;5

oh← processing overhead incurred by merging6

rootQ with newQuery + the current overhead
of the query group of rootQ;
if bf > max & oh < α then7

max← bf ;8

toMerge← rootQ;9

if toMerge = null then10

trees.addRoot(newQuery);11

else if newQuery v toMerge then12

AddChild(toMerge, newQuery);13

else if toMerge v newQuery then14

AddChild(newQuery, toMerge);15

replace toMerge with newQuery in trees16

else17

newRoot← MergeQ(toMerge, newQuery);18

add both toMerge and newQuery to19

newRoot.childlist;
replace toMerge with newRoot in trees;20

end21

AddChild(parent, newChild)22

begin23

foreach child ∈ parent.childlist do24

if newQuery v child then25

AddChild(child, newQuery);26

return;27

add newChild to parent.childlist;28

end29

not be considered. In the estimation of the processing cost,
again existing stream query optimization techniques can be
used, such as [5].

5.2.2 Query termination
When a query terminates, Algorithm 4 is run to modify

the query trees to reflect the changes. Two types of queries
are distinguished in the algorithm: (1) original queries: those
queries submitted by the users; (2) derived queries: those
queries derived from query merging.

First, the to-be-terminated query is removed from the tree
and then transfer its children to its parent or generate a new
root if the to-be-terminated query is a root itself.

Second, if the to-be-terminated query’s parent is a de-
rived query, the merging algorithm will be run to rewrite
the parent query to reflect the change. Rewriting will be
propagated up in the tree till the node which is unnecessary
to be rewritten. Note that the rewriting of these synthetic
queries will not incur changes on the network side (i.e. the
subscriptions of the users can remain unchanged). Instead,
the rewriting can reduce the communication cost by the pos-
sible “tightening” of the representative queries. Hence, we
choose to perform this eagerly.

On the other hand, if a query in a query group is termi-

Algorithm 4: Query Termination

Terminate(q)1

begin2

remove q from its query tree;3

if q.childlist 6= null then4

if q.parent 6= null then5

q.parent.childlist.add(q.childlist);6

else7

newQuery ← merge all the child queries of q;8

newQuery.isDerived← true;9

newQuery.to reoptimize← true;10

if q.parent 6= null & q.parent.isDerived then11

Rewrite (q.parent);12

q.parent.to reoptimize← true;13

end14

Rewrite (q)15

begin16

Merge all the child queries of q to a new query17

newQ;
if q is not semantically equivalent to newQ then18

q ← newQ;19

if q.parent 6= null & q.parent.isDerived then20

Rewrite(q.parent);21

end22

nated, then it might not be beneficial for other queries to
be placed in this query group any more. For example, a
query is placed into this group because of its overlap with
the terminated query. Now, it might not be beneficial to
keep it in this group. The grouping could be re-optimized.
However, as we have discussed, moving the query from one
group to another has to change the subscription of the user
which will incur changes on the overlay network, i.e. the
change of user subscriptions and hence the routing tables.

Therefore, a lazy approach is adopted for the re-optimization
of grouping. The re-optimization algorithm is only run pe-
riodically, which will be presented in the next subsection.
The query termination algorithm only marks the re-written
derived queries for re-optimization, which will be done at
the coming re-optimization round.

5.2.3 Query group re-optimization
Periodically, Algorithm 5 will be run to re-optimize the

query grouping. In line 4, the algorithm traverses the query
trees and re-optimize them one by one. After that, it gets a
list of queries that should be considered to be replaced into
different groups. Then line 5 uses the above query insertion
algorithm to replace the query one by one.

The re-optimization algorithm for each query group is
shown in Lines 7-22. This algorithm takes an inputs queryNode
(a node in a query tree) and inserts into toReplace the
queries that are currently in the substree rooted at queryNode
but are no longer beneficial be grouped with other queries
in the subtree. It is done by traversing the query tree in
depth-first order and recursively calling the algorithm on
each node in the tree.

For each node, after calling the algorithm recursively on
all the child nodes, the algorithm gets a list of query nodes,



Algorithm 5: Query Group Re-Optimization

ReopitmizeGroups()1

begin2

toReplace← ∅;3

foreach root ∈ trees do4

Reoptmize(root, toReplace);
foreach query ∈ toReplace do Insert(query);5

end6

Reoptmize(queryNode, toReplace)7

begin8

newChildlist← ∅;9

foreach child ∈ queryNode.childlist do10

Reoptmize(child, newChildlist);11

if queryNode.to reoptimize then12

b← benefit of merging all queries in13

{queryNode.childlist ∪ newChildlist};
if b ≤ 0 then14

toReplace.add(queryNode.childlist);15

toReplace.add(newChildlist);16

remove q from the trees;17

else18

queryNode← merge all queries in19

{queryNode.childlist ∪ newChildlist};
if20

toReplace 6= ∅ & queryNode.parent.isDerived
then

queryNode.parent.to reoptimize← true;21

end22

newChildlist, which are the queries that are no longer be
beneficial to be placed in the subtrees of the individual child
nodes. However, within these queries, those extracted from
the subtree of one child node may still have overlap with the
queries in the subtree of another child node. Hence, lines 12-
19 check whether it is beneficial to merge the queries in
newChildlist together with its current children. If so, then
it simply performs the merging and add all the nodes in
newChildlist to the current nodes childlist. Otherwise, it
returns all these nodes to its parent node.

