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ABSTRACT
Approximate nearest neighbor search (ANNS) is a fundamental

problem that has a wide range of applications in information re-

trieval and data mining. Among state-of-the-art in-memory ANNS

methods, graph-based methods have attracted particular interest

owing to their superior efficiency and query accuracy. Most of these

methods focus on the selection of edges to shorten the search path,

but do not pay much attention to the computational cost at each

hop. To reduce the cost, we propose a novel graph structure called

HVS. HVS has a hierarchical structure of multiple layers that corre-

sponds to a series of subspace divisions in a coarse-to-fine manner.

In addition, we utilize a virtual Voronoi diagram in each layer to

accelerate the search. By traversing Voronoi cells, HVS can reach

the nearest neighbors of a given query efficiently, resulting in a

reduction in the total search cost. Experiments confirm that HVS is

superior to other state-of-the-art graph-based methods.
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1 INTRODUCTION
The approximate nearest neighbor search (ANNS) in a high dimen-

sional Euclidean space is of great importance in applications such as

databases, information retrieval, data mining, pattern recognition,

and machine learning [1, 22]. The basic problem can be described

as follows: given a dataset D ⊆ R𝑑 and a query 𝑞 ∈ R𝑑 , the near-
est object 𝑥∗ ∈ D, that is, 𝑥∗ = argmin

𝑥 ∈D
∥𝑥 − 𝑞∥, is expected to

be found as fast as possible. Since its exact solution is hard to be

solved efficiently because of the curse of dimensionality, many re-

searchers turn to design approximate methods. Among various
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types of ANNS methods, graph-based methods show much better

empirical search performance than others [14, 30]. Thus, it is timely

to further reduce their search costs.

Let us first briefly review the working flow of existing graph-

based methods. In the indexing phase, a proximity graph is con-

structed as the index structure in which the data points consti-

tute the nodes and close node pairs constitute the edges. We can

hop directly from one node to another only if an edge exists be-

tween them. Clearly, the search efficiency depends on the graph

topology. Therefore, various edge-selection strategies have been

proposed [14, 25, 30].

Although these graph-based methods have very different index

structures, their search algorithms are quite similar. In every step,

the closest point to the query in the priority queue is selected. Then,

all its connected neighbors are visited and their exact distances to

the query are computed. The priority queue is updated if closer

points to the query are found. When no new point can be added

into the priority queue, the search is terminated. Finally, the top 𝐾

points in the priority queue are returned (for the𝐾-ANNS problem).

It can be easily seen that if the size of the priority queue is 1,

the standard search strategy incurs a computational cost of𝑂 (𝛾𝑣𝑑),
where 𝛾 is the length of the search path, 𝑣 is the average out-degree

of visited nodes, and 𝑑 is the data dimension. In [14], the authors

proposed a graph structure called NSG, which improves the search

efficiency by reducing 𝛾 and 𝑣 . However, their method does not

reduce the 𝑂 (𝑑) computational cost of the distance between every

visited node and the query. In fact, exact distance computations

are too costly and unnecessary in the early stage of searching. To

overcome this limitation, we divide the search process into two

stages. In the first stage, we approach a neighbor region of the

query point, and then, in the second stage, we continue the search

from this region to obtain the final results. Clearly, we can push

exact distance computation to the later stage. This motivates us to

devise a new graph structure to accelerate the search process.

In this paper, we construct Voronoi cells in such a way that every

data point is contained in only one cell. Two data points are said

to be close when they belong to the same Voronoi cell. Multiple

Voronoi diagrams constitute a hierarchy in which the seed points

(those points used to generate the Voronoi diagram) in a higher layer

are also seed points in the lower layers. We assume such Voronoi

diagrams, although in practice we use only their seed points so

that these diagrams exist virtually. We call this index structure the

Hierarchical Voronoi structure (HVS) (see Fig. 1 for the coarse-to-fine
Voronoi diagrams). We also regard the HVS as a graph, or more
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Figure 1: An example of HVS (Voronoi diagrams at three lev-
els and the corresponding codebooks). On the right side, ev-
ery𝐶 (𝑖)

𝑗
, i.e., the 𝑗-th sub-codebook at the 𝑖-th level, contains

two elements (𝐿 = 2), which are represented by two rectan-
gles of different shadows. Every seed point (graph node) is
represented by a combination of elements in different sub-
codebooks at the same level. At level-1, we can only generate
four graph nodes marked in red. As the level increases, we
can generate more graph nodes marked in green or blue by
increasing the number of sub-codebooks. On the left side,
the diagrams are simulated in 2D as conceptual diagrams
such that the seed points at level 𝑡 also appear at level 𝑡 + 1,
in the way of generation shown on the right side.

precisely, a hyper-graph consisting of multiple graphs. In a single

layer, a Voronoi cell, or equivalently a seed point, corresponds to a

node of the graph in the layer. After determining all the Voronoi

cells in all the layers, we discard the cells containing no data point

and then connect the remaining cells. The distance between two

arbitrary cells in the same layer is defined as the distance between

their seed points. Edges are formed between some pairs of close

cells. It is clear that the selection of seed points plays a critical role

in this process. In the next section, we will demonstrate the detailed

seed-selection process.

In the query phase, starting from the top (coarsest) layer, we

move from a layer of coarser-grained cells to the next lower layer of

finer-grained cells. By means of a quantization technique, we find

the closest cell to the query without any hop in the top layer, and

this cell (node) becomes the entering point for the next layer. Then,

stepping down one layer and starting from that entering point, we

find the approximate nearest node in the layer. We repeat this pro-

cess until the base layer is reached. In the base layer, because each

original data point is a node in the graph, we conduct a standard

graph-based search to obtain the final result.

In summary, our three-fold contributions are as follows:

(1) We propose a novel hierarchical structure called HVS to

solve the ANN search problem. HVS consists of multiple graphs

corresponding to multi-granular Voronoi diagrams. This structure

accelerates the speed at which the approximate nearest neighbors

of a given query are reached and thus significantly reduces the total

searching time.

(2) By adopting a density-based allocation strategy, HVS reduces

the number of data points appearing in the lower layers and thus

reduces the indexing cost incurred by the points in the regions with

low data density significantly.

(3) In the experiments, we combined HVSwith the edge-selection

strategy introduced in HNSW [30] to keep the high efficiency of

indexing. Experiments confirmed that the proposed method im-

proved the recall rates of existing graph-based methods by 3% - 10%

with less indexing time.

2 RELATEDWORK
Existing ANNS methods can be categorized into four classes: tree-

basedmethods, LSH-basedmethods [19, 23, 27, 28, 34], quantization-

based methods [10, 15, 20] and graph-based methods. These meth-

ods have different strengths. For examples, LSH-based methods and

tree-based methods are suited to the datasets updated frequently

while quantization-based methods generally have lowmemory foot-

prints. In this paper, we focus only on graph-basedmethods since ex-

tensive experimental studies have shown their superiority on search

performance among in-memory ANNS methods [11, 14, 25, 30]. For

those scenarios in which the top priority is given to other per-

formance metrics, as mentioned above, we recommend users to

reasonably choose methods of other types. For the comprehensive

surveys of existing in-memory or disk-based ANNS methods of

these four types, see literatures [25] and [11].

2.1 Graph-based methods
Among graph-based methods, we particularly focus on two state-of-

the-art ones, HNSW [30] and NSG [14]. Their working mechanisms

are briefly introduced as follows.

Hierarchical navigating small world (HNSW) [30] uses a hierar-

chical structure built on a navigating small world graph [29]. The

basic idea of HNSW is to construct multiple layers, on each of which

only a part of data points in the dataset constitute the set of graph

nodes. Specifically, every layer contains all nodes appearing in its

higher layers and the base layer contains all data points. HNSW

conducts the search in the direction from the top layer to the base

layer and ensures that a locally nearest graph node can be found in

each layer. The nearest point found in each layer is treated as the

entering node in the next lower layer. Finally, HNSW searches the

base layer by means of the standard search algorithm and returns

the results from the priority queue.

