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ABSTRACT
Accurate selectivity estimation for string predicates is a long-standing
research challenge in databases. Supporting pattern matching on
strings (such as prefix, substring, and suffix) makes this problem
much more challenging, thereby necessitating a dedicated study.
Traditional approaches often build pruned summary data structures
such as tries followed by selectivity estimation using statistical
correlations. However, this produces insufficiently accurate car-
dinality estimates resulting in the selection of sub-optimal plans
by the query optimizer. Recently proposed deep learning based
approaches leverage techniques from natural language processing
such as embeddings to encode the strings and use it to train a model.
While this is an improvement over traditional approaches, there is
a large scope for improvement.

We propose Astrid, a framework for string selectivity estima-
tion that synthesizes ideas from traditional and deep learning based
approaches. We make two complementary contributions. First, we
propose an embedding algorithm that is query-type (prefix, sub-
string, and suffix) and selectivity aware. Consider three strings
‘ab’, ‘abc’ and ‘abd’ whose prefix frequencies are 1000, 800 and 100
respectively. Our approach would ensure that the embedding for
‘ab’ is closer to ‘abc’ than ‘abd’. Second, we describe how neural
language models could be used for selectivity estimation. While
they work well for prefix queries, their performance for substring
queries is sub-optimal. We modify the objective function of the
neural language model so that it could be used for estimating selec-
tivities of pattern matching queries. We also propose a novel and
efficient algorithm for optimizing the new objective function. We
conduct extensive experiments over benchmark datasets and show
that our proposed approaches achieve state-of-the-art results.
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1 INTRODUCTION
Selectivity estimation is the problem of estimating the proportion
of tuples in a relation that satisfy a given query. We consider the
problem of accurate selectivity estimation for queries with string
predicates such as the SQL LIKE operator. Knowing the selectivity
of individual predicates in a query such as “name LIKE ‘%abc%’ AND
zipcode LIKE ‘%123’ AND ssn LIKE ‘%1234’" allows the optimizer to
determine which filter to process first. Selectivity estimation over
string predicates is much harder as the queries can be based on pre-
fix, substring, suffix or a combination thereof. Inaccurate estimates
result in the selection of a poor plan by the query optimizer.

1.1 Prior Approaches and Their Limitations
There has been extensive work on selectivity estimation for string
predicate queries.

Tradititional Approaches. The early works build a summary data
structure for answering string predicate queries. For example, suffix
tree [18] is a special type of trie that stores all the suffixes of a
given string and can answer queries involving substrings including
suffixes. Typically, the complete summary data structure is sub-
stantially larger than the text used to build it [61] and cannot be
stored in memory. Hence, the data structure is pruned by removing
all entries whose frequency is less than a given threshold. If the
query string 𝑞 exists in the data structure, then it can be returned
precisely. However, if 𝑞 does not exist, then it is decomposed into
possibly overlapping substrings i.e. 𝑞 = 𝛼𝛽 where both 𝛼 and 𝛽
exist in the summary data structure. Then, different statistical ap-
proaches [8, 27, 40] can be used to combine the exact selectivity of
𝛼 and 𝛽 to obtain the approximate selectivity of 𝑞 = 𝛼𝛽 .

Prior approaches faced two fundamental issues that limited their
performance. First, getting accurate estimates often required an
unacceptably large summary data structure even in the current era
where the storage is plentiful. Second, the algorithms for estimating
the selectivity of infrequent keywords by combining the selectivity
of frequent substrings often relied on statistical assumptions that
might not be realistic and result in inaccurate selectivity estimates.

Deep Learning (DL) based approaches. A number of recent
works such as [20, 22, 35, 36, 79] have tackled the problem of selec-
tivity estimation. However, none of these work are targeted towards
string predicates which is a more challenging problem due to its
diverse query types. For example, MSCN [36] only tackles equality
queries by hashing string literals to an integer. Another approach
used in Neo [49] and others [20, 79] is to leverage word embedding
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techniques from natural language processing (NLP). The strings are
encoded as a real-valued vector using the embeddings. Selectivity
estimation is then formulated as a learning problem where a DL
model is trained using string embeddings and their true selectivity.

One can potentially generate a training dataset containing all
prefixes/substrings/suffixes and use it to train a DL model for selec-
tivity estimation. This obviates the need for storing the summary
data structure. However, the performance of the model now hinges
on the quality of the embeddings. As we shall describe in Section 4,
directly using word/character embeddings from NLP provides sub-
optimal results. The major reason is that they are not aware of the
downstream task of selectivity estimation. As an example, consider
three strings ‘ab’, ‘abc’ and ‘abd’ whose prefix frequencies are 1000,
800 and 100 respectively. A naive approach will give similar em-
beddings for all three strings and result in a large estimation error
for ‘abd’. The strings ‘abc‘ and ‘xyc’ can be considered similar for
suffix queries which might not be acceptable for substring queries.

1.2 Outline of Technical Results
Recently, deep learning (DL) based approaches have achieved tremen-
dous success in selectivity estimation [20, 36, 59, 79]. However, these
works often focus on non-string data types with limited support
for string queries through embedding. Selectivity estimation of
string predicates with pattern matching is a notoriously challeng-
ing problem and requires a dedicated investigation. Our key insight
is that revisiting the principles of traditional approaches utilizing
deep learning based primitives can alleviate the pain points for
these approaches. In this paper, we propose Astrid1, a generic
and extensible approach that synthesizes summary data structure
and embeddings/neural language models to yield highly accurate
estimates. Combining these requires a number of non-trivial devel-
opments. We propose two complementary approaches for building
a selectivity estimator that is accurate, compact, and efficient to
train and predict. Our proposed approach operates in two phases.
During the offline phase, we train a DL model that is then used for
predicting the selectivity of queries in the runtime phase.

Selectivity Estimation through SummaryData Structure Em-
beddings.Our first approach Astrid-Embed revisits the traditional
strategy for answering selectivity queries using summary data struc-
tures and alleviates the storage issue. Popular data structures such as
tries can be dramatically larger than the underlying text itself [61].
Hence, prior approaches prune the dataset to an acceptable size
but incur a penalty in accuracy. We train a DL model that learns to
estimate the selectivity of each of the substrings in the summary
data structure. If the model is accurate and compact, then one can
use it instead of the verbose summary data structure.

Despite the conceptual simplicity, implementing this idea re-
quires a number of innovations. Since DL models can only process
numeric input, we have to learn an embedding to map each string
in the summary data structure into a real-valued vector. We can-
not directly use pre-trained embeddings such as word2vec [54],
fastText [4] and their ilk. These methods are designed for natu-
ral language processing and seek to assign similar embeddings to
two words if they occur in similar contexts in natural language
text, often. However, this approach provides sub-optimal results
1Astrid stands for Accurate String Selectivity by Deep Learning

for selectivity estimation. Instead, we propose novel semantics for
an embedding that is based on selectivity and query type (such as
prefix, suffix or substring queries). Intuitively, we wish to assign
similar embeddings to two words if they satisfy similar queries and
have similar frequency. We propose an efficient algorithm to learn
such embeddings and use these embeddings to train a DL model
for selectivity estimation.

Selectivity Estimation throughNeural LanguageModels.Our
second approach is based on the insight that one can modify lan-
guage models for the purpose of selectivity estimation. Intuitively,
a language model [32] provides a mechanism to compute the prob-
ability of the next word given the previous words. Hence, given a
sequence of words {𝑤1,𝑤2, . . . ,𝑤𝑚}, it can output its probability.
We build a language model that operates at the character level [34]
instead of the word level. Hence, given the query 𝑞 as sequence
of characters 𝑞, the model can be used to estimate the probability
that the query sequence is generated. Consider a query 𝑞 = ‘𝑎𝑏𝑐%‘
that seeks to estimate the number of entries with prefix ‘abc’. The
selectivity of the query can be computed using the chain rule

𝑝 (𝑎𝑏𝑐) = 𝑝 (𝑎) × 𝑝 (𝑏 |𝑎) × 𝑝 (𝑐 |𝑎𝑏) (1)

We train a neural language model to learn the conditional proba-
bility distributions in an compact manner. To the best of our knowl-
edge, our work is the first to deploy neural language models for
string selectivity estimation. As we shall describe in Section 5, this
approach works well for prefix queries. For substring queries, this
results in a major underestimate. We modify the objective function
of the neural language model so that it can be used for substring se-
lectivity estimation. We also propose an efficient training algorithm
for this modified objective function.

