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ABSTRACT
We introduce Kensho, a tool for generating mapping rules
between two Knowledge Bases (KBs). To create the map-
ping rules, Kensho starts with a set of correspondences and
enriches them with additional semantic information auto-
matically identified from the structure and constraints of the
KBs. Our approach works in two phases. In the first phase,
semantic associations between resources of each KB are cap-
tured. In the second phase, mapping rules are generated
by interpreting the correspondences in a way that respects
the discovered semantic associations among elements of each
KB. Kensho’s mapping rules are expressed using SPARQL
queries and can be used directly to exchange knowledge
from source to target. Kensho is able to automatically rank
the generated mapping rules using a set of heuristics. We
present an experimental evaluation of Kensho and assess
our mapping generation and ranking strategies using more
than 50 synthesized and real world settings, chosen to show-
case some of the most important applications of knowledge
translation. In addition, we use three existing benchmarks
to demonstrate Kensho’s ability to deal with different map-
ping scenarios.
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1. INTRODUCTION
Knowledge bases (KBs) have become building blocks for

many knowledge-rich applications. As a result, significant
work has been devoted to studying methods for creating
and populating KBs. Most of this effort is focused on ap-
proaches for general-purpose KBs and less work has con-
sidered populating domain-specific KBs. Massive numbers
of KBs are available today and their numbers are growing
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making it now possible and desirable to populate (or aug-
ment) new KBs with knowledge already available in others.
Currently, the Linked Open Data Cloud (LOD) [1] contains
1255 KBs each of which contains more than 1000 triples.
Together, KBs in the LOD contain billions of triples. Many
approaches have been developed that facilitate the discovery
and recommendation of KBs (see [42] for a recent survey).
While these approaches can help discover a desirable source
of knowledge, the heterogeneity of vocabulary and struc-
ture between KBs makes sharing data between KBs difficult.
What is needed is a KB equivalent of schema mapping and
data exchange [23] in which data structured under a source
KB can be faithfully translated to a target KB.
Data exchange requires the existence of a set of rules

(called mapping rules) that specify the relationship between
the source and target. It is important to note that even
in the relational model, heterogeneity cannot be reconciled
with simple rules, called correspondences (or sometimes
matches). Correspondences are created in ontology align-
ment (a.k.a. schema matching) [20] and ontology merg-
ing [73] techniques. These rules only represent simple re-
lationships (such as equivalence or containment) between
small sets of resources. This is all the more true in KBs,
as correspondences (even N:M correspondences) cannot ex-
press the complex relationships among many resources that
need to be exchanged as a whole in order to preserve their
relationships. Mapping in general requires complex logic or
a full query language. Duo et al. [19] argue that one of the
biggest obstacles to performing data exchange in KBs is the
difficulty in manually creating mapping rules. In traditional
(non-KB) data exchange, there is a large body of literature
on systems that reduce the burden of creating these rules
manually, by making the rule creation process as automatic
as possible. See Bonifati et al. [14] for a survey on mapping
generation tools (or MGTs). In comparison, there has been
much less work on automatic mapping rule generation when
the exchange is between two KBs. We refer to these tools as
KMGT (knowledge-base mapping generation tools).

Challenges and Contributions. Several languages [6, 13,
19, 55] and frameworks [19, 68] have been proposed to help
data engineers write KB mapping rules. In addition, there
are a few pioneering KMGTs, including Mosto [60, 63] and
a system by Qin et al. [58] that automatically create KB
mappings. Here we describe some of the limitations of the
current solutions (both KMGTs and MGTs) and describe
our contributions.
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Associations: The main difference between Kensho and all
other MGTs and KMGTs is in the way that it defines asso-
ciations. Data sharing tasks generally involve two steps: (1)
correspondence creation (a.k.a alignment or matching) and
(2) correspondence interpretation (a.k.a mapping creation).
Central to step (2) is how to create associations – the main
semantic unit for associating resources so that they and their
relationships are correctly mapped. In MGTs, tables need
to be combined to create associations. Following the first
relational MGT, Clio [50, 56], most MGTs use declared (or
discovered) constraints (like foreign keys or inclusion depen-
dencies) to create mappings. Using this approach, and ex-
cluding cycles, there are typically only a small number of
ways of joining any two tables. KBs are much more gen-
eral graphs and contain large numbers of property paths.
In general, these property paths are not indicated as being
full (functional) inclusions. This is an important property
of KBs, their flexibility in representing information.
Example 1.1. Consider the source KB in Figure 2. In a
relational world where Organization and Country are tables, if
we know that if an Organization has value for the attribute
country then it is a valid key for Country (i.e., there is a
FK from Organization.country to Country), then when map-
ping Organization and Country data to the target, MGTs will
be sure to map an Organization with its own country (and
not the country of a different organization). However, if
a Person has a has-worked-for attribute, but this attribute is
not declared as having to have an organization (e.g., a FK
constraint), then MGTs will not generate an association be-
tween Person and Organization. In contrast, KBs often con-
tain properties that hold only for portions of the data. The
issue here is that KBs are open-world models and include
many relationships that exist only for a portion of the data.
Consequently, generating associations for all paths has been
considered infeasible by existing KMGTs [58, 60, 63]. �
To solve this complexity problem, Mosto [60, 63] assumes