Navigating spreading-out (NSG) [14] uses a single-layer graph
structure. Specifically, NSG aims at the following four goals: (1)

ensuring the connectivity of the graph; (2) lowering the average out-

degree of nodes for fast traversal; (3) shortening the search path; and

(4) reducing the index size. To this end, the authors in [14] proposed

Monotonic relative navigating graph (MRNG) based on ideas of

MSNET [2] and RNG [8]. Furthermore, the authors proposed a

practical graph structure called NSG approximating MRNG. Since

the out-degree of each node in NSG varies depending on data points

(nodes), NSG can keep the high search efficiency of HNSW with a

smaller index size.

Recently, inspired by the superior performance of HNSW, other

graph-based methods and related techniques have been proposed

for dealing with different scenarios. The authors in [32] focused
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on the theoretical analysis of KNN graph in the scenario that di-

mension 𝑑 is small (𝑑 ≤ 32). Goldfinger [16] is a KNN graph built

on Jaccard’s index. SPTAG [7] is a tree-based and distributed ANN

search method which supports GPU. GRIP [36] is a multi-core

capacity-optimized multi-store ANN algorithm which focuses on

the searching optimization in both DRAM and SSDs. In this paper,

we focus on the standard scenario, that is, the CPU-based search in

ℓ2 metric, which is adopted by HNSW and NSG.

2.2 Why HNSW and NSG are appropriate
benchmarks

Both HNSW and NSG are state-of-the-art methods. Specifically,

compared with other graph-based methods, such as FANNG [18],

nn-decent-based KGraph [6, 9, 17], IEH [21], Efanna [12], HNSW

and NSG have shown their competitive search performances [13, 14,

30]. Moreover, they have been successfully implemented in the in-

dustry field. Recently, some researchers tried to introduce learning-

based methods to improve the search performance of graphs [4, 35].

However, we need to pay attention to the following three points.

(1) These methods require much more indexing time than HNSW,

which is not suited to large-scale datasets. (2) Their complicated

edge-selection strategies make insertions difficult. (3) HVS is or-

thogonal to most of learning-based methods.

For these reasons, we do not try to find the optimal edge-selection

strategy for HVS since it highly depends on the data distribution.

In addition, we do not consider those optimization techniques, such

as [24], which are applicable to all compared methods. In this paper,

we focus on the essential improvement brought by HVS.

2.3 Product quantization
We briefly introduce the basic idea of product quantization (PQ) [20]

in a metric space as follows. LetD ⊆ 𝐸𝑑 be a 𝑑-dimensional dataset

and 𝑞 ∈ 𝐸𝑑 be a query. We furthermore divide every point 𝑥 in

D into𝑀 sub-vectors such that 𝑥 = (𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑀) ), where
𝑥 ( 𝑗) ∈ 𝐸𝑑′

(1 ≤ 𝑗 ≤ 𝑀) with dimension 𝑑 ′ = 𝑑/𝑀 , assuming 𝑑 is

divisible by𝑀 . In this way, PQ constructs𝑀 subspaces of dimension

𝑑 ′, each of which contains the corresponding sub-vectors of all

points. Then, in each subspace, every sub-vector is represented

by one of 𝐿 (=256) sub-codewords of length 𝑘 = log
2
𝐿. The set

of all sub-codewords in the 𝑗-th subspace is called a codebook

and denoted by 𝐶 ( 𝑗)
. By concatenating the sub-codewords in all

subspaces, an original point is represented by a codeword of length

𝑀𝑘 which takes a value in 𝐶 (1) × · · · ×𝐶 (𝑀)
.

2.4 Comparison with existing methods
For solving the ANNS problem, the authors in [10] proposed L&C

which connects quantized vectors by HNSW. HVS is essentially dif-

ferent from 𝐿&𝐶 in the following three aspects: (1)Different types.
L&C is a VQ-based method while HVS is a graph-based method

in its own right. (2) Different goals. For 𝐿&𝐶 , the motivation of

introducing HNSW is to reduce the candidate list efficiently at the

expense of some loss of query accuracy for high target recalls, while

the graph structure in HVS aims to approach the nearest neigh-

bor of the query faster, which makes HVS consistently outperform

other graph-based methods. (3) Different technical details. All

Table 1: Notations

Notation Explanation

D the d-dimensional dataset.

𝑇 the level of HVS model.

𝑉𝑡 the set of seed points of the Voronoi diagram at

level 𝑡 .

𝐷𝑡 the set of data points at level 𝑡 .

𝑆𝑡 the set of representative seed points appearing

at level 𝑡 .

𝐸𝑡 the set of inter-graph edges at level 𝑡 .

𝛿 the parameter controlling |𝐷𝑡 |.
𝐿 the size of every sub-codebook.

𝐶
(𝑡 )
𝑖

the 𝑖-th sub-codebook at level 𝑡 .

core techniques of HVS, that is, multi-level quantization, density-

based allocation and layer-to-layer connection introduced later are

designed to achieve the goal of HVS mentioned above, while L&C

takes a standard way of HNSW to connect quantized vectors.

3 THE CONSTRUCTION OF HVS
3.1 Basic ideas
The working flow of HVS is shown in Fig. 2 and a geometrical

illustration of HVS is shown in Fig. 3 (Some notations used later

can be found in Tab. 1). The space in every layer, except for the

base layer, is partitioned into virtual Voronoi cells. For the top layer,

those cells form the node set of a graph without edges. In the second

layer or lower layers where the data size is decreased layer by layer,

only high-density cells are connected to the next deeper Voronoi

cell. Every eligible cell containing data points connects to other

neighbor cells in the same layer and also connects to a cell in the

next lower layer. Some of such cells are connected directly to data

points in the base layer. In the query phase, stepping down the layers

while finding the locally nearest cells to the query, we determine

a group of entering points for the base layer. In the base layer, we

take the standard search strategy and obtain the final results. The

advantage of HVS over existing graph-based methods originates

from the following two facts. (1) The distance computation of two

Voronoi cells is much more efficient than that of two raw vectors. (2)

HVS can search the base layer from multiple Voronoi cells returned

from the upper layers to ensure the high query accuracy while both

NSG and HNSW search the base layer from a single data point due

to the limitations of their indexes.

3.2 HVS model
3.2.1 PQ and Voronoi diagram. Based on the idea of PQ [20], we

first divide the original 𝑑-dimensional space, 𝐸𝑑 , into 2 subspaces

of 𝐸𝑑/2×𝐸𝑑/2, and then into subspaces of 𝐸𝑑/4×𝐸𝑑/4×𝐸𝑑/4×𝐸𝑑/4,
and so on. Accordingly, a sample x ∈ 𝐸𝑑 is divided into (x1, x2),
(x11, x12, x21, x22), and so on. As a result, at level 𝑡 , we have 2

𝑡

subspaces of dimension 𝑑𝑡 = 𝑑/2𝑡 :

x = (x11· · ·1, x11· · ·2, . . . , x22· · · ,2) (the length of a suffix is 𝑡 ).
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Figure 2: An overview of the working flow of HVS
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Figure 3: A geometrical illustration of HVS (see analysis in Sec. 3.1). Black points denote original data points and points in
other colors denote seed points of corresponding Voronoi cells.