2 PRELIMINARIES
Let A be a finite alphabet. We have a relation 𝑅 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}
where each 𝑠𝑖 ∈ A∗. There are 𝑛 strings in the relation.

Queries with String Predicates. SQL supports two wildcard char-
acters % and _ for specifying string patterns. The percent and under-
score allows for substitution of one or more characters in a string. A
query “LIKE %sam%” matches all strings that contain the substring
‘sam’. The query “LIKE s_m” matches all strings that contain three
word strings whose first letter is s and last letter is m. One can
express a wide variety of queries using these wildcard characters. A
prefix query matches all strings that start with abc will be specified
as “LIKE abc%”. The suffix query “LIKE %abc” matches all strings
that end with abc. The substring query “LIKE %abc%” matches all
strings that contain the word “abc”.

𝑞-grams. Let 𝑠 ∈ 𝑅 be a string of characters whose length is |𝑠 |. We
denote the i-th character of 𝑠 as 𝑠 [𝑖] and the substring from its i-th
to j-th character as 𝑠 [𝑖, 𝑗]. Given a positive value 𝑞, a 𝑞-gram of 𝑠 is
a set obtained by sliding a window of length 𝑞 over 𝑠 . For example,
if 𝑞 = 2 and 𝑠 = 𝑠𝑎𝑚, the 𝑞-grams are {sa, am}.

Performance Measures. Let 𝑄 be a string predicate query and
𝑆𝑒𝑙 (𝑄) represents the size of the strings matched by 𝑄 . We use the
normalized selectivity between [0, 1] by dividing the result size by
𝑛, the number of strings. Let the estimate provided by selectivity
estimation algorithm be 𝐸𝑠𝑡 (𝑄).
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We use q-error for measuring the quality of estimates. Intuitively,
q-error describes the factor by which the estimate differs from true
selectivity. This metric is widely used for evaluating selectivity
estimation approaches [20, 36, 45, 46, 55, 79] and is relevant for
applications such as query optimization where the relative ordering
is more important [45]. We do not consider the use of relative error
due to its asymmetric penalization of estimation error [20, 55] that
results in models that systematically under-estimate selectivity.
This is due to the fact that the worst possible error for under-
estimation is 1 while it is unbounded for over-estimation.

q-error = max
(︃
𝑆𝑒𝑙 (𝑄)
𝐸𝑠𝑡 (𝑄) ,

𝐸𝑠𝑡 (𝑄)
𝑆𝑒𝑙 (𝑄)

)︃
(2)

3 BACKGROUND
In this section, we provide a concise summary of techniques that
are relevant for the development of Astrid.

3.1 Summary Data Structures for String
Selectivity Estimation

Traditional approaches for answering string selectivity queries
involve two key components: (a) summary data structure that effi-
ciently calculates the selectivities of various strings and (b) statis-
tical techniques to approximate selectivity of input queries when
they are not present in the data structure. We focus on suffix trees
that is widely used to answer substring/suffix queries. However,
our approach is agnostic to any summary data structure that could
compute the frequency of all substrings efficiently.

Suffix Tree Primer. A suffix tree [18] is a trie based data structure
widely used for estimating string selectivity [10, 28, 40]. A suffix
tree for a single string 𝑠 of length |𝑠 | has |𝑠 | nodes each of which are
labeled by substrings of 𝑠 . No two edges starting from a node share
a common prefix. A suffix tree for string 𝑠 can be built in Θ( |𝑠 |)
time. Given a substring 𝑡 , one can verify if it is present in 𝑠 in Θ( |𝑡 |)
time. One can search for a regular expression in Ω( |𝑠 |) [2].
Pruning Suffix Trees. A generalized suffix tree [18] is built using
a set of words 𝑆 and can represent all suffixes belonging to 𝑆 along
with their frequencies. Figure 1 shows a generalized suffix tree
for strings {‘sam’, ‘jim’, ‘tim’, ‘time’ } with frequencies 2000, 3000,
2000 and 1000 respectively. As the tree could be much larger than
the underlying dataset itself, it is common to prune out the nodes
whose substring frequency is below a threshold. Since, the vast
majority of substrings have very low frequency, this heuristic often
provides good reduction in space needed. In Figure 1, we prune all
nodes whose frequency is 2000 or lower.

Selectivity EstimationwithPruned SuffixTrees.Given a query
string 𝑞, we wish to estimate the selectivity as accurately as pos-
sible. If 𝑞 is present in the tree, then we can report the exact se-
lectivity. If 𝑞 is not present, we need to generate an approxima-
tion of the selectivity. There has been extensive work on identi-
fying partial matches of 𝑞 that exist in the suffix tree and use it
to approximate 𝑆𝑒𝑙 (𝑞). A simple approach decomposes 𝑞 into dis-
joint substrings 𝑞1, 𝑞2, . . . , 𝑞𝑘 where each of 𝑞𝑖 exists in the suffix
tree. Under the independence assumption [40], one could estimate
𝐸𝑠𝑡 (𝑞) =

∏︁𝑘
𝑖=1 𝑆𝑒𝑙 (𝑞𝑖 ). If 𝑞 = 𝑉𝐿𝐷𝐵 and 𝑞1 = 𝑉𝐿 and 𝑞2 = 𝐷𝐵,

Figure 1: Generalized (uncompressed) Suffix tree for strings
{‘sam’, ‘jim’, ‘tim’, ‘time’ }

then 𝐸𝑠𝑡 (𝑉𝐿𝐷𝐵) = 𝑆𝑒𝑙 (𝑉𝐿) × 𝑆𝑒𝑙 (𝐷𝐵). Another popular approach
relies on the Markovian assumption where the probability of 𝑞𝑖
is only dependent on its immediately preceding token 𝑞𝑖−1. So
𝐸𝑠𝑡 (𝑞) = 𝑆𝑒𝑙 (𝑞1) ×

∏︁𝑘
𝑖=2 𝑆𝑒𝑙 (𝑞𝑖 |𝑞𝑖−1). Continuing the above ex-

ample, 𝐸𝑠𝑡 (𝑉𝐿𝐷𝐵) = 𝑆𝑒𝑙 (𝑉𝐿) × 𝑆𝑒𝑙 (𝐷𝐵 |𝑉𝐿) where 𝑆𝑒𝑙 (𝐷𝐵 |𝑉𝐿)
returns the selectivity of 𝐷𝐵 that were preceded by 𝑉𝐿. A slightly
sophisticated approach from [27] splits 𝑞 into possibly overlapping
substrings 𝑞1, . . . , 𝑞𝑘 each of which exist in the suffix tree. We de-
note by 𝑞𝑖 ⊘ 𝑞𝑖+1 the maximum overlap (MO) which is the largest
suffix of 𝑞𝑖 that is also the prefix of 𝑞𝑖+1. [27] proposes that,

𝑆𝑒𝑙 (𝑞) = 𝑆𝑒𝑙 (𝑞1) ×
𝑘∏︂
𝑖=2

𝑆𝑒𝑙 (𝑞𝑖 )
𝑆𝑒𝑙 (𝑞𝑖−1 ⊘ 𝑞𝑖 )

(3)

If𝑞 = 𝑉𝐿𝐷𝐵 and𝑞1 = 𝑉𝐿,𝑞2 = 𝐿𝐷 and𝑞3 = 𝐷𝐵, then 𝑆𝑒𝑙 (𝑉𝐿𝐷𝐵) =
𝑆𝑒𝑙 (𝑉𝐿) × 𝑆𝑒𝑙 (𝐿𝐷)

𝑆𝑒𝑙 (𝐿) × 𝑆𝑒𝑙 (𝐷𝐵)
𝑆𝑒𝑙 (𝐷) . Other methods such as [8] make in-

creasingly sophisticated statistical assumptions with varying effec-
tiveness. We evaluate against all these methods in Section 6.

3.2 Word Embeddings and Language Models

Embeddings for Strings. Deep learning based approaches for
selectivity estimation [20, 49, 79] tackle string selectivity queries
through embeddings. Popular embedding approaches include fast-
Text [4], word2vec [54], and many others. They are trained on a
large corpus of text such as Wikipedia and output a vector space
where each word in the corpus is represented by a real valued
vector. By default, each word is represented as a dense 300 dimen-
sional vector (aka embedding). Let𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑖 , . . . ,𝑤𝑘 }
be a sequence of words. Given𝑊 and a word𝑤𝑖 , the context is the
set of surrounding words𝑤𝑖−𝐶 , . . . ,𝑤𝑖+𝐶 for some context window
of length 𝐶 . Popular approaches use context to predict 𝑤𝑖 or use
𝑤𝑖 to predict its context. The former is called continuous bag of
words (CBOW) while the latter is called as skip-gram. Algorithms
for learning embeddings ensures that the vectors for words that
occur in similar context – such as SIGMOD and VLDB – are close
to each other in the embedding space.

