
SChain: A Scalable Consortium Blockchain Exploiting Intra- and
Inter-Block Concurrency

Zhihao Chen1 Haizhen Zhuo2 Quanqing Xu2 Xiaodong Qi1 Chengyu Zhu1 Zhao Zhang1
Cheqing Jin1,∗ Aoying Zhou1 Ying Yan2 Hui Zhang2

1East China Normal University 2Ant Group
{chenzh, xdqi, cyzhu}@stu.ecnu.edu.cn, {zhzhang, cqjin, ayzhou}@dase.ecnu.edu.cn

{haizhen.zhz, xuquanqing.xqq, fuying.yy, shengchu.zh}@antgroup.com

ABSTRACT
We demonstrate SChain, a consortium blockchain that scales trans-
action processing to support large-scale enterprise applications. The
unique advantage of SChain stems from the exploitation of both
intra- and inter-block concurrency. The intra-block concurrency
not only takes advantage of the multi-core processor on a single
peer but also leverages the capacity of multiple peers. The inter-
block concurrency enables simultaneous processing across multiple
blocks to increase the utilization of various peers. In our demonstra-
tion, we use real-time dashboards containing visualization based on
the output of SChain to give the attendees interactive explorations
of how SChain achieves intra- and inter-block concurrency.

PVLDB Reference Format:
Zhihao Chen, Haizhen Zhuo, Quanqing Xu, Xiaodong Qi, Chengyu Zhu,
Zhao Zhang, Cheqing Jin, Aoying Zhou, Ying Yan, Hui Zhang. SChain: A
Scalable Consortium Blockchain Exploiting Intra- and Inter-Block
Concurrency. PVLDB, 14(12): 2799 - 2802, 2021.
doi:10.14778/3476311.3476348

1 INTRODUCTION
Consortium blockchain is being widely applied to support large-
scale businesses in enterprise collaboration, e.g., the AntChain [1]
has been conducted with more than 50 multilateral collaboration
scenarios. We exemplify one typical scenario about supply chain
finance in the upper part of Figure 1. In such a scenario, multiple par-
ticipants such as banks, insurance & trust companies cooperate to
host the blockchain network, each of which commonly devotes mul-
tiple peers. Observe that peers belonging to different participants
are mutually distrusting due to the potentially hostile environment,
while ones within the same participant have a trust foundation.
Motivated by this fact, we want to scale the system in terms of each
participant to support extensive applications.

To empower the individual participant, a general option is to
replace the sequential execution mechanism with a concurrent
one [2, 7, 8] to leverage the modern multi-core processors. Fabric
[3] introduces the concurrency to blockchain under an execute-
order-validate-commit paradigm, where transactions are executed
in parallel before ordering. In this paradigm, however, the execution
∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476348

peers

peers

Consortium Blockchain
Network

Bank B

Trust
company

Bank A

Insurance
company

Order Execute Finalize

Ordering Instance (BFT) Executor Storer

scale

Within Single Part.

Bank A

pack block

......

Figure 1: Example scenario of the consortium blockchain

results are then validated sequentially after ordering to abort trans-
actions that cause violation of serializability. Although FastFabric
[5] parallelizes the validation for transactions across blocks, it still
inherits the limitation that read/write sets are validated sequen-
tially. On the other hand, ParBlockchain [2] and BlockchainDB [8]
first analyze the conflicts among transactions and then allow non-
conflicting transactions to be executed in parallel. However, current
solutions have fundamental limitations from two aspects. (1) These
works only arrange a single peer to execute all transactions. When
a peer is dedicated fully, the performance cannot be further scaled.
(2) The concurrent execution merely involves transactions within a
block where transactions of later blocks cannot be executed before
the execution of the current block terminates. This approach does
not consider the transaction parallelism across multiple blocks.