Then, at each level 𝑡 , we construct a codebook 𝐶 (𝑡 )
, which con-

sists of 2
𝑡
sub-codebooks 𝐶

(𝑡 )
𝑗

( 𝑗 = 1, 2, . . . , 2𝑡 ). Because we fix

the number of sub-codewords to a constant 𝐿, we have 𝐶 (𝑡 ) =

𝐶
(𝑡 )
1

×𝐶 (𝑡 )
2

× · · · ×𝐶 (𝑡 )
2
𝑡 including the 𝐿2

𝑡
objective vectors in R𝑑

generated by concatenating their sub-codewords in all possible

combinations. These codewords in 𝐶 (𝑡 )
are called the 𝑡-level code-

words.
In this paper, to facilitate understanding, we consider a Voronoi

diagram virtually at each level. In practice, we regard the set 𝑉𝑡 of

𝐿2
𝑡
codewords as the set of seed points of the Voronoi diagram at

level 𝑡 . We construct a hierarchy of Voronoi diagrams such that

𝑉𝑡0 ⊂ 𝑉𝑡0+2 ⊂ 𝑉𝑡0+3 ⊂ · · · ⊂ 𝑉𝑇−1 ⊂ 𝑉𝑇 ,

where 𝑡0 is the level of the top layer, 𝑡0 + 2 is the level of the second

layer, 𝑡0 + 3 is the level of the third layer, and so on. Noting that

we skip level 𝑡0 + 1 and the reason will be clear in Sec. 3.5.1. Here,

this hierarchy is enforced by constructing a sub-vector 𝑐 𝑗 ∈ R𝑑𝑡 at
level 𝑡 from two sub-codewords at level 𝑡 + 1 as

𝑐 𝑗 = (𝑐𝑘 𝑗
, 𝑐ℓ𝑗 ), (𝑐𝑘 𝑗

, 𝑐ℓ𝑗 ∈ R𝑑𝑡+1 , 2𝑑𝑡+1 = 𝑑𝑡 )

while keeping the number of sub-codewords at 𝐿. This bottom-up

construction preserves the inclusion relation (an example is given

in Fig. 1, and the details are shown in Sec. 3.3).

In addition, from a given dataset D, we construct a sequence of

datasets {𝐷𝑡 } as

𝐷𝑡0+2 ⊃ 𝐷𝑡0+3 ⊃ · · · ⊃ 𝐷𝑇 , 𝐷𝑇+1 = D

, such that the number of data points decreases as 𝑡 (≥ 𝑡0 + 2)

increases with the depth of the visited layers. We say that a point

x ∈ D is terminated in the layer at level 𝑡 when x last appears in 𝐷𝑡

and does not appear in the following 𝐷𝑡+1. We also call the layer at

level 𝑡 as the terminal layer of x.

3.2.2 HVS. The HVS can be expressed as a hyper-graph, i.e., a

sequence of graphs, denoted as

𝐺 = (𝐺𝑡0 ,𝐺𝑡0+2,𝐺𝑡0+3, . . . ,𝐺𝑇 ,𝐺𝑇+1 = 𝐺0, 𝐸),

where 𝐺𝑡0 is the graph in the top layer of level 𝑡0, 𝐺𝑇 is the graph

in the bottom layer, 𝐺0 is the graph in the base layer, and 𝐸 is the

set of inter-graph edges (Fig. 3).

In each graph𝐺𝑡 = (𝑉𝑡 , 𝐷𝑡 , 𝑆𝑡 , 𝐸𝑡 ),𝑉𝑡 is the set of 𝐿2
𝑡
seed points,

𝐷𝑡 is the subset of D, 𝑆𝑡 is the subset of 𝑉𝑡 , and 𝐸𝑡 ⊆ 𝑆𝑡 × 𝑆𝑡 is the
set of edges. 𝐸 is the set of inter-graph edges (𝐸 ⊆ ⋃

𝑡<𝑠 𝑆𝑡 × 𝑆𝑠 ). In
the top layer,𝐺𝑡0 = (𝑆𝑡0 , ∅, 𝑆𝑡0 , ∅), that is, neither the data point nor
the edge exists inside𝐺𝑡0 , which only contains nodes in 𝑆𝑡0 that are

connected to a node in the second layer of level 𝑡0 + 2. In the base

layer, 𝐺𝑇+1 = 𝐺0 = (D,D,D, 𝐸0); that is, all nodes are data points
themselves, and they are connected to one another. In this study,

𝐺0 is a proximity graph generated by a standard graph algorithm

in [30]. The edge set 𝐸0 is also obtained using this algorithm.

From the definition of 𝑉𝑡 , we can observe that |𝑉𝑡 | = 𝐿2
𝑡
is

extremely large when 𝑡 ≥ 3. However, we select only a small

subset of 𝑉𝑡 to form 𝑆𝑡 . In fact, 𝑆𝑡 contains only seed points with

representatives, which are defined as follows:

Definition 3.1. Given a seed point at some level, we say that a

data point is a representative of this seed point if the data point is

closest to this seed point among all the data points assigned to this

seed point.
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Based on this definition, it is easy to see that the number of seed

points having representatives in the layer of level 𝑡 is not greater

than min{|𝐷𝑡 | , 𝐿2
𝑡 }.

Next, we introduce two types of nodes used later.

Definition 3.2. We call a node regular node if it is the endpoint of
some edge in a single layer. We call a node initial node if it is only
the tail of some directed edge connecting successive two layers.

In the top layer of HVS, all nodes are initial nodes, while in the

other layers, all nodes are regular nodes. The role of initial nodes is

to determine the global entering point before searching the second

layer of HVS. The details will be shown in Sec. 4.2.

In 𝐺𝑡 (𝑡 ≥ 𝑡0), a graph node of 𝑉𝑡 can be thought of as the

seed point of a Voronoi cell. Then, from the monotonicity shown

previously, we have

𝑉𝑡 ⊂ 𝑉𝑡+1, for 𝑡 ≥ 𝑡0 and 𝐷𝑡 ⊃ 𝐷𝑡+1 for 𝑡 ≥ 𝑡0 + 2.

Therefore, as moving to deeper layers, we have denser Voronoi dia-

grams with lesser number of data points. This brings the efficiency

in searching.

In the following sections, we will discuss the implementation

details on the elements of𝐺 . To be specific, {𝑉𝑡 } is discussed in Sec.

3.3 and Sec. 3.5.1; {𝐷𝑡 } is discussed in Sec. 3.4; {𝑆𝑡 } is discussed in

Sec. 3.5.2; 𝐸 is discussed in Sec. 3.5.3 and {𝐸𝑡 } is discussed in Sec.

3.5.4.

3.3 Multi-level quantization technique
In this section, we introduce the multi-level quantization technique

on the generation of𝑉𝑡 in each layer, and then explain how to select

the graph nodes of 𝑆𝑡 from them.

3.3.1 The selection of 𝑉𝑇 . The sets {𝑉𝑡 } are constructed layer by

layer from bottom to top, that is, from 𝑉𝑇 to 𝑉𝑡0 . Suppose that

we have determined the value of 𝑇 in the bottom layer. Then, we

need to generate the set of𝑇 -level codewords. For this goal, we use

PCA-OPQ [15] due to its better performance than traditional PQ.

Specifically, we first transform the original data along the principal

axes of the training data and construct subspaces by the alloca-

tion strategy introduced in [15]. Then we adopt OPQ [15] with

2
𝑇
sub-codebooks for the rotated training data and construct the

sub-codebooks subspace by subspace. Finally, we need to store the

related orthogonal rotation matrix.

3.3.2 From 𝑉𝑡 to 𝑉𝑡−1 (𝑡0 < 𝑡 ≤ 𝑇 ) . In this step, we determine the

set 𝑉𝑡−1 of (𝑡 − 1)-level codewords based on the set 𝑉𝑡 of 𝑡-level

codewords. As for the generation process of𝑉𝑡−1, re-learning them
in a similar way of 𝑉𝑇 is clearly not applicable since we could not

ensure that every (𝑡 − 1)-level codeword is a 𝑡-level codeword,

which spoils the inclusion relation of {𝑉𝑡 } mentioned in Sec. 3.2.