Note that to minimize the overhead of revising the user
subscriptions that would be incurred by re-grouping, queries
would be considered for re-grouping only when the current
grouping has negative benefit (line 14). Using a threshold
here might be able to get a better trade-off. Unfortunately,
by our experiments, this cannot achieve significant benefit.
A high positive threshold does not work well, because the
more overlap that the query has with the current group, the
less benefit that will be achieved by re-grouping the query.
On the other hand, a high negative threshold does not work
well too. The reason is, with a negative benefit, the query
already has no overlap with the current query group and, in
general, the benefit of re-grouping such a query would domi-
nate the user subscription update cost. Furthermore, by ex-
periments, there is no significant difference between a small
positive/negative threshold and 0. But the performance de-
generates quickly with a slightly higher positive/negative
threshold. Therefore, such a threshold is not considered in
this paper.

6. PERFORMANCE STUDY
Implementation. The algorithms in this paper are im-

plemented in a middleware on top of our stream process-
ing system: GSN (Global Sensor Network, http://gsn.

sourceforge.net/) [1], which is tailored for efficient pro-
cessing of sensor data and managing the connections with
various heterogeneous sensor networks. The system is im-
plemented mainly in Java. The experiment is conducted in
a Linux server with 2 Dual-Core 2.66GHz Intel CPU and
4G memory.

Data set. We use the sensor data set collected by our
SensorScope project (http://sensorscope.epfl.ch), which
measures key environmental data such as air temperature
and humidity, surface temperature, incoming solar radia-
tion, wind speed and direction, precipitation, and soil mois-
ture and pressure. The data from each sensor are treated
as one data stream. In the experiments, we use 63 streams
as our data set and emulate the streaming scenario by using
their timestamp information.

Query generation. Each query in the experiment is
generated randomly in the way described as follows. First,
a random number of streams (uniformly distributed between
1 and 5) are selected randomly to be involved in the query.
Then a random number of predicates (uniformly distributed
between 1 and 5) are generated based on the column infor-
mation of the streams (such as the column names, the max-
imum/min values etc.). In the experiments, we vary the dis-
tribution used to select the streams and the portion of data
selected by the predicates. Both uniform and zipfian distri-
bution are used. Furthermore, the window predicates are
generated with random parameters (time intervals, sliding
steps and starting times). Finally, the projection attributes
and aggregate functions are generated randomly. All the
experiments are repeated 20 times with different random
queries and the average results are reported.

DPSS. The DPSS which is used to disseminate the query
results is simulated in the experiments. The topology gen-
erator BRITE (http://www.cs.bu.edu/brite/) is used to
generate a power law network topology with 1000 nodes.
Then a minimum spanning tree is constructed as the dissem-
ination tree. One of the nodes is selected as the stream query
processor and, for each query, a random node is selected as
the origin of the query, which should be the destination of
the query result.

6.1 Query Insertion
In this subsection, we examine the performance of query

insertion. In the experiments, queries arrive at the system
one by one. Our query insertion algorithm is run to optimize
the query grouping incrementally.

In the first experiment, we set the overhead threshold α at
a relatively high value (0.5) to see how much benefit we can
get without worrying too much about the processing over-
head. In Figure 6(a), we present the bandwidth reduction at
each time instance when a certain number of queries are in-
serted. Bandwidth reduction is computed as the percentage
of the sum of the bandwidth consumption of each overlay
link (weighted by the latency of each link as discussed in Sec-
tion 5.1) that is reduced by the query merging in comparison
to the case without merging. A few interesting points can
be identified from the figure. First, with more number of
queries added to the system, there are more opportunities
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Figure 6: Query Insertion

for the query merging approach to explore the sharing of
communication and hence a larger bandwidth reduction can
be achieved. Another interesting point is that query merg-
ing is more beneficial with a skewed query distribution. The
reason is obvious. With more queries interested in the same
subset of data, the probability that we can merge the queries
would be higher. Figure 6(b) provides another perspective
on the experimental results. The grouping ratio is the ra-
tio of the number of query groups to the total number of
queries. Generally, the lower the grouping ratio, the higher
the bandwidth reduction could be.