Language Models.We can abstract language models as providing
the functionality to compute the probability of the next word given
the preceding words (if any). The language model could compute
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the probability for 𝑃 (𝑤𝑖 |𝑤1,𝑤2, . . . ,𝑤𝑖−1). For any given sequence
of words, we can estimate its joint probability as

𝑃 (𝑊 ) =
𝑘∏︂
𝑖=1

𝑃 (𝑤𝑖 |𝑤1, . . . ,𝑤𝑖−1) (4)

Word embeddings could be considered as simplified language mod-
els that could predict a word given a context. An interesting per-
spective that we later leverage is to view the traditional approaches
for selectivity estimation as a space constrained approximation of
language models. We provide additional details in Section 5.

Neural Language Models (NLM). Neural networks have become
increasingly popular for language modeling. A classical approach
first proposed in [3] builds a NLM using three steps. (a) Each word
in the vocabulary is associated with an embedding; (b) the joint
probability function of word sequences are estimated using the
embeddings; and (c) train a DL model to simultaneously learn both
the embeddings and the probability function. The language model
is trained over a large corpus of text and learns the joint probability
distribution. It is not necessary to explicitly storing the counts
which obviates the need for summary data structures.

4 SELECTIVITY ESTIMATION THROUGH
EMBEDDINGS

In this section, we describe Astrid-Embed that can estimate selec-
tivities of string predicate queries using a task aware embedding.

4.1 Overview of Astrid-Embed

Need for a Hybrid Approach. The traditional and embedding
based approaches described in Section 3 have some disadvantages
that limit the accuracy of estimations. The traditional approaches
pruned the suffix tree to satisfy space constraints and suffer from
the resulting approximation that is hard to correct even with sophis-
ticated statistical models. Intuitively, they sought to retrofit a fixed
statistical model on top of a pruned suffix tree. DL models have the
ability to learn the complicated relationship between substrings
and their selectivities. Word embeddings are designed to perform
well for NLP tasks and naively using them for selectivity might
provide sub-optimal results. For example, two words that co-occur
in similar context might have similar embedding. However, in the
selectivity setting, these two similar strings could have arbitrarily
different selectivities. Using similar embeddings for these words as
input to a selectivity estimator will produce poor estimates. The
similarity could also be query dependent. One could learn better
embeddings by using the summary data structures.

Blended Approach of Astrid-Embed. The key insight of Astrid-
Embed is to revisit the principles of traditional approaches and
leverage deep learning based primitives to alleviate both their pain
points. Intuitively, we train a DL model by feeding it all the sub-
strings from the unpruned suffix tree along with their true selectiv-
ities. Once an accurate and compact DL model has been trained, it
could be used as an approximation of the entire suffix tree without
any need for ad-hoc statistical models as used in the traditional
approaches. This hybrid approach can produce dramatically better
estimates with limited space.

Components of Astrid-Embed. There are three major compo-
nents – summary data structure, embedding learner and a selectiv-
ity estimator. Our proposed approach (see Figure 2) is very generic
and extensible. Each of these components could be replaced with a
more sophisticated model producing improved results. The sum-
mary data structure is responsible for efficiently computing the
selectivities of all the relevant strings from the dataset. This could
be query type specific. For example, tries [18] could be used for
estimating prefix queries while suffix trees [18] are an apt choice
for substring/suffix queries. One could also use any other advanced
data structures for this purpose. For ease of exposition, we will fo-
cus on suffix trees. The embedding learner uses the summary data
structure to learn embeddings that are optimized for the selectivity
estimation task. Finally, the selectivity estimator is trained over
a dataset of (substring, selectivity) pairs where each substring is
encoded using embeddings learned for selectivity estimation.

4.2 Embeddings for Selectivity Estimation

Desiderata. Embeddings for selectivity estimationmust satisfy two
key requirements. First, we require that two strings are assigned
similar embeddings if they are syntactically similar and have simi-
lar selectivities. Note that this could be query specific. For prefix
queries, the two strings ‘abcxyz’ and ‘abcdef’ could be considered
similar while they will not be for suffix queries. Second, we require
that our embeddings operate at the granularity of characters and
𝑞-grams. Word based embeddings are not appropriate as the queries
could be based on any substring in a given word.

Baseline Approaches. We briefly describe two natural baseline
approaches that we empirically evaluate in the experiment section.
One could use a character based embedding approach such as fast-
Text [4]. Intuitively, these approaches express the embedding of a
word by using the embeddings of q-grams. For example, if 𝑞 = 2,
then the string VLDB is treated as bag of 2-grams {BOW V, VL, LD,
DB, B EOW} where BOW, EOW are special tokens denoting the
beginning and end of a word. Then the embedding for VLDB is com-
puted as the normalized sum of the embeddings for its q-grams [4].
By default, fastText constructs the 𝑞-gram for 𝑞 = 3 to 6. For the
selectivity estimation task, one could set 𝑞 to a different range such
as 1−3. Another approach is based on the observation that the suffix
tree could be considered as a graph where each node corresponds
to a distinct substring. One could then leverage the techniques for
node embeddings such as DeepWalk [60]. Both these approaches
have some disadvantages. The character based approach – while
an improvement – is still not selectivity aware. The graph embed-
ding approach gives even better results but is quite expensive to
compute [77] and could be further improved by our techniques.

Formalizing the Embedding Semantics. Let the dataset contain
𝑁 distinct substrings {𝑠1, 𝑠2, . . . , 𝑠𝑁 }. Given a token 𝑠𝑖 , let𝐶𝑖 be the
set of similar tokens while𝐷𝑖 be the set of tokens that are dissimilar
to 𝑡𝑖 . All strings in 𝐶𝑖 are similar to 𝑠𝑖 both syntactically and also
in selectivity. Our objective is to learn embeddings for each token
𝑠𝑖 such that it is similar to substrings 𝐶𝑖 but dissimilar to that of
𝐷𝑖 . There are now two challenges - (a) for each 𝑠𝑖 how can we
efficiently retrieve 𝐶𝑖 and 𝐷𝑖 ; (b) how to formalize the objective
function that achieves the desired semantics?
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Figure 2: Major components of Astrid-Embed

Obtaining Similar and Dissimilar Tokens. Intuitively, we want
𝐶𝑖 to be the set of tokens that are similar to 𝑠𝑖 in terms of selec-
tivity and query type. The strings ‘abcxyz’ and ‘abcdef’ should be
considered more similar than the strings ‘abcxyz’ and ‘defghi’. If
𝑆𝑒𝑙 (𝑎𝑏) = 1000 and 𝑆𝑒𝑙 (𝑎𝑏𝑐) = 900 and 𝑆𝑒𝑙 (𝑎𝑏𝑑) = 100, then the
strings ‘ab’ and ‘abc’ are considered to be more similar than ‘ab’
and ‘abd‘. Given a string 𝑠𝑖 , a simple approach would be to design
a ranking function that takes both these factors into account and
order every other word using this function. In addition to being
inefficient, this also creates a new set of problems requiring the de-
sign of an appropriate ranking function and a well chosen threshold
to identify similar and dissimilar tokens. It is possible to leverage
the suffix tree to do a better job. Given a node 𝑠𝑖 in the suffix tree,
all its children share the same prefix and hence are all syntactically
similar. Then the children could be ordered based on how similar
their frequencies are to 𝑠𝑖 . It is possible to generalize this for a larger
neighborhood. Suppose that we perform 𝐿 random walks starting
from each node in the suffix tree. Given a node 𝑠𝑖 with 𝑘 children
{𝑠𝑖,1, . . . , 𝑠𝑖,𝑘 }, we chose the next node according to:

𝑝 (𝑠𝑖 , 𝑠 𝑗 ) =
⎧⎪⎪⎨⎪⎪⎩

1
(𝑘+1) 𝑖 𝑓 𝑠 𝑗 is parent of 𝑠𝑖
𝑆𝑒𝑙 (𝑠 𝑗 )∑︁𝑘

𝑙=1 𝑆𝑒𝑙 (𝑠𝑖,𝑙 )
× 𝑘
𝑘+1 𝑠 𝑗 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠𝑖 )

(5)

This transition probability distribution defined in Equation 5 has
both the desirable properties. Due to suffix tree properties, tokens
that are similar according the query-type are also in the immediate
neighborhood of 𝑠𝑖 . The transition probability is defined so that the
walk from 𝑠𝑖 preferentially chooses the child whose selectivity is
most similar to that of 𝑠𝑖 . Furthermore, it does not need any fixed
threshold for cut-off. Figure 3 shows an example.