Therefore, instead of re-learning (𝑡 − 1)-level codewords, we take a
merging and permutation strategy to generate them. Since we have

obtained 2
𝑡
sub-codewords at level 𝑡 , each of which contains 𝐿 sub-

codewords, we choose two sub-codewords and couple them into one

so as to obtain 2
𝑡−1

sub-codewords. Then, in each of coupled sub-

codeword at 𝑡-level, we select 𝐿 combinations from all 𝐿2 possible

combinations and concatenate them into sub-codewords of length

𝑑𝑡−1 = 2𝑑𝑡 (see Fig. 1 and Fig. 4). Clearly, in order to fulfill this idea,

we need to consider (1) the way of coupling two sub-codewords,

and (2) the way of choosing 𝐿 sub-codewords (see Fig. 4).

In order to solve the first problem, we measure the relativity

between the distributions of data points in the corresponding two

subspaces in the same layer. First, we give the definition of concate-

nated sub-codeword as follows:

Definition 3.3. Given two sub-codebooks𝐶
(𝑡 )
𝑖

and𝐶
(𝑡 )
𝑗

at 𝑡-level,

let 𝑥 = [𝑥 (1) , . . . , 𝑥 (𝑑𝑡 ) ] and 𝑦 = [𝑦 (1) , . . . , 𝑦 (𝑑𝑡 ) ] be two sub-

codewords in 𝐶
(𝑡 )
𝑖

and 𝐶
(𝑡 )
𝑗

, respectively. We call the concatenated

sub-codeword (𝑥 (1) , . . . , 𝑥 (𝑑𝑡 ) , 𝑦 (1) , . . . , 𝑦 (𝑑𝑡 ) ) as the concatenated
sub-codeword of 𝑥 and 𝑦 and denote it by 𝑥 · 𝑦, or shortly 𝑥𝑦.

Next, we give the definition of the density functions of sub-

codewords. Note that, in the searching process, we only hop among

those seed points having representatives and have no knowledge

on the locations of points assigned to them. Naturally, the number

of points assigned to every sub-codeword is viewed as the density

of this sub-codeword.

Definition 3.4. Given a sub-codebook 𝐶 containing 𝐿 𝑡-level sub-

codewords, the density of𝑦 in𝐶 , denoted by 𝑓𝐶 (𝑦), is defined as the
ratio of the number of data points falling inside the corresponding

Voronoi cell of 𝑦 to the total number 𝑛 of data points.

Clearly, 𝑓𝐶 (𝑦) is well-defined since

∑
𝑦
𝑓𝐶 (𝑦) = 1. Then, we com-

pute the mutual information of arbitrary two sub-codebooks 𝐶𝑖
and𝐶 𝑗 at 𝑡-level as follows (superscript 𝑡 will be omitted whenever

it is clear from the context).

𝐼 (𝐶𝑖 ,𝐶 𝑗 ) =
∑

𝑥 ∈𝐶𝑖 ,𝑦∈𝐶 𝑗

𝑓𝐶𝑖×𝐶 𝑗
(𝑥𝑦) log(

𝑓𝐶𝑖×𝐶 𝑗
(𝑥𝑦)

𝑓𝐶𝑖
(𝑥) 𝑓𝐶 𝑗

(𝑦) ), (1)

where 𝑓𝐶𝑖×𝐶 𝑗
(𝑥𝑦) denotes the density of concatenated codeword

𝑥𝑦. Since it is shown in [33] that product quantization is more

effective for the data distribution with high entropy, we merge

those pairs of sub-codebooks with high mutual information. Since

the way of coupling is determined, we next explain how to choose

two codebooks 𝐶
(𝑡 )
𝑖

and 𝐶
(𝑡 )
𝑗

. By 𝜎 , let us denote a permutation of

{1, . . . , 2𝑡 }. Here we limit 𝜎 to be a product of 2
𝑡−1

transpositions

such that 𝜎 = (𝑎, 𝑏) (𝑐, 𝑑), · · · , (𝑒, 𝑓 ), where all symbols are distinct.

Among such 𝜎 ′𝑠 , we choose 𝜎 by the following equation.

𝜎 = argmax

𝜎

∑
2
𝑡−1

𝑖=1
𝐼 (𝐶 (𝑡 )

𝜎 (2𝑖−1) ,𝐶
(𝑡 )
𝜎 (2𝑖) ) (2)

That is, the 𝑖-th sub-codebook at level 𝑡−1 combines the 𝜎 (2𝑖−1)-
th and the 𝜎 (2𝑖)-th sub-codebooks at 𝑡-level.

If we consider every codebook as a node and their mutual infor-

mation as the weight of the edge connecting them, (2) becomes an

NP-hard graph-partition problem. Therefore, we select greedily the

edge with the largest weight in every step until all codebooks are

coupled, which works well enough for our proposal.

After determining the permutation 𝜎 , we use an orthogonal

matrix 𝑅𝑡 , which is defined as follows, to represent the permutation

of sub-codebooks at 𝑡-level:
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Figure 4: An illustrative explanation of merging and permu-
tation strategy. Here, we show the generation process of 2-
level codewords based on the 3-level codewords. In this ex-
ample, the number of sub-codewords in every sub-codebook
is 𝐿 = 2. 𝐶 (𝑡 )

𝑖
denotes the 𝑖-th sub-codebook at level 𝑡 ; black

points denote sub-codewords in the sub-codebook and red
points denote the selected 2-level sub-codewords in the con-
catenated sub-codebook.

𝑅𝑡 =


0 · · · 𝐼𝜎−1 (1) · · ·
0 𝐼𝜎−1 (2) 0

0

.

.

.
. . . 0

0 · · · 𝐼𝜎−1 (2𝑡 ) · · ·


∈ 𝐸𝑑×𝑑 (3)

Here, 𝐼𝜎−1 (𝑖) denotes the 𝜎
−1 (𝑖)-th identity matrix of size 𝑑𝑡 . By

the feature of multi-level quantization technique introduced above,

it is easy to see that we only need to use a single rotation matrix

𝑅 = 𝑅0×
𝑇∏

𝑡=𝑡0+2
𝑅𝑡 to represent the ways of permutations at all levels,

where 𝑅0 denotes the rotation matrix with respect to PCA-OPQ

in the bottom layer, since the way of coupling sub-codebooks at

𝑡-level has no effect on that at 𝑡 + 1 and higher levels.

Next, let us talk about the second problem of choosing 𝐿 com-

binations. In 𝐶
(𝑡 )
𝑗

×𝐶 (𝑡 )
𝑘

, we obtain 𝐿2 possible concatenated sub-

codewords, and choose 𝐿 sub-codewords from them to form an

𝐿-coreset. First, we generate 𝐿 centers by weighted k-means and

then moving them to their nearest concatenated sub-codewords.

Since there may exist duplicate sub-codewords after moving cen-

ters, we also adopt the importance sampling technique introduced

in [3] to generate the rest sub-codewords. This is because (1) such

a constructed coreset is a 𝑘-means coreset, which accords with our

classification strategy based on codewords, and (2) the generation

process is easy-to-implement and fast.

3.3.3 The selection of 𝑉𝑡0 . Since all seed points in the top layer

are initial nodes, the way of selecting them is a little different. We

choose 𝑡0 = 2 since the total number of 0-level or 1-level codewords

is too small, while

��𝑉𝑡0 �� = 𝐿4. The details are as follows. In the

sampling step of 2-level, we only choose 𝐿 = 16 sub-codewords

in each concatenated sub-codeword and obtain 16
4
codewords at

2-level. We treat them all as the seed points of the Voronoi cells in

the top layer. Later, in Sec. 4, we will show how to find efficiently

the Voronoi cell in which the query falls. The seed point of such a

Voronoi cell will be treated as the global entering point of HVS.