To address these issues, we present a scalable blockchain sys-
tem SChain, which leverages both intra-block and inter-block con-
currency to scale the transaction processing. In general, SChain
follows a novel scalable order-execute-finalize (SOEF) paradigm as
illustrated from the view of a single participant at the bottom of
Figure 1. The transaction flow is divided into three phases: ordering,
execution and finalization, which can run on different peers. For
intra-block concurrency, transactions within a block are distributed
over multiple executors for parallel execution to break through the
performance bottleneck of a single peer. Moreover, each executor
employs deterministic concurrency control to enable concurrent
transaction execution locally. For inter-block concurrency, SChain
pipelines the processes of blocks and therefore allows transactions
across multiple blocks to execute concurrently. This approach over-
comes the existing block-by-block execution drawbacks and enables
executors to execute transactions constantly, further improving the
resource utilization of different peers.

2799

https://doi.org/10.14778/3476311.3476348
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476348

Executor E1

Executor E2

Executor E3

Ta

Tb

Tc

Block N

Ta Tb Tc...

Block N+1

TXID: 1319
R(Ta) = {......}
W(Ta) = {{KeyA, VA},
 {KeyC, VC}}

Intra-block concurrency
within an organization

......

TXID: 1332
R(Tb) = {KeyA, KeyB}
W(Tb) = {{KeyA, VA'}}

TXID: 1385
R(Tc) = {KeyA, KeyC}
W(Tc) = {{KeyC, VC'}}

......

Organization1

{KeyA,V A}

{KeyA,V
A '}

{KeyC,V
C }

......

Figure 2: Exploiting intra-block concurrency through dis-
tributed concurrent execution mechanism

The purpose of this demonstration is to show the attendees
impressive improvement and common usability of SChain. More
specifically, we manage to provide an interactive front-end UI for
attendees to operate with SChain. The attendees will gain both
a high-level overview and a deep insight into the unique tech-
niques utilized by SChain. In our demonstration, Section 2 gives an
overview of SChain, introducing its core techniques and architec-
ture. In Section 3, the demonstration details are presented with an
interactive user experience of our system.

2 SCHAIN OVERVIEW
2.1 Threat Model
SChain operates under hybrid trust and fault assumptions. Peers are
grouped into organizations. An organization here is regarded as an
individual participant. Recall that peers within the same participant
trust each other while others share no trust. Since there is no trust
among participants, SChain employs the PBFT protocol to achieve
consensus, where at most 𝑓 participant(s) can be malicious out of
𝑛 participants such that 𝑛 ≥ 3𝑓 + 1.

2.2 Intra- and Inter-Block Concurrency
Motivated by the assumptions above, SChain extends the concur-
rency to improve transaction processing. We summarize the key
features of SChain as the intra- and inter-block concurrency with
further discussions about them.

2.2.1 Intra-Block Concurrency. SChain proposes a distributed
concurrent execution mechanism to enhance the capacity of a sin-
gle participant. That is, the intra-block transactions are distributed
to multiple executors for concurrent execution. In intuition, trans-
actions are executed in parallel among executors. Moreover, this
mechanism ensures they are executed concurrently within a single
executor and the merge of their results is deterministic. Then we
illustrate the design details.

To maximize the parallelism among executors, SChain analyzes
all potential conflicts among transactions and dispatches utmost
conflicting transactions to the same executor. Then, each execu-
tor executes received transactions concurrently following the de-
terministic concurrency control (DCC) [4, 9]. The DCC protocol
enables transactions to execute concurrently while still promising

the execution result is equivalent to the serial order determined by
ordering. Additionally, the protocol requires the read/write keys
of transactions should be known in advance by some techniques.
SChain holds this acquisition for Turing-complete smart contracts
by using static analysis and speculative execution which is also
adopted by ParBlockchain [2].

Ideally, transactions share no conflicts among executors so that
executors can execute them locally and concurrently following the
DCC protocol. However, such a division is hard to guarantee under
high contention. Further considering workload balance, SChain al-
lows conflicting transactions to be executed by different executors.
While SChain still guarantees that the merge of the execution re-
sults is equivalent to the predetermined serial order. This is achieved
by migrating the outputs of transactions among executors. In par-
ticular, an executor 𝐸 will not execute a transaction that reads the
output of another transaction assigned to executor 𝐸 ′ before 𝐸 ′
correctly forwards the output to 𝐸.