Another experiment is to investigate the sensitivity of our
algorithms to the processing overhead threshold α. Figure 7
shows the result of the experiments. The value of α (in
the query insertion algorithm under Section 5.2.1) is varied
from 0 to 0.5. The general trend is, a higher α value pro-
vides more opportunities for query merging and hence the
outcome bandwidth reduction is higher. Note that the dif-
ference is not very significant. The reason could be, for the
randomly generated query set in this experimental study,
only a small number of merging could incur high processing
overhead. We have varied the query generation parame-
ters but could not find a set of parameters that can make
this difference more significant. Hence in such query set, a
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very low α is much desirable, as it can significantly reduces
the communication cost without incurring much processing
overhead. In reality, there could exist some query set that
could be more sensitive to the value of α. The tuning of an
optimal α value could get a better trade-off between com-
munication cost and processing cost.

6.2 Query Grouping Re-optimization
In this section, we examine the performance of the query

re-optimization algorithms. In the experiment, 10, 000 queries
are first inserted into the system and then we terminate half
of the queries. It is compared with two cases: (1) without
running the re-optimization algorithm (“no re-opt”) and (2)
running the insertion algorithm on all the remaining queries
from scratch (“re-insert”).

Figure 8(a) shows the comparison of the bandwidth re-
duction among the three cases and Figure 8(b) presents
the percentage of queries that have been migrated to an-
other query group. As one can see, “Re-opt” can achieve
much larger bandwidth reduction than the case without re-
optimization. Furthermore, “re-insert” works slightly bet-
ter than “re-opt”. This is because “re-insert” can explore a
larger solution space than “re-opt”. However, as shown in
Figure 8(b), “re-insert” incurs much more migrations than
“re-opt”, which would result in higher overhead over the
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network.
Another interesting point that can be observed is, with a

more skewed query distribution, less benefit can be achieved
by re-optimizing the query grouping. This is because more
queries have overlap relationships and hence less queries
need be migrated to another query group. It is also reflected
in Figure 8(b). Both “re-opt” and “re-insert” migrate less
queries for a more skewed query distribution.

6.3 Efficiency of the Query Tree
This experiment is to examine whether the query tree is

effective to enhance the query grouping maintenance effi-
ciency. We compare it with a flat structure, where queries
within each group are kept in a flat list. We compare the
maximum query termination and query insertion time be-
tween the two approaches. In the experiment, we first insert
a certain number of queries into the system and then try to
insert (or remove) a query to (or from) the most popular
query group. This is expected to be the maximum insertion
(or termination) time. One can see from Figure 9(a), the
tree approach is much more efficient in query termination
than the flat one. That is because it avoids the running of
unnecessary query merging while a flat structure cannot ex-
ploit this opportunity. The difference is more obvious with
a skewed query distribution and a larger query population
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where query groups tend to have more members. On the
other hand, it can be seen from Figure 9(b) that the tree
approach works slightly worse than the flat structure for
query insertion. This is due to the fact that, in the tree
approach, a new query has to travel a few levels down the
query tree before it is settled in a place within the tree. But
this is not necessary in a flat structure. In summary, for
systems with similar query termination and insertion rates,
the query tree approach is much more efficient than the flat
one.

7. CONCLUSION
This paper addresses an important stream processing is-

sue that we faced during our deployments, query result stream
delivery, which is often overlooked by existing stream pro-
cessing systems, and proposes an easy-to-implement yet ef-
fective solution. To enhance the system’s scalability, DPSS,
a scalable and efficient communication paradigm, is em-
ployed to deliver query result streams. To fully exploit the
message delivery sharing capability of a DPSS, we propose
a query grouping and merging approach. To realize this ap-
proach, stream query containment theorems are first stud-
ied, based on which, query merging and query grouping al-
gorithms are proposed. To deal with the frequent arrival and
removal of queries, a multi-tree structure is used to facili-



tate efficient maintenance of query grouping. Furthermore,
adaptive re-optimization algorithms are proposed to contin-
uously adapt the query grouping to the change of the query
set and meanwhile keep the query migration overhead to be
low. The experiments conducted show that this approach is
very efficient and effective , especially with a large number
of queries or a skewed query distribution.

Based on the techniques proposed by this paper, there are
a few interesting problems to explore in the future. First, the
current approach merges all the queries in a query group into
one representative query. However, sometimes this would in-
crease the processing cost. Another possible approach is to
generate one or more representative queries for each query
group and keep the processing overhead as low as possible.
User subscriptions then should subscribe to multiple result
streams instead of one. Second, in a distributed stream pro-
cessing system, query operators can be allocated to multiple
processing servers. It is interesting to study how the oper-
ator allocation and the query grouping and merging will
interact with each other.
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