Algorithm 1: Indexing of HVS
Input: D is the dataset; 𝑇 is the level number of bottom

layer; 𝛿 (𝛿 < 1) is the coefficient controlling the data

size in each layer;

Output: Graph structure 𝐺 ; {𝐶 (𝑇 )
𝑖

}2𝑇
𝑖=1

for the bottom layer;

permutation matrix 𝑅; indexes of sub-codewords

{𝐼 (𝑡 )
𝑖, 𝑗

} (𝑡0 ≤ 𝑡 ≤ 𝑇 − 1)

1 Determine {𝑉𝑡 } associated with {𝐶 (𝑇 )
𝑖

}2𝑇
𝑖=1

, 𝑅 and {𝐼 (𝑡 )
𝑖, 𝑗

} by
multi-level quantization technique;

2 Determine {𝐷𝑡 } by density-based allocation strategy;

3 for each 𝑡 from 𝑡0 + 2 to 𝑇 do
4 Assign every point in 𝐷𝑡 to its nearest seed point in 𝑉𝑡 ;

5 Discard empty Voronoi cells and obtain 𝑆𝑡 ;

6 Add inter-graph edges by the strategy in Sec. 3.5.3;

7 Add the set of edges 𝐸𝑡 into 𝐺𝑡 (𝑡0 + 2 ≤ 𝑡 ≤ 𝑇 + 1) by the

existing edge selection strategy.

3.4 Density-based data allocation strategy
3.4.1 Motivation. Next, we focus on the determination of {𝐷𝑡 }.
Since the space partition becomes finer as the layer goes deeper,

it is natural to ask the following question: how do we judge if the

Voronoi cell in which point 𝑥 falls in some layer has distinguished

𝑥 from other points accurately enough? If so, 𝑥 does not need to

appear in the lower layers for saving space. To answer this question,

we make a judgement for every point 𝑥 based on the following two

factors: (1) the data density around 𝑥 , and (2) the quantization error

of 𝑥 to its image. Here, the first factor is critical since the searching

in the region with high data density is hard, which requires coarse-

grained Voronoi cells to distinguish the points insides. In Sec. 3.4.2,

we will present a criterion taking both of these two factors into

consideration.

3.4.2 Criterion. We suppose that every data point 𝑥 is sampled

from a bounded space 𝑆 ⊂ 𝐸𝑑 according to the p.d.f 𝑓 (𝑥). Then,
given all codewords in some layer, the overall quantization error

𝑄𝑛 (𝑆) is defined as follows:

𝑄𝑛 (𝑆) = E𝑆 [𝑄𝑛 (𝑥)] =
∫
𝑆

𝑓 (𝑥)𝑄𝑛 (𝑥)𝑑𝑥 =

∫
𝑆

𝑔𝑛 (𝑥)𝑑𝑥, (4)

where𝑄𝑛 (𝑥) is the quantization error of𝑥 and𝑔𝑛 (𝑥) = 𝑓 (𝑥)𝑄𝑛 (𝑥).
Clearly, in order to control the value of 𝑄𝑛 (𝑆), we only need to

bound 𝑔𝑛 (𝑥). Since the real value of 𝑔𝑛 (𝑥) is unknown, we estimate

the value of 𝑔𝑛 (𝑥) by the 𝑘-nearest neighbor density estimate
ˆ𝑓𝑛 (𝑥)

in [5]:

ˆ𝑓𝑛 (𝑥) =
𝑘

𝑛𝑉𝑑 ∥𝑋𝑘 (𝑥) − 𝑥 ∥𝑑
. (5)

Here,𝑛 is the data size;𝑉𝑑 = 𝜋𝑑/2/Γ(1 + 𝑑
2
) and𝑋𝑘 (𝑥) is the𝑘-th

nearest neighbor of𝑥 . Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the original dataset and
𝑔𝑛 (𝑥) = ˆ𝑓𝑛 (𝑥)𝑄𝑛 (𝑥). Then, we estimate

∫
𝑆
𝑔𝑛 (𝑥)𝑑𝑥 by

∫
𝑆
𝑔𝑛 (𝑥)𝑑𝑥

and by the result in [5] (p. 37).
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Algorithm 2: Searching in HVS

Input: D is the dataset; 𝑞 is query; 𝑇 is the level number of

bottom layer; {𝐶 (𝑇 )
𝑖

}2𝑇
𝑖=1

are sub-codebooks for the

bottom layer; 𝑅 is the permutation matrix; 𝐾 is the

number of returned points;

Output: 𝐾 approximate nearest neighbors

1 Let priority queue 𝑃 be empty;

2 Rotate 𝑞 to 𝑅𝑞 and generate the multi-level distance book

level by level;

3 Compute the nearest seed point of 𝑞 in the top layer and

insert its neighbors into 𝑃 ;

4 for each 𝑖 from 𝑡0 + 2 to 𝑇 do
5 for every unvisited graph node 𝑥 in the 𝑖-level layer do
6 Access its neighbors and compute distances;

7 Update 𝑃 if necessary;

8 if (𝑖 + 1)-level layer exists then
9 for every node 𝑥 in 𝑃 do
10 if 𝑥 is not terminated at 𝑖-level then
11 Take its connected node 𝑥 ′ at (𝑖 + 1)-level

and compute the distance of 𝑥 ′ to 𝑞;
12 Update 𝑃 if necessary;

13 Treat representatives of returned Voronoi cells in 𝑃 as

entering points in the base layer;

14 Search the base layer by the standard search strategy;

15 Return 𝐾 nearest neighbors in 𝑃 ;

Lemma 3.5. Assume that 𝑓 (𝑥) is uniformly continuous. If𝑘/log𝑛 →
∞ and, additionally, 𝑘/𝑛 → 0, we have∫

𝑆

𝑔𝑛 (𝑥)𝑑𝑥 →
∫
𝑆

𝑔𝑛 (𝑥)𝑑𝑥 𝑎𝑠 𝑛 → ∞. (6)

Based on Lemma 3.5, we determine {𝐷𝑡 } from the second layer to

the bottom layer. Let𝑈𝑡 be a threshold for 𝑔
(𝑡 )
𝑛 (𝑥) = ˆ𝑓𝑛 (𝑥)𝑄 (𝑡 )

𝑛 (𝑥),
where 𝑄

(𝑡 )
𝑛 (𝑥) is the quantization error of 𝑥 appearing at 𝑡-level

(𝑡 ≥ 𝑡0 + 2). If 𝑔
(𝑡 )
𝑛 (𝑥) > 𝑈𝑡 , we keep 𝑥 at (𝑡 + 1)-level and con-

tinue a similar judgement for the lower layers until reaching the

bottom layer. Otherwise, 𝑥 is terminated. That is, 𝑥 is included in

𝐷𝑡0+2, 𝐷𝑡0+3, . . . , 𝐷𝑡 , where the layer of level 𝑡 is the terminal layer

of 𝑥 .

3.4.3 Details. In the procedure above, we need to specify the values
of {𝑈𝑡 } such that 𝐷𝑡 ⊂ 𝐷𝑡−1 for 𝑡0 + 3 ≤ 𝑡 ≤ 𝑇 , but it is difficult

in practice. Therefore, we take the following practical strategy to

determine {𝐷𝑡 }. Suppose that 𝐷𝑡−1 has already been determined.

Then, we sort all data points 𝑥 ∈ 𝐷𝑡−1 in the descending order of

ˆ𝑓 (𝑥)𝑄 (𝑡−1)
𝑛 (𝑥) and choose the first 𝛿 |𝐷𝑡−1 | points, where 𝛿 < 1 is

a user-specified coefficient. Clearly, such a strategy not only makes

{𝐷𝑡 } nested, but also brings an exponential decrease of the size of

𝐷𝑡 . In fact, it is easy to see that, except for at most 𝑛𝛿𝑇−𝑡0−2 points
in the bottom layer, the minimum quantization errors min

𝑡
𝑄

(𝑡 )
𝑛 (𝑥)

of other points 𝑥 ’s are bounded by max

𝑡
{𝑈𝑡 }.