Improving the Efficiency. This proposed approach has some ob-
vious connections to graph embeddings. However, treating it as a
graph embedding problem gives sub-optimal results. Instead, we
use the transition probability to quickly compute similar 𝐶𝑖 and
dissimilar 𝐷𝑖 substrings. Due to the stochasticity of Equation 5, one
might require multiple random walks from each node that could
make this process very inefficient. Other simple tricks such as us-
ing 1-hop or 2-hop neighbors of 𝑠𝑖 as 𝐶𝑖 also produces sub-optimal
results. We evaluate these approaches in Section 6.

It is possible to achieve a dramatic speedup by natually treating
the suffix tree as a – tree. We propose a simple heuristic that lower
bounds the probability of reaching between any two nodes and
can be computed in linear time. Consider two nodes 𝑠𝑖 and 𝑠 𝑗 . The

Figure 3: A portion of the suffix Tree from Figure 1 anno-
tated with transition probabilities based on Equation 5.

probability of starting from 𝑠𝑖 and reaching 𝑠 𝑗 using the transition
probability defined in Equation 5 provides a notion of similarity
between them. Even in a tree, there could be multiple possible
walks between 𝑠𝑖 and 𝑠 𝑗 (i.e. in walks both vertices and edges might
repeat). Hence, the total probability is the sum of all the probabilities
of each of these walks (which could be exponential in number).

One could lower bound this probability by computing the path
between the two vertices in the shortest number of edges. A path
does not allow either vertices or edges to repeat. Since the path is
just one of the many other possible walks between the two nodes,
the probability of this path is a valid approximation of the true prob-
ability. Of course, repeating this for each pair will require 𝑂 (𝑁 2)
time complexity. We further reduce this by using the concept of
landmarks that has been used to efficiently compute the approxi-
mate shortest distance in a graph [1]. Specifically, we identify a set
of 𝐾 nodes in the suffix tree dubbed landmarks 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝐾 }.
For each node 𝑙𝑘 , we can compute the probability of reaching 𝑙𝑘
from each of 𝑠𝑖 in linear time by performing a BFS starting from 𝑙𝑘 .
Storing these probabilities requires a linear storage. Given any two
pair of vertices 𝑠𝑖 and 𝑠 𝑗 , we compute the bound for probability as

max {𝑝 (𝑠𝑖 , 𝑙𝑘 ) + 𝑝 (𝑙𝑘 , 𝑠 𝑗 ) ∀𝑙𝑘 ∈ 𝐿}

. This could be computed in 𝑂 (𝐾) time complexity.
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Learning Embeddings through Triplet Loss. For each node 𝑠𝑖 ,
let 𝐶𝑖 and 𝐷𝑖 be the set of similar and dissimilar strings. We wish
to learn embeddings for 𝑠𝑖 such that the embedding is closer to the
substrings in 𝐶𝑖 and farther from substrings of 𝐷𝑖 . Given a triplet
𝑤𝑖 , 𝑐𝑖 , 𝑑𝑖 where 𝑐𝑖 ∈ 𝐶𝑖 and 𝑑𝑖 ∈ 𝐷𝑖 , the triplet loss [64, 76] could
be defined as

max
(︂
| |𝑓 (𝑤𝑖 ) − 𝑓 (𝑐𝑖 )) | |2 − ||𝑓 (𝑤𝑖 ) − 𝑓 (𝑑𝑖 ) | |2 +𝑚, 0

)︂
(6)

where 𝑓 (𝑠) is the embedding for 𝑠 and𝑚 is a positive value called
“margin”. This formulation will ensure that (a) distance between
𝑤𝑖 and 𝑑𝑖 is larger than the distance between 𝑤𝑖 and 𝑐𝑖 and (b)
distance between𝑤𝑖 and 𝑑𝑖 is larger than𝑚. There are a number of
approaches to efficiently learn an embedding under under triplet
loss [21, 64, 76]. Using a simpler contrastive loss [19] that mini-
mizes the distances of similar word and maximizes the distance of
dissimilar words provides sub-optimal results.

Figure 4: Illustration of Triplet Loss

Heuristics for Triplet Selection. There has been extensive work
on identifying good triplets for training [76, 80]. These include
selecting based on pairwise relevance scoring [72], top-K pairs
within a training batch [73], selecting challenging triplets [24] and
so on. As observed in [80], these strategies could result in triplet
selection bias that reduces the accuracy of selectivity estimates. We
use a distance weighted sampling approach inspired by [76]. First,
we apply min-max scaling on the computed probabilities so that
minimum value is 0 and the maximum is 1. Then for each node, we
set it as an anchor and select positive examples with probability
proportional to the normalized value. The negative examples are
selected with probability proportional to the inverse value with
a weighted clipping to avoid noisy samples [76]. This approach
results in better set of triplets than other complex heuristics.

4.3 Selectivity Estimator Using Embeddings
The final step is to train a DL model that accepts a string predicate
as an input and outputs its selectivity. The training data consists
of a set of substrings from the suffix tree along with their true
selectivities. We represent each substring through the embedding
learned by triplet loss function. Estimating the selectivity could be
considered as a regression problem where the embeddings are the
independent features with selectivity being the dependent feature.
The relationship between embeddings and the selectivity is complex
and is more suited to a DL model. A similar observation has been
made in prior works such as [20, 36, 42].

Encoding Selectivities. Each token 𝑠𝑖 is associated with the nor-
malized selectivity between 0 to 1. Typically, the distribution of
selectivities are very skewed with most of the tokens being infre-
quent. Directly training the DL model on the skewed data produces
sub-optimal results. We reduce the skew by applying log transfor-
mation followed by min-max scaling. This has been applied in a
number of prior works including [14, 20, 36]. Given a selectivity of
0.00001, the log transformation produces 5. The logarithmic selectiv-
ities are much less skewed than the original selectivities. Min-max
scaling ensures that log transformed selectivities are rescaled to
the range of [0, 1] with the smallest (resp. largest) selectivity being
assigned to a value of 0 (resp. 1).

DL Architecture.We evaluated a number of DL architectures and
found that a simple fully connected feed forward model with three
layers works well. The first layer is the embedding layer that looksup
the embedding of the input string. The next two layers are used to
learn an intermediate representation. The final layer is the softmax
layer for producing the probability distribution.

Loss Function.We use q-error metric defined in Section 2 for mea-
suring the accuracy of our model. Specifically, we seek to minimize
the mean q-error defined over all substrings in the training set 𝑄 .

q-error(𝑄) = 1
|𝑄 |

|𝑄 |∑︂
𝑖=1

max
(︃
𝑞𝑖ˆ︁𝑞𝑖 , ˆ︁𝑞𝑖𝑞𝑖

)︃
(7)

Once the model is trained, we could discard the suffix tree. Given
a new query, it could be encoded using the learned embeddings and
then passed to the model. The output of the model is then converted
to true selectivity by applying inverse of min-max and log scaling.

5 SELECTIVITY ESTIMATION THROUGH
NEURAL LANGUAGE MODELS

Next, we develop a selectivity estimator Astrid-NLM by leverag-
ing the connection between selectivity estimation and language
modeling. To the best of our knowledge, our work is the first to do
so. While neural language models (NLM) can be easily adapted to
answer prefix and suffix queries, they require a novel modification
to training dubbed state-reset for handling substring queries.

5.1 From Suffix Trees to Language Models

Need for an Alternate Approach. A key bottleneck in Astrid-
Embed is the need for constructing the suffix tree. While it could
be done in time linear to the size of the corpus, the suffix tree
itself could be extremely large. It could require as much as 20x
storage than the size of the text being indexed [61]. Furthermore,
the large number of valid substrings makes building DL models for
learning embeddings and selectivity estimation quite expensive. It
is desirable to have an alternate approach that can provide accu-
rate selectivity estimates by leveraging the statistical correlation
between tokens without the need for building suffix trees.

Prior Works as Rudimentary Language Models. We take a
fresh look at the traditional approaches for string selectivity estima-
tion. Given a unpruned suffix tree, selectivity estimation is as simple
as a lookup. The challenge comes when the suffix tree is pruned.
If a query 𝑞 is not present in the suffix tree, then it is decomposed
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into smaller substrings 𝑞1, 𝑞2, . . . , 𝑞𝑘 that exist in the suffix tree, and
𝑆𝑒𝑙 (𝑞) is approximated as a function 𝑓 (𝑞1, 𝑞2, . . .). In Section 3.1,
we described three such functions based on different statistical as-
sumptions – complete independence, Markov independence and
maximal overlap based independence.