Since peers within the same participant trust each other, the
execution among them assumes no Byzantine behavior. We have
omitted details relating to aborts and resilience to crash faults.
These details are discussed in the extended version.

Example 2.2.1. Figure 2 details how SChain applies the proposed
mechanism to realize high concurrency and workload balance in
contention. Suppose there are three executors 𝐸1, 𝐸2 and 𝐸3 be-
longing to𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛1. SChain is currently processing the block
𝑁 which has already been ordered. Then transactions of block 𝑁
are partitioned and sent to executors. For instance, 𝑇𝑎 and 𝑇𝑏 are
assigned to different executors while they share a write-read de-
pendency on 𝐾𝑒𝑦𝐴. SChain guarantees that 𝐸3 can only execute
𝑇𝑏 until 𝐸1 forwards the output of 𝐾𝑒𝑦𝐴 to 𝐸3. This is achieved by
analyzing their predetermined 𝑇𝑋𝐼𝐷 (𝑠) and the keys of read/write
sets before division. On the other hand, 𝑇𝑐 should wait for both the
output of 𝑇𝑎 and 𝑇𝑏 . The migration of data ensures the merged re-
sult of all executors is serializable and deterministic. We emphasize
that this behavior will not interfere with the concurrent execution
of other non-conflicting transactions.
2.2.2 Inter-Block Concurrency. Different from existing works,
the innovation of SChain is to explore the potential of inter-block
concurrency. By interleaving the workflows for different blocks,
SChain forms the pipelined workflow. Notably, SChain granularly
divides its three phases into five stages as presented in Figure 3.
Then these stages can be conducted on different peers so that the
stages across blocks may overlap. Benefit from this design, SChain
can simultaneously processmultiple blocks. Thus, its workflow is no
longer block-by-block quiescently and all types of peers can keep on
working, fully utilizing the system resources. Furthermore, SChain
allows transactions in later blocks to be executed earlier if they
do not conflict with executing transactions. This design ensures
inter-block transactions execute concurrently among all executors,
leading to the transaction streaming pipeline. It means transactions
across multiple blocks are flowing among stages constantly to finish
their execution. It also promises the worker threads on executors
always have enough transactions to execute, further improving the
overall performance.

Example 2.2.2. Figure 3 depicts how the transaction streaming
pipeline empowers SChain to achieve inter-block concurrency over

2800

t1

Execution

Update Records

Block N-1

Block N

Block N+1

Async Commit
Ordering

Update Records
Async Commit

Update Records
Async Commit

Finalization

Inter-block Transaction Streaming

TaTb Tc TeTd

......

t0

Td Te ...
Block N

Executor E1

Executor Ek

......

Tb Tc Te

Td

t1

TdTe TgTf

......

Tf Tg ...
Block N+1

Executor E1

Executor Ek

......

Te Tg

Td

t1

Proceed to
 next stage

Tf

t2

Tc

Inter-block contention

Text

......

Commit
State

Commit
State

Commit
State

Update
Records

Update
Records

Update
Records

Concurrent
Execution

Concurrent
Execution

Concurrent
Execution

Dispatch
Txns

Dispatch
Txns

Dispatch
Txns

Consensus

Consensus

Consensus

Figure 3: Exploiting inter-block concurrency through trans-
action streaming pipeline