Algorithm 3: Insertion in HVS (𝑇 = 4)

Input: 𝐺 is the current graph; 𝑞 is data point to be inserted;

1 Compute multi-level distances of 𝑞 to seed points and

determine the entering point of 𝑞 in the top layer;

2 Search the HVS layer;

3 if there is no point assigned to 𝑞’s codeword then
4 Select neighbors from 𝑃 and connect 𝑞 with them;

5 else if 𝑞 is closer to the objective vector than the current
representative 𝑞′ then

6 Replace 𝑞′ by 𝑞;

7 Start from neighbors of 𝑞 in the HVS layer and turn to

search the base layer;

8 Select neighbors from 𝑃 and connect 𝑞 with them;
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Figure 5: An example of the generation of multi-level dis-
tance book. For ease of presentation, we only show the pro-
cess from 2-level to 0-level and suppose 𝐿 = 4. Here, 𝑦𝑖

𝑗
de-

notes the 𝑗-th sub-codeword in the 𝑖-th sub-codebook at 2-
level.

3.5 Implementation and algorithm
3.5.1 Determination of levels. We start from 𝑡0 = 2 to ensure a

reasonable number of seed points (

��𝑉𝑡0 �� = 𝐿4). Then skipping 3-

level, we choose 4-level for the second layer. The reason of skipping

3-level is that we can approximate most of data points very well

with 𝐿16 codewords (𝐿 = 256) in practice, as shown in various PQ

based methods [15, 20, 33]. As for parameter 𝑇 , we will discuss its

setting in Sec. 6.1.2.

3.5.2 Construction of virtual Voronoi diagram. We have already

given the set of Voronoi seed points at 𝑡-level. In each Voronoi cell,

we find the nearest data point in 𝐷𝑡 to the seed point as the repre-

sentative of the cell. By gathering the seed points whose Voronoi

cells have representatives, we obtain the sets of graph nodes {𝑆𝑡 }.

3.5.3 Layer-to-layer connection. After determining {𝑆𝑡 }, we deter-
mine the set 𝐸 of inter-graph edges. For every eligible Voronoi cell

𝑢 containing a seed point in 𝑆𝑡 (𝑡 ≥ 𝑡0 + 2), we judge whether or
not to connect 𝑢 with a Voronoi cell𝑤 ∈ 𝑆𝑡+1 by the following cri-

terion. Case 1: if 𝑡-level is the terminal layer for all points in 𝑢, we
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connect 𝑢 to its representative 𝑥𝑢 ∈ D in the base layer (see Fig. 3).

Case 2: otherwise, we choose the point 𝑥 ′𝑢 , that is not terminated

at 𝑡-level and closest to the seed point, and connect 𝑢 to the seed

point whose Voronoi cell𝑤 ∈ 𝑆𝑡+1 contains 𝑥 ′𝑢 (it exists because 𝑥 ′𝑢
is not terminated at level 𝑡 ).

In the top layer, since every 2-level codeword appears as an

independent graph node, we treat it as a query and find its 𝑘0
approximate neighbors in the second layer by the existing graph-

basedmethod. Then, we connect every seed point to its𝑘0 neighbors

by directed edges, which makes a connection between the top layer

and second layer. This process can be conducted efficiently since

every 2-level codeword in the top layer can also be viewed as a

4-level codeword in the second layer. In our experiments, 𝑘0 is fixed

to 10 on each dataset.

3.5.4 Indexing algorithm. The remaining work is to connect graph

nodes in the same layer. For this purpose, we adopt the same edge

selection strategy of HNSW [30]. Specifically, we insert all graph

nodes sequentially into a graph initialized by a single node. For

every graph node 𝑝 to be inserted, we conduct the KNN search and

find a group of neighbors of 𝑝 . Then we choose some nodes from

these neighbors and connect 𝑝 with them. For those selected nodes,

we also need to adjust their neighbors if necessary. By using such

strategy, our proposed method can support insertions (see Sec. 5.2).

Now, we are ready to show the complete indexing algorithm of

HVS (Algorithm 1). In Step 1, except for the bottom layer, we record

𝐼 = {𝐼 (𝑡 )
𝑖, 𝑗

} (𝑡 < 𝑇 , 1 ≤ 𝑖 ≤ 2
𝑡
), which indicates 𝑖𝑑 (𝑥) and 𝑖𝑑 (𝑦) as

well as 𝜎 (2𝑖 − 1) and 𝜎 (2𝑖) for the 𝑗-th sub-codeword 𝑥𝑦 in the 𝑖-th

subspace at 𝑡-level.

4 THE SEARCHING IN HVS
4.1 Multi-level distance book
For a given query 𝑞, our first step is to construct the multi-level

distance book, which stores the distances of query 𝑞 to the sub-

vectors at each level. It is constructed level by level from 𝑇 -level

to 𝑡0-level (Fig. 5). Let 𝑦
𝑖
𝑗
be the 𝑗-th sub-codeword in the 𝑖-th sub-

codebook at𝑇 -level and 𝑠
(𝑎1,...,𝑎 𝐽𝑡 )
(𝑏1,...,𝑏 𝐽𝑡 )

be the distance between𝑞 and an

arbitrary sub-codeword 𝑦
𝑎1
𝑏1

∧ . . . ∧ 𝑦𝑎 𝐽𝑡

𝑏 𝐽𝑡

at 𝑡-level, where 𝐽𝑡 = 2
𝑇−𝑡

.

Clearly, 𝑠
(𝑎1,...,𝑎 𝐽𝑡 )
(𝑏1,...,𝑏 𝐽𝑡 )

can be computed as follows:

𝑠
(𝑎1,...,𝑎 𝐽𝑡 )
(𝑏1,...,𝑏 𝐽𝑡 )

=

𝐽𝑡∑
𝑖=1




𝑞 (𝑎𝑖 ) − 𝑦𝑎𝑖
𝑏𝑖




, (7)

where 𝑞 (𝑎𝑖 ) is the 𝑎𝑖 -th sub-vector of 𝑞. Thanks to the multi-level

quantization, the values of 𝑠
(𝑎1,...,𝑎 𝐽𝑡 )
(𝑏1,...,𝑏 𝐽𝑡 )

in the layer of level 𝑡 can also

be computed as follows.

𝑠
(𝑎1,...,𝑎 𝐽𝑡 )
(𝑏1,...,𝑏 𝐽𝑡 )

= 𝑠
(𝑎1,...,𝑎 𝐽𝑡−1 )
(𝑏1,...,𝑏 𝐽𝑡−1 )

+ 𝑠 (𝑎 𝐽𝑡−1+1,...,𝑎 𝐽𝑡 )
(𝑏 𝐽𝑡−1+1,...,𝑏 𝐽𝑡 )

(8)

In other words, we just compute the exact distances between

quantized vectors and the query in a standard way (equation (7))

at 𝑇 -level. For other levels, we use (8) requiring only additions to

compute the distances efficiently.

4.2 Searching algorithm
The query phase is shown in Algorithm 2. Given query 𝑞, after

obtaining the multi-level distance book (step 2), we can find the

nearest sub-vector 𝑦𝑖 of sub-vector 𝑞 (𝑖) (1 ≤ 𝑖 ≤ 4) in the top layer,

since each sub-codebook only contains 𝐿 (=256) sub-codewords.

Clearly the closest seed point (𝑦1, 𝑦2, 𝑦3, 𝑦4) of 𝑞 in the top layer is

treated as the global entering point (step 3). From step 4, we conduct

the search layer by layer. In each layer, we conduct the standard

searching algorithm introduced in Sec. 1 and reach a group of ap-

proximate nearest Voronoi cells along the internal edges in this

layer (steps 5-7). For each reached Voronoi cell, we get its represen-

tative and determine the Voronoi cell in which this representative

falls in the next layer by the edges between successive layers. Nat-

urally, such a cell is an entering point in the next layer (step 13).

During this process, HVS may terminate the search in some middle

layer, depending on whether or not the current layer is the terminal

layer of the locally nearest Voronoi cell. If so, we stop the following

hops from this cell and treat the representative of this cell as the

entering point in the base layer (steps 8-12). Finally, we can obtain

a group of entering points in the base layer and then execute the

standard algorithm to obtain the final results (step 14).