Recall from Section 3.2 that language models also estimate the
probability of a string by decomposing it to shorter substrings.
From this perspective, one could think of traditional approaches
for selectivity estimation as simple language models that make
certain statistical assumptions.When these assumptions hold on the
dataset, they give good results. If not, they provide highly inaccurate
results. Furthermore, these language models are static, ad-hoc and
not learned for each dataset. We advocate the use of neural language
models as a principled approach to approximate the selectivities.
Replacing ad-hoc language models with a neural language model
(NLM) brings a number of advantages. We could piggy back on
the periodic breakthroughs of the NLP community that seeks to
build ever more accurate language models. The language models
could be fine-tuned and learned specifically for each datasets for
the selectivity estimation task. Most importantly, it is possible to
learn language models without building the suffix tree.

5.2 Selectivity Estimation Through Neural
Language Models

Given a sequence of tokens 𝑞 =< 𝑞1, 𝑞2, . . . , 𝑞𝑘 >, language models
provide the probability of 𝑞 as

𝑝 (𝑞) = 𝑝 (𝑞1, 𝑞2, . . . , 𝑞𝑘 ) = 𝑝 (𝑞1)
𝑘∏︂
𝑖=2

𝑝 (𝑞𝑖 |𝑞1, . . . , 𝑞𝑖−1) (8)

The tokens could either be words or characters. Using a character
based language model is more natural for our task. Hence, given a
sequence of characters, the language model must provide the proba-
bility of that sequence. We can immediately see that the probability
is equivalent to the selectivity estimate of the prefix query ‘q%’.
By training a language model on the reversed corpus, one could
similarly obtain the selectivity for a suffix query ‘%q’. Of course,
one could also use language models that can process text in a bi-
directional manner. Finally, the estimate provided by Equation 8 is
a lower bound of the selectivity for the substring query ‘%q%’.

Training Astrid-NLM.We next describe how to adapt the train-
ing of neural language models for the task of selectivity estimation.
We refer the reader to [32] for further details about training NLM.
We are given a bag of strings 𝑅 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} where each string
𝑠𝑖 is a sequence of characters of arbitrary length. We begin by
creating a large corpus 𝐶 of length 𝑁 by concatenating all 𝑠𝑖 . For
example, if 𝑅 = {𝑠𝑎𝑚, 𝑗𝑖𝑚, 𝑠𝑎𝑚}, we get 𝐶 = {𝐵𝑂𝑊 , 𝑠, 𝑎,𝑚, 𝐸𝑂𝑊 ,

𝐵𝑂𝑊 , 𝑗, 𝑖,𝑚, 𝐸𝑂𝑊 , 𝐵𝑂𝑊 , 𝑠, 𝑎,𝑚, 𝐸𝑂𝑊 } where 𝐵𝑂𝑊 , 𝐸𝑂𝑊 are spe-
cial tokens indicating beginning and end of the word. Abstractly,
𝐶 = {𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑁 ) } where 𝑥 (𝑖) denotes the 𝑖-th sequence in
corpus𝐶 . The NLM processes𝐶 sequentially one character at a time
and seeks to accurately estimate the probability distribution for
the next character 𝑦 (𝑡 ) given the previous characters. For example,
the alphabet for 𝑅 for the running example is A = {𝑎, 𝑖, 𝑗,𝑚, 𝑠}. So,
given the sequence 𝐵𝑂𝑊 , 𝑠, 𝑎, it generates a probability distribution
that the next character is one of {𝑎, 𝑖, 𝑗,𝑚, 𝑠}. A well trained NLM

should give a high probability to𝑚 than the other characters. It
must be penalized otherwise. The loss between the probability dis-
tributions for predicted 𝑦̂ (𝑡 ) and actual 𝑦 (𝑡 ) = 𝑥 (𝑡 ) next character
is computed using cross-entropy (CE) [32] defined as

L (𝑡 )
𝑁𝐿𝑀

= 𝐶𝐸 (𝑦 (𝑡 ) , 𝑦̂ (𝑡 ) ) = −
|A |∑︂
𝑗=1

𝑦
(𝑡 )
𝑗

log 𝑦̂ (𝑡 )
𝑗

(9)

where 𝑦̂ (𝑡 )
𝑗

and 𝑦 (𝑡 )
𝑗

are the predicted and actual probability that
𝑗-th character in the alphabet occurs at position 𝑡 . The objective
function of the NLM [32] is to minimize the cross entropy error
over the entire corpus 𝐶 .

L𝑁𝐿𝑀 =
1
𝑁

𝑁∑︂
𝑡=1

𝐽 (𝑡 ) = − 1
𝑁

𝑁∑︂
𝑡=1

|A |∑︂
𝑗=1

𝑦
(𝑡 )
𝑗

log 𝑦̂ (𝑡 )
𝑗

(10)

Figure 5: Illustration of a simple Neural Language Model
used in Astrid-NLM. The bar chart provides the probabil-
ity distribution 𝑝 (·|𝐵𝑂𝑊 , 𝑡, 𝑖,𝑚). The character 𝑒 seems to be
most likely one.

DL Architecture for Astrid-NLM. A number of DL architectures
such as LSTM [23], GRU [11] have been proposed for neural lan-
guage modeling. Almost all of these are based on recurrent neural
networks that are well suited for processing sequence data with the
ability to handle long term dependencies. Intuitively, these mod-
els work by processing a character 𝑥 (𝑡 ) and outputs a state ℎ (𝑡 ) .
This state is used to output the probability distribution for the next
character 𝑦 (𝑡+1) . Intuitively, the state ℎ (𝑡 ) remembers the relevant
details about the previously seen characters if any such as 𝐵𝑂𝑊 , 𝑠, 𝑎

in the above example. This process is then repeated till the end of
the corpus 𝐶 . Concretely,

𝑝 (𝑞) = 𝑝 (𝑞1, 𝑞2, . . . , 𝑞𝑘 ) =
𝑘∏︂
𝑖=1

𝑝 (𝑞𝑖 |𝑞1, . . . , 𝑞𝑖−1) (11)

=

𝑘∏︂
𝑖=1

𝑝 (𝑞𝑖 |ℎ𝑖 ) (12)

In other words, the state ℎ𝑖 acts as a proxy for the previously seen
characters 𝑞1, . . . , 𝑞𝑖−1. The NLM model then uses ℎ𝑖 to estimate
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the probability that 𝑞𝑖 is generated in the state ℎ𝑖 . Whenever the
NLM processes BOW, it is reset to an initial blank state ℎ0 – an all
zero vector. We use Gated Recurrent Unit (GRU) [11]. It is a popular
variant of recurrent neural networks that uses gating mechanisms
for efficiently learning the language model. GRUs are faster to
train than other sophisticated models such as LSTMs and provides
comparable accuracy in language modeling [12, 31]. Our proposed
approach is agnostic to the specific architecture used. We evaluate
the performance of popular architectures in the experiments.

5.3 Accurately Answering Substring Queries
The previously described NLM model can be directly used to esti-
mate the selectivities of prefix queries. However, it produces sub-
optimal results for substring queries. To see why, consider our
running example, 𝑅 = {𝑠𝑎𝑚, 𝑗𝑖𝑚, 𝑠𝑎𝑚}. Suppose we wish to esti-
mate the selectivity of the substring query ‘%a%’. While we expect
the NLM to produce an estimate around 2/3, it produces a value
closer to 0. Specifically, it tries to estimate 𝑝 (𝑎) = 𝑝 (𝑎 |ℎ0). Since the
NLM did not see any string in 𝑅 that starts with 𝑎, this probability
will be estimated to be around 0. The fundamental reason is that
NLM processes a string 𝑠𝑖 = {𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑘 } from the first charac-
ter to the last. Hence, it only learns the probabilities corresponding
to the prefix queries

𝑝 (𝑠𝑖,1), 𝑝 (𝑠𝑖,2 |𝑠𝑖,1), . . . , 𝑝 (𝑠𝑖,𝑘 |𝑠𝑖,1, . . . , 𝑠𝑖,𝑘−1)

This restriction is natural in a natural language processing setting
where the NLM would process the string from the beginning for
various tasks in language modeling. It is very unlikely that one
has to process a fragment of a sentence. In contrast, this is a very
important requirement for answering substring queries. They must
be able to estimate the probability of any arbitrary substring in
the corpus. To the best of our knowledge, none of the existing
NLM could be used for estimating substring selectivities. Given the
promising results for prefix queries, we propose a novel adaptation
of the training of NLM that alleviates this issue.