three blocks. In the upper part of the figure, three pipes of 𝐵𝑙𝑜𝑐𝑘𝑁−1,
𝐵𝑙𝑜𝑐𝑘𝑁 and 𝐵𝑙𝑜𝑐𝑘𝑁+1 form the pipelined workflow. As can be seen,
the workflows for different blocks interleave. By obeying the men-
tioned rules, a transaction in 𝐵𝑙𝑜𝑐𝑘𝑁+1 can execute before some
transactions in 𝐵𝑙𝑜𝑐𝑘𝑁 . To dive into this process, we pick up a
timepoint 𝑡1 and reveal corresponding details in the bottom part.
In the left bottom, worker threads on executor 𝐸1 are concurrently
executing 𝑇𝑏 of 𝐵𝑙𝑜𝑐𝑘𝑁−1 and 𝑇𝑑 of 𝐵𝑙𝑜𝑐𝑘𝑁 at timepoint 𝑡1. Once
the execution stage of 𝐵𝑙𝑜𝑐𝑘𝑁+1 starts, belonging transactions will
enter the streaming processing. In the right bottom,𝑇𝑔 of 𝐵𝑙𝑜𝑐𝑘𝑁+1
shares no conflicts so that it can be executed in parallel with oth-
ers once 𝑇𝑒 finishes its execution to set an idle worker thread. On
the other hand, 𝑇𝑑 will apply the output of records to activate the
execution of 𝑇𝑓 since 𝑇𝑓 conflicts with it. Benefit from the trans-
action streaming pipeline, transactions across multiple blocks can
simultaneously execute to exploit the inter-block concurrency.

2.3 Architecture
We design the SChain’s architecture based on proposed techniques.
As shown in Figure 4, SChain consists of multiple organizations that
form the network. The transactions sent by clients will go through
three phases of processing: ordering, execution and finalization.

Then we illustrate how SChain operates in these three phases.
First, the ordering phase establishes a global order on all transac-
tions provided by clients through consensus. After ordering, these
transactions are distributed over executors within each organi-
zation for execution. SChain applies the distributed concurrent
execution and transaction streaming pipeline during the execution
phase. Last, the finalization phase collects the updates of records
and commits them.

The decomposed phases of SChain provide great flexibility. For
instance, the ordering phase can scale easily by running concur-
rent instances [6] to compromise the global order. Considering
this demonstration does not focus on scaling the ordering, we thus
omit the implementation details. Besides, SChain avoids distributed

Client

Ordering Execution Finalization

Txns

orderer

executor
●
●
●

executor
Txns

state tree

storer

●
●
●

●
●
●

●
●
●

OrganzationN

send
transactions

Txn

block
set of Txns
records

records

ordering
instance

......
peer

LEGEND

KV Store

Organzation1

Figure 4: SChain Architecture

transactions because each transaction is handled by a unique ex-
ecutor and all relevant data is migrated to this executor. Thus, each
organization can devote more executors on-demand to raise the
parallelism and processing of execution.

3 DEMONSTRATION
We deploy SChain in the back-end and demonstrate it in two sce-
narios. An interactive front-end interface is provided to help the
attendees step through the process of intra-block execution and
inter-block workflow. Additionally, we showcase the scalability of
execution through a graphical dashboard that displays the detailed
system performance.

3.1 Setup and Interface
The demo SChain is initially deployed up to four organizations,
each of which may jointly run many ordering instances and deploy
multiple executors. We monitor and interact with one target orga-
nization and present its information in Figure 5, which are divided
into five panels A∼E. Panel A and B present the latest information
on blocks and transactions. Panel C∼E depict the runtime status of
the orderers, executors and storer respectively.

Batch Invoke Interface. At the beginning of the demonstra-
tion, the attendees will send transactions to start the process. We
provide a user-friendly interface called batch invoke to eliminate
the complexity of invoking smart contracts through pre-installing
a CPU-heavy smart contract on SChain. By using this interface, the
front-end will automatically sign and send transactions referring
to this smart contract. Note that the pre-acquisition keys needed
by SChain are also included in the transaction. Optional inputs are
provided for attendees to determine the batch size and additional
transaction payloads, as shown on Panel F of Figure 6.

3.2 Scenario 1: Gain Insight into Intra-Block
Concurrency

In the first scenario, the attendees have a chance to dive into the
distributed concurrent execution. They use the batch invoke inter-
face to send transactions by filling the batch size and optionally
extra data. Once transactions are ordered and distributed over ex-
ecutors, the system dashboard in Figure 5 will visualize the process.
The attendees can click the “View all transactions” on panel B to
view the status of various concurrently executing transactions. The
runtime results for transactions are shown on panel G of Figure 6.