5 DISCUSSION
5.1 Complexity analysis
Since HVS adopts the same edge selection strategy of HNSW [14],

the following complexity analysis is based on this fact. In addition,

we assume that 𝛿 ≤ 0.5.

Time complexity. In [30], if the size of priority queue is set

to 1, the authors estimate the searching complexity of HNSW as

𝑂 (𝑣𝑑 log𝑛) under some assumptions, where 𝑛 is the data size; 𝑑

is the dimension and 𝑣 is the maximum out-degree. Based on this

result and the fact that every 𝑡-level codeword is essentially a 𝑑-

dimensional vector, the searching complexity of HVS is estimated

as 𝑂 (2𝑀𝑣0 log𝑛 + 𝑣1𝑑 log𝑛′), where𝑀 = 2
𝑇
is the number of sub-

codebooks in the bottom layer; 𝑛′ is the number of points falling

inside the ball-like query-centric region before searching the base

layer (due to the feature of graph-based searching, this region may

shrink in the base layer when closer points are found); 𝑣0 is the

average out-degree of seed point and 𝑣1 is the average out-degree of

data point. Intuitively speaking, 2 log𝑛 and log𝑛′ are the estimated

lengths of search paths in upper layers and in the base layer, while

𝑀𝑣0 and 𝑣1𝑑 are the computational costs in upper layers and in

the base layer. Combining the observation that 𝑛′ is generally less

than 10
−5𝑛 on real datasets and the fact that 𝑀 ≪ 𝑑 for high-

dimensional datasets, we can see that, generally, HVS has the lower

time complexity than that of HNSW in practice.

Space complexity. In the query phase, we need to store (1)

every data point; (2) the index of every selected 𝑡-level vector, and (3)

the suffixes of connected neighbors of data points and seed points.

Since the data size decreases exponentially from the second layer

and the length of the seed point is independent of the dimension,

the space for storing seed points is negligible. Therefore, the total

space complexity of HVS in the query phase is 𝑂 (𝑛𝑑 + 2𝑛𝑣0 +
𝑛𝑣1). In contrast, the space complexity of HNSW is around 𝑂 ((1 +
𝜏)𝑛𝑑), where 𝜏 < 1 depends on the user-specified parameter and

is generally less than 0.01 in practice. Since 𝑣0 and 𝑣1 are bounded
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and much smaller than 𝑑 for high-dimensional datasets, the data

size 𝑂 (𝑛𝑑), dominates the total space complexity in practice.

In the indexing phase, the space complexities of HNSW and HVS

are equal to 𝑂 (𝑛𝑑 + 𝑛𝑣1). This is because different HVS layers are

constructed independently. Althoughwe need to connect successive

layers, this process can be finished before graph construction since

the layer-to-layer connection only depends on the selection of seed

points and data points.

5.2 Handling updates
Almost all graph-based methods, including NSG and HNSW, could

not support deletions and modifications efficiently because all of

them are directed graphs. For this reason, we only focus on in-

sertions. Noting that, although NSG and its variant NSSG have

single-layer structures, they could not support insertions because

they need to be transformed from a k-NN graph, whose topology is

affected by any update. Therefore, we only focus on the comparison

between HVS and HNSW. In order to make HVS support insertions,

we recommend to build three layers consisting of the top layer,

the base layer and only a single layer containing quantized vectors

(𝑇 = 4). The algorithm about the insertions in HVS is shown in

Algorithm 3. We can see that the whole process can be finished

in a single round because the nearest neighbors found in the HVS

layer containing seed points are treated as the entering points in

the base layer, which does not require an additional search from

the scratch. Since the complexity of selecting neighbors from 𝑃 is

constant, insertion and searching have the same time complexity. In

addition, since the role of seed points is to partition the data space

into lots of Voronoi cells, we recommend not to re-learn seed points

unless the change of data space, which rarely occurs in practice.

Clearly, in order to compare the accuracies of insertions of HVS

and HNSW, we only need to compare their KNN search perfor-

mances because the neighbors of every inserted point are chosen

from the returned approximate nearest neighbors. From the exper-

imental results in Sec. 6, we will see that, with close or even less

indexing time (or running time), HVS could provide more accu-

rate query results than HNSW, which shows that HVS can support

insertions better.

6 EXPERIMENTS
6.1 Experimental setup
All benchmarks were implemented in C++. All experiments were

performed on a PCwith Intel(R) Xeon(R) Gold 6262VCPU@1.90Ghz

with 200GB memory, running in Ubuntu 18.04.

6.1.1 Datasets and query sets. We used six real datasets with dif-

ferent sizes and dimensions (see Table 2). These datasets are widely

used for the evaluation of various ANNS methods. Since all com-

pared methods are not scalable for the original dataset of Tiny80M

on our PC, we represent every data point in Tiny80M with a 150-d

vector by the reduction of dimension. For every dataset, we use its

original test set, which is independent of the dataset, as the query

set. In addition, all reported results are average results over the

queries.

Table 2: Data statistics

Dataset Size Dim No. query Type

Seismic 1,000,000 256 100 Time series

Gist 1,000,000 960 1000 Image

Glove 2,196,017 300 1000 Text

ImageNet 2,340,373 150 200 Image

Tiny5M 5,000,000 384 1000 Image

Tiny80M 79,302,017 150 1000 Image
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Figure 7: The efficiency of multiple layers

6.1.2 Benchmark methods and parameter setting. We select four

graph-based methods HNSW [14], NSG [30], NSSG [13] and HC-

NNG [35] as benchmark methods since they have shown their su-

periority over other in-memory ANNS methods, such as tree-based

methods, DPG [25], Faiss (quantization-based methods), FALCONN

(LSH-based methods), etc, by extensive experiments [13, 14, 30]

(L&C is implemented in Faiss). For K-ANNS problem, we use recall

rate, which equals the ratio of the number of successfully returned

top-K points to 𝐾 , to measure the query accuracy.

• HNSW [30]. We set parameter efConstruction to 1024 which has

been regarded as a standard value in the implementations of

recent NSW-based methods [26, 37]. The maximum out-degree 𝑣

in the base layer was set to 32, as suggested in its original code.

• NSG [14]. We set its internal parameters 𝐿, 𝑅 and 𝐶 to 40, 50,

500, respectively. We found NSG performed well on each dataset

under such settings.

• NSSG [13]. NSSG can be regarded as a variant of NSG. We set its

internal parameters 𝐿, 𝑅 and 𝐴𝑛𝑔𝑙𝑒 to 500, 60, 60, respectively, as

suggested in its original code. By such setting, the out-degree of

NSSG is bounded by 60.

• HCNNG [35]. As suggested by its authors, the number of clusters

and the iteration number for K-means were set to 1000 and 20

respectively on all datasets.
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• HVS-NSW. We combined HVS with the way of linking used by

HNSW, and call the new structure as HVS-NSW (For simplicity,

we also use the name HVS, which refers to HVS-NSW, in the rest

of this paper). For each layer, efConstruction was set to 500. Later,

we will show that, even with a smaller value of efConstruction, the
quality of HVS-NSW index is much higher than that of HNSW.

In addition, the maximum out-degree 𝑣 in each layer expect for

the top layer was also set to 32. For user-specified parameters 𝑇

and 𝛿 in Algorithm 1, their values were determined based on the

data dimension. Specifically, we set 𝑇 to 4 for datasets with low

dimensions (ImageNet, Tiny80M), and disabled the density-based

allocation strategy. For datasets with high dimensions (Gist), we

set𝑇 and 𝛿 to 6 and 0.5, respectively. For the other datasets (Word,

Glove, Tiny5M), 𝑇 and 𝛿 were set to 5 and 0.5, respectively. The

number of training samples was set to 100,000 on Tiny80M and

set to 10,000 on other datasets.

For every compared graph-based method, we used parameter

𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ which represents the size of the priority queue, to control

the tradeoff between query accuracy and efficiency. When we use

a larger value of 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ, we can achieve a higher recall rate at

the expense of more running time. In addition, we use 𝐾 to denote

the number of returned points.