Adapting NLM Training for Substring Queries. We wish to
retain the ability of NLM to accurately learn selectivities of prefix
queries but extend it to substring queries. We observe that the
poor performance of substring queries is exclusively due to the fact
that the default training of NLM does not try to learn conditional
probabilities for substring queries. In our running example, the
reason for poor estimate of the substring query ‘%a%’ is that 𝑝 (𝑎) =
𝑝 (𝑎 |ℎ0) was not accurately defined. For 𝑅 = {𝑠𝑎𝑚, 𝑗𝑖𝑚, 𝑠𝑎𝑚}, only
𝑝 (𝑠 |ℎ0) and 𝑝 ( 𝑗 |ℎ0) gives non-zero result as they were the only two
characters that occur at the beginning of any string.

Our key insight is that the NLM could learn these conditional
probabilities through a simple change of the training, which we call
state-reset. Consider the following change. While processing the
corpus 𝐶 sequentially, we randomly reset ℎ𝑡 to ℎ0 with some small
probability. Let us consider the sequence 𝐵𝑂𝑊 , 𝑠, 𝑎,𝑚, 𝐸𝑂𝑊 . The
NLM processes 𝑝 (𝑠 |ℎ0) and produces a new state ℎ1. In an unmod-
ified NLM, one would estimate the probability 𝑝 (𝑎 |ℎ1). However,
suppose that our random process resets ℎ1 to ℎ0 before processing
𝑎. In other words, in this case, we pretend the input sequence was
𝐵𝑂𝑊 , 𝑠, 𝐵𝑂𝑊 , 𝑎,𝑚, 𝐸𝑂𝑊 . Now, the NLMwill try to process 𝑝 (𝑎 |ℎ0)

which will result in a better estimate for the substring query than
unmodified NLM.

Concretely, state-reset is impacted by a hyperparameter 𝛼 that
controls the probability of resetting the state. Setting 𝛼 = 0 is
equivalent to training a classical NLM. Setting a large 𝛼 results
in the a higher likelihood of resets. While this achieves a better
performance for substring queries, it degrades the performance of
prefix queries and longer substring queries. The concept of state-
reset could be considered analogous to dropout [65]. Nodes in a feed
forward neural networks are randomly dropped with a dropout
probability. While dropout makes the training process noisy, it acts
as an effective regularizer and improves generalizability [65]. While
similar in spirit, our rationale for state reset is to support substring
queries. While there has been some work on dropouts for recurrent
networks [53, 81], they only apply to non-recurrent connections
to avoid impeding the memorization capabilities. In contrast, we
explicitly reset the recurrent connections so that the NLM learns
how to estimate the selectivity of substrings in the corpus.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
following three questions: (a) How does Astrid compare against
prior approaches from databases and NLP for string selectivity
estimation? (b) How much benefit does our proposed modifications
of embeddings and neural language models achieve? (c) How can
we compare the performance of Astrid-Embed and Astrid-NLM?

6.1 Experimental Setup

Hardware and Platform. All our experiments were performed
on a NVidia V100 GPU. The CPU is a quad-core 2.2 GHz machine
with 16 GB of RAM. We used PyTorch for building the DL models.
The implementation of Astrid can be found here2.

Datasets.We conducted our experiments on five benchmark datasets
from three different sources (DBLP [75], IMDB [45] and TPC-H)
that have been used extensively in the evaluation of prior work on
string selectivity. The dataset D-AT uses the article titles fromDBLP
bibliography and was previously used in [78],[44],[43],[8],[47]. The
dataset D-AN is based on the author names for the publications
and has been used in [78],[44],[43],[8]. Datasets I-MT and I-AN
correspond to movie titles and actor names from IMDB dataset and
used in evaluation of [78],[44],[43],[30]. Finally, dataset T-PN is
based on part names from TPC-H and has been used in evaluation
of [40]. The statistics of these datasets can be found in Table 1.

Algorithms for Selectivity Estimation. We use an embedding
size of 64 for Astrid-Embed and train it with a batch size of 128.
The margin𝑚 was set to a value of 0.2. Please refer to Section 4.3
for additional details about the DL model. For Astrid-NLM, we
used a GRU with 2 layers and 650 hidden states that has been
previously used for neural language modeling [81]. We then modify
it to include a state-reset hyperparameter as 𝛼 = 0.1. The NLM was
trained for 40 epochs with a batch size of 128. We used truncated
backpropagation for training with 20 time steps. For each dataset,
we fixed the space budget to ensure fair comparison. This value is
set to be the size of the summary data structure containing only
2https://github.com/saravanan-thirumuruganathan/astrid-string-selectivity
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Source Column Abbrv #Entries #Distinct #Prefixes #Suffixes #Substrings
DBLP Article Titles D-AT 50K 49.5K 99K 80K 381K
DBLP Author Names D-AN 111.1K 69.6K 136K 132K 360K
IMDB Movie Titles I-MT 2.52M 1.46M 1.16M 1.21M 3.53M
IMDB Actor Names I-AN 4.16M 3.58M 1.71M 1.73M 4.36M
TPC-H Parts Name T-PN 200K 200K 22K 21K 453K

Table 1: Statistics for benchmark datasets used for evaluating Astrid

the top-10% most frequent entries. As we shall show later, a lower
value resulted in poor performance of the baseline algorithms while
a larger value did not materially improve the performance.

Query Workload. We used the appropriate summary data struc-
ture to collect the list of prefixes, suffixes and substrings. When
training the selectivity estimator, we randomly partitioned the
strings and used 50% of them for training. Within the 50% of the
training data, we used 10% as a validation dataset to tune the hy-
perparameters. For evaluation, we generated random positive and
negative strings as used in prior work [10, 27, 30, 40, 43, 44, 47, 78].
The number of queries in the testing dataset is the same as the
training dataset. Astrid-NLM was trained on the entire dataset
and uses the same query workload as Astrid-Embed.

Performance Measures. We used 𝑞-error defined in Equation 2
for measuring the estimation quality. A 𝑞-error of 1 corresponds to
perfect estimate. A 𝑞-error of 𝑗 corresponds to an under- or over-
estimate by a factor of 𝑗 and so on. We display the median and
90-th percentile of q-error. q-error is undefined for negative queries
(whose selectivity is 0) as it involves a ratio of estimated and actual
selectivities. Hence, we use a smoothed version of q-error where a
small 𝜖 = 1𝑒 − 2 is added to both numerator and denominator.

6.2 Comparison Against Baselines
In our first set of experiments, we compare the efficacy of Astrid
with popular baseline estimators from traditional and deep learning
based approaches. Each of these are widely used approaches with
KVI [40] being one of the earliest work to use suffix trees for string
selectivity. An improved estimator MO was given by [27] that uses
maximum overlap. Both these approaches could under estimate
the selectivity. So [8] proposed a CRT estimator to obtain better
estimates by finding a shorter string whose frequency is similar to
a given string. We evaluated the embedding based approach from
Neo [49] and a traditional q-gram based language model [32]. We
investigate other embedding approaches in Section 6.3 We ensured
that the pruned suffix tree and the models of Astrid and other
deep learning based approaches have the space budget.

The overall results can be found in Table 2. Not surprisingly,
Astrid outperforms both traditional and DL based baselines. The
traditional approaches retrofit an ad-hoc language model to esti-
mate the selectivities from the suffix tree. We can see that the more
sophisticated models perform better. KVI is the simplest one and
has the least accuracy. MO leverages additional information in the
form of maximal overlap that improves the estimates. Finally, CRT
leverages short distinctive strings whose selectivity is similar to
the query string. This heuristic provides the best accuracy overall.
Interestingly, Astrid also outperforms two representative DL based

approaches. Current DL selectivity estimators handle strings by
computing a task-agnostic embedding. Neo-Embed [49, 56] uses
a NLP based approach for embedding. Astrid also outperforms
q-gram based non-neural language model. It was implemented us-
ing the NLTK’s LanguageModel module [57]. We used a frequency
based cutoff to ensure that the language model fits the space budget.
The selectivity of q-grams are estimated using Kneser-Ney smooth-
ing – one of the most sophisticated and widely used smoothing
approach that provides better selectivity estimates [9, 32]. Simi-
lar to CRT and MO baselines, the performance of this approach
deteriorates for longer queries as their frequency needs to be in-
terpolated based on the q-grams whose frequencies are stored. The
outperformance of Astrid-Embed over Astrid-NLM is not sur-
prising as Astrid-Embed learns task specific embeddings and then
uses a training dataset to learn a supervised selectivity estimator.
In contrast, Astrid-NLM uses an unsupervised approach without
building the suffix tree.