Records are transferred among executors to guarantee the cor-
rectness of intra-block concurrency. To trace the entire flow, the

2801

A B

C D E

Figure 5: System dashboard

F G

H I

Figure 6: Insight of intra-block concurrency

Figure 7: Showcase the performance of multiple executors Figure 8: Inter-block concurrency visualization

attendees can further inspect interested transactions. Panel H and I
reveal two transactions in detail. The "Records Collection" on each
panel shows the status of records. For instance, the transaction on
panel H has collected all the records in its read-set: 𝐾𝑒𝑦𝐴 and 𝐾𝑒𝑦𝐵.
After being executed by 𝐸1 under the DCC protocol, the output of
record 𝐾𝑒𝑦𝐴 will be transferred to executor 𝐸2 since it is required
by the transaction on panel I. This migration of data is recorded to
show the attendees how data is driven from the insight.

Furthermore, the attendees will appreciate the scalability of exe-
cution. If the ordering performance fully covers the execution, we
allow attendees to scale the execution on-demand. They can click
the red button in the middle bottom of Figure 5 to add an executor.
Note that the newly added executor takes effect in the next block
height. As a result, the attendees will wait a moment to see the
improvement in Figure 7 after adding an executor.

3.3 Scenario 2: Investigate Inter-Block
Concurrency

This scenario gives the attendees explorations of inter-block concur-
rency in SChain and sheds light on its distinguished pipeline design.
The graphical interface allows the attendees to select the number
of pipes to display. They will view the simultaneous process across
multiple blocks after selection. For example, in Figure 8, the latest
three pipes are selected to display, involving 𝑏𝑙𝑜𝑐𝑘31, 𝑏𝑙𝑜𝑐𝑘32 and
𝑏𝑙𝑜𝑐𝑘33. Stages denoted by circles horizontally form each block’s

workflow and their runtime status is illustrated at the bottom of
Figure 8. Given this investigation, the attendees will better under-
stand how SChain achieves inter-block concurrency by pipelining
the workflows across multiple successive blocks.

ACKNOWLEDGMENTS
This work is supported by National Science Foundation of China
(U1911203, U1811264 and 61972152).

REFERENCES
[1] 2021. AntChain. https://antchain.antgroup.com/.
[2] M. J. Amiri, D. Agrawal, and A. E. Abbadi. 2019. ParBlockchain: Leveraging

Transaction Parallelism in Permissioned Blockchain Systems. In ICDCS. IEEE,
1337–1347.

[3] E. Androulaki, A. Barger, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In EuroSys. ACM, 30:1–30:15.

[4] J. M. Faleiro, D. Abadi, and J. M. Hellerstein. 2017. High Performance Transactions
via Early Write Visibility. Proc. VLDB Endow. 10, 5 (2017), 613–624.

[5] C. Gorenflo, S. Lee, L. Golab, and S. Keshav. 2019. FastFabric: Scaling Hyperledger
Fabric to 20, 000 Transactions per Second. In IEEE ICBC. IEEE, 455–463.

[6] S. Gupta, J. Hellings, and M. Sadoghi. 2021. RCC: Resilient Concurrent Consensus
for High-Throughput Secure Transaction Processing. In ICDE. IEEE, 1392–1403.

[7] C. Jin, S. Pang, X. Qi, Z. Zhang, and A. Zhou. 2021. A High Performance Concur-
rency Protocol for Smart Contracts of Permissioned Blockchain. TKDE (2021), 1–1.
https://doi.org/10.1109/TKDE.2021.3059959

[8] S. Nathan, C. G., A. Saraf, M. Sethi, and P. Jayachandran. 2019. Blockchain Meets
Database: Design and Implementation of a Blockchain Relational Database. Proc.
VLDB Endow. 12, 11 (2019), 1539–1552.

[9] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. 2012.
Calvin: fast distributed transactions for partitioned database systems. In SIGMOD
Conference. ACM, 1–12.

2802

https://antchain.antgroup.com/
https://doi.org/10.1109/TKDE.2021.3059959