It is notable that, although HVS can be combined with NSG or

NSSG, we only focus on HVS-NSW in this paper. This is because

only HVS-NSW could support insertions, which is deemed to be

important in the database field.

6.2 Memory cost
First, we need to point out that the memory cost measured here

is different from the index size, especially for NSG/NSSG. In fact,

for NSG and NSSG, they need to allocate a space to every point for

storing the neighbors of this point before the query phase. The size

of such space is determined by the maximum out-degree of NSG

or NSSG. This means that their memory costs may be much larger

than their index sizes on disk. For this reason, we measure the

memory cost rather than the index size because we believe that the

former one could reflect the true space cost more accurately. Also,

for this reason, the results reported below are not contradictory to

the results in the paper of NSG.

The results are shown in Fig. 6 and we have the following obser-

vations. (1) AlthoughNSG andNSSG have single layers, they require

more space cost than HNSW because of their larger maximum out-

degrees. (2) NSG is not scalable on Glove and Tiny80M since its

maximum out-degree on these two datasets is above 80,000 and

5,000, respectively. (3) The additional memory cost of HVS-NSW

over HNSW arises from the storage of seed points in upper layers.

Since the dimensions of seed points are fixed, as the dimension of

the original dataset increases, the proportion of such additional

cost decreases. An evidence is that, on the high-dimensional dataset

Gist, the difference becomes very marginal.

6.3 Indexing time and training time
The results are listed in Table 3 and we have the following obser-

vations. (1) Except for Seismic and Gist, the total indexing time

of HVS-NSW is less than that of HNSW on other datasets. This

is because, for HVS-NSW, the construction time of upper layers

is much less than that of the base layer thanks to the efficient dis-

tance computations. On the other hand, by means of these upper

layers, efConstruction of HVS-NSW can be selected to be smaller

than that of HNSW to improve the efficiency of indexing. As the

data size grows, the construction time of base layer dominates and

the advantage of HVS-NSW becomes obvious.

(2) The indexing time of NSG or NSSG is higher than that of

HVS-NSW because they need to build k-NN graphs first. Although

compared with NSG, NSSG saves much indexing time, the indexing

time of NSSG increases sharply as the data size increases (see its

results on Tiny80M) while the indexing of HVS-NSW is consistently

efficient.

6.4 Search performance
6.4.1 The efficiency of multiple levels. In Sec. 6.4.1, we would like

to compare the performances of HVS-NSW under different settings

of 𝑇 , which controls the number of layers. The results on Gist

and Tiny5M are shown in Fig. 7. From the results, we have the

following observations. (1) Generally, the search performance of

HVS-NSW can be improved by increasing the number of layers.

This is because finer Voronoi cells could lead to closer entering

points in the base layer. (2) We can see that, given the same value of

𝑇 , the performance of HVS-NSW under 𝛿 = 0.5 is fairly close to that

under 𝛿 = 1, which demonstrates the efficiency of the density-based

allocation strategy.

6.4.2 The comparison study. For each dataset, we plotted recall-

time curves to compare the performances of four methods by ad-

justing their values of efSearch. Since the difficulties of searching

these real datasets are highly different, we chose the target recalls

independently for each dataset such that the comparisons under

these recalls are informative.

The results are shown in Fig. 8 and Table 4.We have the following

observations from different perspectives.

(1) Running time vs. Recall rate. From results in Fig. 8, we

can see that, in all cases except for 𝐾 = 1 on Tiny80M, HVS-NSW

achieved higher recalls than the other methods for each target

running time. Even for 𝐾 = 1 on Tiny80M, the difference between

HVS-NSW and NSSG is very small. This shows that HVS-NSW is

generally superior to the other graph-based methods in the search

performance.

(2) Results for small target times. From results in Table 4,

We can see that, HVS-NSW has the highest recalls among four

compared methods on each dataset for the small target running

time (1 ms or 2 ms). This shows that HVS-NSW could reach the

objective region in which the nearest neighbors fall much faster

than the other methods, which supports our motivation to speed

up the search in the first phase by using HVS.

(3) The effect of varying 𝐾 . We chose two target recalls 90%

and 95%, and compared the performances of four methods under

different values of 𝐾 on Gist and Tiny80M (Gist has the highest

dimension and Tiny80M has the largest size). We can see that HVS-

NSW incurs less running time than the other methods consistently,

which shows the robustness of HVS-NSW in solving the K-ANNS

problem.

(4) Choose HVS or a complicated edge-selection strategy?.
Since NSG and NSSG select edges more carefully than HNSW, their
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Table 3: Training time and Indexing time (s); baseline: HNSW. The total times of HVS-NSW and NSG are reported in the form
of 𝐴 + 𝐵. For HVS-NSW (abbreviated as HVS), 𝐴 denotes the training time and 𝐵 denotes the indexing time. For NSG/NSSG, 𝐴
denotes the construction time of k-NN graph and 𝐵 denotes the indexing time of NSG/NSSG. In addition, NSG is not scalable
on Glove and Tiny80M.

Method Seismic Gist Glove ImageNet Tiny5M Tiny80M

HNSW 161 567 443 433 1798 20105

NSG 208+4735(30.7X) 703+673(3.1X) \ 304+126(1.0X) 2236+2835(2.8X) \
NSSG 208+31(1.5X) 703+48(1.7X) 411+4972(12X) 304 + 35(0.9X) 2236+168(1.3X) 22328+47693(3.5X)

HCNNG 434(2.7X) 1514(2.7X) 591(1.3X) 377(0.9X) 2016(1.1X) 17012(0.8X)

HVS 36+157(1.2X) 251+416(1.5X) 54+333(0.9X) 11+232(0.6X) 105+1589(0.9X) 308+15520(0.8X)
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Figure 8: The performances on real datasets. If some method could not achieve target recalls within target running times, we
did not report its results.

performances are generally superior to the performance of HNSW.

However, an interesting phenomenon is that, HVS-NSW brings

more obvious improvement in the search performance over HNSW

although both HVS-NSW and HNSW use the same edge-selection

strategy. This implies that HVS might be a more efficient approach

to improve the performance of existing graph-based methods than

just using another sophisticated edge-selection strategy which usu-

ally makes the indexing and updates inefficient.

6.4.3 Extension to range search. For HNSW/HVS-NSW,we adopted

the following two-phases search strategy to support the range
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Table 4: Recalls(%) under small target running times (𝐾 =

100 and each target value x (ms) is listed in the form of
@x). NSSG/NSG required at least 1.6 ms to return results on
Tiny5M and NSSG required at least 5 ms to return results on
Tiny80M.

Dataset HNSW HVS NSG NSSG HCNNG

Seismic@1 40.4 44.8 42.5 42.3 34.7

Gist@2 80.3 88.5 85.4 86.2 60.7

Glove@1 76.3 88.9 \ 72.6 59.1

ImageNet@1 60.5 81.7 74.3 76.2 56.8

Tiny5M@1 69.9 75.2 \ \ 44.8

Tiny80M@2 70.7 79.1 \ \ \
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Figure 9: Results of range search on Tiny80M

search. In the first phase, we normally conduct the KNN search. In

the second phase, we check all neighbours of points in the priority

queue. If the processed point falls into the target range, it will

be added into the priority queue. The second phase terminates

when no new point can be added into the priority queue. All points

left in the priority queue are final results. We additionally chose

FLANN [31], a widely-used tree-based method for range search, as

a benchmark and show the results of Tiny80M in Fig. 9. From the

results, we can see that HVS-NSW still has the best performance.

7 CONCLUSION
In this paper, we proposed a general framework called HVS to

improve the search performance of existing graph-based ANNS

methods. HVS builds multi-level virtual Voronoi diagrams on the

original proximity graph to accelerate the ANN search. By means

of the effective computations of the distances between the query

and seed points of Voronoi cells represented by quantized vectors,

the nearest neighbors of the query can be approached in a fast and

accurate way.
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