For the rest of the section, we only report the 90-th percentile of
the q-error for different algorithms and datasets due to space limits.

Impact of Space Budget. Table 3 shows how the performance of
the selectivity estimation algorithms are affected when the space
budget are varied. We set the space budget as a proportion of the
size of the summary data structure. By default, the budget is set
by pruning the data structure so that only the most frequent 10%
of the entries are retained. We vary this number from 1% to 25%
for IMDB Actor Names (I-AN) dataset. Not surprisingly, q-error
increases when the space budget is reduced and vice versa. The
impact is especially notable for the non-neural baselines CRT and
q-gram whose 90-th percentile q-error worsens by almost an order
of magnitude. However, increasing the budget has comparatively
limited impact on the non-neural models that quickly plateaus.

6.3 Evaluating Astrid-Embed
In this subsection, we investigate how the design choices made by
Astrid-Embed affects its performance.

Impact of Embedding Size. The most critical hyperparameter for
Astrid-Embed is the size of the embedding. The embeddings plays
a key role in learning similarity between various substrings based
the query type and frequency that is then used in the supervised
DL model. A smaller embedding size produces a smaller model
at the cost of expressiveness of the representation. In contrast, a
larger embedding size allows Astrid-Embed to learn sophisticated
correlation patterns and thereby achieve a higher accuracy. Table 4
shows the result of the experiment where we vary the embedding
size. As expected, a smaller size produces a steep drop in accuracy.
Increasing the embedding size reduces the q-error at a slower rate.
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D-AT D-AN I-MT I-AN T-PN
Median 90th Median 90th Median 90th Median 90th Median 90th

Astrid-Embed 1.12 4.29 1.28 3.86 1.17 3.98 1.24 3.85 1.32 5.84
Astrid-NLM 1.38 6.95 1.43 7.45 1.34 7.14 1.41 8.4 1.47 8.61
Neo-Embed 1.88 8.9 1.93 9.3 2.1 10.02 1.99 9.8 2.21 10.78
KVI 4.85 13.87 4.44 11.56 4.5 11.9 4.86 10.16 4.9 13.89
MO 3.93 9.3 4.14 10.8 3.9 9.3 4.16 10.84 4.26 10.62
CRT 3.11 8.7 3.81 9.09 2.67 8.8 3.8 10.22 3.9 9.68
q-gram-LM 2.33 7.4 2.88 6.18 3.8 8.32 3.7 9.9 2.68 10.62

Table 2: Comparison of Astrid against traditional and DL based baselines.

1% 5% 10% 25%
Astrid-Embed 11.4 3.85 2.8 1.9
Astrid-NLM 16.8 8.4 6.1 4.8
CRT 129.1 10.2 8.4 7.1
q-gram LM 79.6 9.9 9.3 7.8

Table 3: Varying Space Budget (I-AN Dataset)

Our goal is to produce a compact model for Astrid-Embed and
hence chose the default embedding size as 64 so as to balance the
accuracy and model size.

D-AT D-AN I-MT I-AN T-PN
32 11.73 8.76 15.77 16.55 9.38
64 4.29 3.86 3.98 3.85 5.84
128 4.08 3.44 3.46 3.54 5.16
256 3.64 3.09 3.38 3.04 4.91
Table 4: Varying size of embeddings

Impact of algorithm used for learning embeddings. In our
next experiment, we investigate the impact of the specific algo-
rithm used for learning the embeddings. By default, Astrid-Embed
uses triplet loss for learning the embedding. We consider three alter-
natives. The first is fastText [4], a word embedding based approach
that has the capability to express the embedding of a word based
on its q-grams. This is especially relevant for selectivity estimation
as the queries could be arbitrary substrings. We also compare a
classical graph embedding algorithm DeepWalk [60] that learns em-
bedding by performing uniform random walks over the suffix tree.
Finally, we also contrasted triplet loss with a simpler contrastive
loss [19]. Given a pair of substrings, one could label them as simi-
lar or not-similar. Based on this labeling, contrastive loss seeks to
learn an embedding such that the Euclidean distance between the
embeddings of similar substrings are smaller and dissimilar items
to be larger. We used the same value of margin𝑚 = 0.2 for both the
losses. Similarly, we use the same distance based selection strategy
to pick triplets and pairs. Prior work such as [76] has shown that it
is an effective heuristic for ranking losses.

The result can be found in Table 5. As expected, Astrid-Embed
produces the best performance. The contrastive loss based approach
produces the next best results. This justifies our effort to produce

a blended distance function in Section 4.2 that combines both fre-
quency and query-type similarity. Between the other two baselines,
fastText performs better than DeepWalk. This is not surprising as
fastText leverages sub-word information for learning embeddings.
In contrast, DeepWalk makes random walks that could result in
embeddings that are not query-type and frequency aware. We also
did a hyperparameter optimization on DeepWalk to vary the ran-
dom walk size and the context window size. This did not materially
improve the results.

D-AT D-AN I-MT I-AN T-PN
Astrid-Embed 4.29 3.86 3.98 3.85 5.84
FastText 5.64 6.73 6.59 7.67 7.11
DeepWalk 7.34 6.69 6.86 6.14 7.4
Contrastive Loss 6.98 5.73 6.97 6.1 6.78

Table 5: Varying the algorithm for learning the embeddings
of Astrid-Embed

Impact of Triplet Selection Strategy. In this experiment, we
evaluate our distance based sampling strategy. We compare it
against three representative approaches. The random approach
chooses the triplet as follows. For every anchor, it randomly picks
a positive example from the 3-hop neighborhood. The negative
example is then randomly picked from the entire graph. In the
2-hop approach, we exhaustively consider all its 2-hop neighbors
as positive examples and random nodes as negative examples. We
also evaluated a LSH based approach. Specifically, we used Min-
HashLSH with Jaccard similarity defined over 3-grams of the string.
For each string, we hashed it into a bucket. Then we choose a ran-
dom string from the same bucket as a positive anchor and a random
string from a random bucket as a negative anchor. Note that 2-hop
approach could generate a large number of triplets. In contrast, the
other approaches are limited by a budget on the number of triplets
selected. We can see the results in Table 6. The 2-hop approach
produces a better results than the random approach. However, the
distance based sampling idea of Astrid-Embed produces a better
accuracy while using a dramatically smaller number of triplet exam-
ples. The LSH based approach provides slightly worse performance
than the 2-hop strategy. The key issue is that it focuses on string
similarity but not on the frequency. Hence, two similar strings that
have different frequencies could end up in the same LSH bucket.
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D-AT D-AN I-MT I-AN T-PN
Astrid-Embed 4.29 3.86 3.98 3.85 5.84
2-Hop 5.98 5.45 6.4 7.1 7.7
Random 8.5 8.1 8.4 9.93 9.8
LSH 6.1 5.69 6.81 7.07 7.97

Table 6: Varying the triplet selection strategy

Impact of Pruning Threshold. A key bottleneck for Astrid-
Embed is the size of the suffix tree. This affects both the embedding
learning and the training data generation for selectivity estimator.
We investigate how pruning the suffix tree impacts Astrid-Embed.
Given a threshold such as 90%, we remove all nodes that are in the
bottom 10% with ties broken randomly. Table 7 shows the results.
As the suffix tree is pruned more and more, the q-error slowly
trickles up. In resource constrained environments, one can prune
the suffix tree, pay a minimal penalty in accuracy while achieving
substantial reduction in time taken for embedding learning and
training the estimator.

D-AT D-AN I-MT I-AN T-PN
Astrid-Embed 4.29 3.86 3.98 3.85 5.84
90% 4.33 4.1 4.4 4.8 6.1
75% 4.9 4.59 5.18 5.3 7.6
50% 5.16 5.05 6.71 5.94 8.23

Table 7: Varying the Pruning threshold

Impact of Training Dataset Size. By default, Astrid-Embed uses
40% of the suffix tree nodes for training. In this experiment, we show
how the performance is affected for shorter trees. For example, in
the 10% case, we randomly choose 10% of the suffix tree and use
it for training. We can see from Table 8 that one could reduce the
training dataset by as much as 10% of the tree and yet get accurate
results due to the generalization capabilities of the neural networks.

D-AT D-AN I-MT I-AN T-PN
Astrid-Embed 4.29 3.86 3.98 3.85 5.84
30% 5.37 4.78 5.45 6.13 6.96
20% 6.2 5.9 6.11 6.61 8.01
10% 6.95 7.1 7.98 8.16 8.6

Table 8: Varying the training data size

6.4 Evaluating Astrid-NLM
In this subsection, we investigate the key design choices of Astrid-
NLM.

Impact of DL Architecture used for Language Modeling. By
default, Astrid uses GRU for learning the NLM. There are other
possible architectures of which the most popular is LSTM. We com-
pare the performance of these architectures in Table 9. We ensured
that both LSTM and GRU has the same number of hidden units.
LSTM produces slightly better results than GRU. This is mainly

due to the fact that LSTM is a more complex architecture that uses
4 gates as against 3 for GRU. GRU requires 25% lesser number of
parameters to learn and is as much as 10x faster to train. It also
requires less tuning of hyperparameters than LSTM. Our observa-
tions also corraborate a number of prior work such as [12, 31] that
show that GRU and LSTM produce comparable results for various
language modeling tasks. We can see that the RNN architecture
provides worse results than either GRU or LSTM. While the perfor-
mance of RNN is comparable for short queries, the accuracy drops
rapidly for longer queries.

D-AT D-AN I-MT I-AN T-PN
Astrid-NLM 6.95 7.45 7.14 8.4 8.61
LSTM 6.19 6.86 6.64 7.46 7.67
RNN 10.54 11.09 11.68 12.9 13.45

Table 9: Varying the NLM architecture

Impact of State-Reset Hyperparameter. Recall that we modify
the training process of GRU so that the state is periodically resetted
with a probability 𝛼 . By default, we set 𝛼 = 0.1. Table 10 shows
how the results vary for different values of 𝛼 . A smaller value of
𝛼 increases the median and 90-th percentile q-error. Almost all
of these increase comes from substring query estimates. Setting
𝛼 to 0 is equivalent to the traditional GRU training that is not
conducive for substring queries. Specifically, setting it to a larger
value reduces the accuracy of Astrid-NLM from answering queries
involving larger strings. This is due to the fact that 𝛼 = 0.9 results
in a significant number of resets that prevent it from learning the
selectivities for larger strings.

D-AT D-AN I-MT I-AN T-PN
0.05 8.7 9.01 8.11 9.37 9.2
0.1 6.95 7.45 7.14 8.4 8.61
0.5 9.5 9.7 8.2 10.9 10.4
0.9 10.9 10.7 9.29 12.7 12.6

Table 10: Varying state-reset hyperparameter

6.5 Comparing Astrid-Embed and Astrid-NLM
In this subsection, we compare the performance of our two pro-
posed approaches Astrid-Embed and Astrid-NLM. for different
query types – prefix, substring and suffix. Table 11 shows the results.
As expected, Astrid-Embed is not impacted by query type. The
process for learning the embeddings and training the selectivity
estimator is identical for all query types. In contrast, Astrid-NLM
produces good results for prefix and suffix queries with a slight
dip in performance for substring queries. Once again, this is not
surprising as neural language models are not trained for answer-
ing substring queries. The comparable performance is due to our
proposed state-reset idea. Interestingly, Astrid-NLM is slightly
more accurate for suffix queries. This is due to the fact that the
suffixes are often more distinct than prefixes. Hence the frequency
distribution is comparatively simpler with less skew that is easier
to learn for Astrid-NLM.
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D-AT D-AN I-MT I-AN T-PN
Astrid-Embed 4.29 3.86 3.98 3.85 5.84
Astrid-NLM 6.95 7.45 7.14 8.4 8.61
Astrid-Embed-PF 4.11 3.69 3.83 3.97 5.25
Astrid-Embed-SF 4.16 3.87 3.91 3.93 5.6
Astrid-Embed-SB 4.43 4.2 4.56 4.62 6.9
Astrid-NLM-PF 6.58 7.52 7.32 8.5 8.8
Astrid-NLM-SF 6.94 7.47 7.36 8.9 8.83
Astrid-NLM-SB 7.49 10.08 9.59 9.74 10.13

Table 11: Impact of Query type on Astrid. PF, SF, SB corre-
spond to prefix, suffix and substring

ModelOverhead.TheDLmodels of Astrid are oftenmuch smaller
than the underlying summary data structures requiring less than
20MB for all datasets. The 90-th percentile time taken for querying
is less than 50 milliseconds. There has been extensive work on
compressing the models. We use the Distiller [84] library from Intel
AI that implements all the state-of-the-art model compression algo-
rithms. This approach reduces the model size without sacrificing
accuracy while increasing inference efficiency. The model size after
compression is around 12MB. The 90-th percentile inference time
dropped to below 40 milliseconds.

Impact of Dataset Size. We use the AOL query log from [25]
that has more than 36M queries. We fixed the space budget as
20MB and vary the size of the dataset from 1M queries to 36M.
Table 12 shows that Astrid can provide good performance for
arbitrarily sized datasets even with a fixed model size. In contrast,
q-gram based model shows a steeper decline in performance. This
is not surprising as the number of distinct q-grams dramatically
increases with larger dataset size. However, the fixed space budget
constrains the ability of the model to perform better even with the
sophisticated Kneser-Ney smoothing.

1M 5M 10M 36M
Astrid-Embed 2.4 3.3 4.2 4.8
Astrid-NLM 3.8 5.6 8.7 10.2
q-gram LM 8.8 12.8 16.4 38.6

Table 12: Varying Dataset Size

Model Retraining. Astrid does not currently allow incremental
retraining of the models to handle data updates. Astrid-Embed
relies on the summary data structure to learn the embeddings. Due
to the large size, the data structure is deleted once the model is
learned. Retraining the model requires rebuilding it from scratch.
A simple approach would be to use a small set of queries for which
the true selectivities are known. If Astrid’s performance reduces
below an acceptable level (e.g. 90-th percentile must be at most 5),
then one could retrain the model. There is a need for a sophisticated
cost model for understanding the cost-benefit tradeoff.

7 RELATEDWORK

TraditionalApproaches for String Selectivity Estimation.The
earliest effort was from [40] that used suffix trees followed by a

number of weighted combinations of individual selectivity. An im-
proved estimator was given by [27]. Both these approaches could
under estimate the selectivity. So [8] proposed a CRT estimator to
obtain better estimates by finding a shorter string whose frequency
is similar to a given string. Two estimators HSol and Vsol using set
hashing for estimating selectivities was proposed by [52]. Other
major works that tackle similar problems include [10, 28]. There has
been a number of work for solving approximate string selectivity
such as [30, 43, 44]. Popular approaches for numeric data include
sampling [48], histograms [5, 6, 26, 29, 62, 67], wavelets [51], kernel
density estimation [17, 33, 37] and graphical models [16, 70].

ML based Approaches for Selectivity Estimation. One of the
earliest approaches to use neural networks is [42]. A recent work
is [36] that focuses on estimating correlated join selectivities. It pro-
poses a novel set based DL model but focuses mostly on supervised
learning. An empirical analysis of various approaches can be found
in [59]. Recent works seek to tackle challenging types of queries
including group-by [35] and range queries [14, 79]. There has been
some promising works on unsupervised approaches for selectivity
estimation such as [20, 79]. There is also some promising work
on using (deep) learning for approximate query processing such
as [22, 63, 68, 74, 82]. Recently, there has been some preliminary
work for approximating the edit distance [13] and use it for nearest
neighbor search [83]. Unfortunately, there is limited support for
string predicate queries.

Deep Learning for Databases. An early work [39] built fast in-
dices by using a mixture of neural networks to effectively learn the
distribution of data. Reinforcement learning based techniques have
been used for query optimization (and join order enumeration) such
as [41, 50, 58, 71]. There has been research efforts to build learned
database systems [38] and an end-to-end learned optimizers [49, 66].
DL has also been applied to the problem of data integration [7, 69]
and entity resolution in [15].

8 CONCLUSION
Estimating accurate selectivities for prefix, substring and suffix
queries is a challenging problem. Our proposed approaches –Astrid-
Embed and Astrid-NLM– produces embeddings and neural lan-
guage models that are tuned for the task of selectivity estimation
and achieves state-of-the-art results. There are a number of inter-
esting directions to explore at the intersection of expressive string
queries and deep learning concepts such as embeddings and neural
language models. For example, the problem of approximate string
selectivity that estimates strings whose distance to the query is
within a bound is non-trivial to solve. One could also extend char-
acter based neural language models with recent architectures for
language modeling such as transformers.
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