that two concepts are associated only if they are connected
via an aligned object property or if one is the ancestor of
the other. Because of this assumption, Mosto relies heav-
ily on the existence of aligned properties, and if there are
no correspondences between properties, it cannot interpret
correspondences collectively among concepts which are not
subclass/superclass of each other. To mitigate this, Mosto
allows users to manually add to the KB new constructs
mosto:strongRange and mosto:strongDomain that mimic the role
of a relational FKs. This permits Mosto to follow a MGT-
like approach that also forms associations over paths that
include these new, user-provided, annotations. The newer
MostoDex [64, 65] can generate mapping rules without rely-
ing on any KB constructs, including user-provided annota-
tions, and instead uses user-provided examples. Both Mosto
and MostoDex require a user to fully understand the nuances
of KB translation in order to provide correct axioms or suf-
ficiently informative examples. In contrast, Kensho does
not require user-provided KB constructs or user-provided
examples. To the best of our knowledge, Kensho is the first
KMGT to consider associations that cover all property paths
in both the source and target. It is worth mentioning that
the KMGT proposed by Qin et al. [58] uses a similar ap-
proach to Mosto but does not allow user intervention.
Structurally Valid Mappings: Considering all associa-
tions, however, can lead to an overwhelming number of
mappings. To conquer this complexity (without eliminat-

ing desired mappings), we define c2a valid mappings, that
eliminate many mapping alternatives by requiring mappings
to respect the internal structure and interconnection of in-
dividuals and their attributes. Importantly, mappings that
are c2a valid ensure structural consistency of mapped re-
sources even when value invention is required. In addition,
Kensho uses correspondences between property paths when
available, called r2r mappings, which may be provided by a
matcher or correspondence generator, to narrow down a set
of good mappings (called r2r valid mappings). Note that
previous approaches do not accept correspondences among
object property paths of length greater than one.
Knowledge Translation: The theory of data exchange
(i.e. semantics and query answering) between KBs has al-
ready been studied [8, 9, 10, 11]. However, the practicalities
of generating queries that create valid solutions over real
KBs has not received as much attention. Kensho’s mapping
rules are expressed using SPARQL queries which means they
can be used directly to exchange knowledge from source to
target. Because we create associations using all paths in a
KB, we have systematically considered how to create cor-
rect queries over associations that include property paths,
without cardinality or functionality restrictions. Our so-
lutions perform the value invention needed (for example,
when a target concept does not exist in the source, but its
attributes do). Kensho correctly associates data and trans-
lates all desired data (using the SPARQL optional command
as required). MGTs use sophisticated methods for value in-
vention (using labeled nulls or skolem functions) such that
the structure of the target and source are preserved [22, 46].
When dealing with KBs, blank nodes fulfill this role. To
the best of our knowledge, Kensho is the only KMGT that
creates these blank nodes while preserving the grouping and
relationships from the source KB.
Example 1.2. Consider the scenario presented in Figure 1.
Current KMGTs create mapping rules which exchange data
as shown in Box A. They associate the phone number and
address of a single source Office with two (possibly differ-
ent) Contact resources in the target. This does not capture
the semantic information encapsulated in the structure of
the source KB, namely, that this phone and address are
associated with one another. Kensho on the other hand,
creates mapping rules that exchange data as shown in Box
B, capturing the original grouping of data in the source KB.
Kensho can do this even if the source is incomplete (some
offices do not have addresses, some do not have phones, or
some have neither). �
Ranking Heuristics: Kensho is the only tool that takes
on the task of generating associations for all paths in the
KB. While our structural validity requirements reduce the
number of possible mappings, we may still generate many
mappings. To reduce the burden of selecting the best set
of mapping rules for the exchange task at hand, we have
proposed three new ranking heuristics to rank the final set
of valid mappings. Buhmann et al. [16] observe that, in
practice, there is a lack of KBs that contain high quality
schema axioms. Keeping this in mind, we have designed
these heuristics such that they do not require KBs to both
be populated with instances or to be annotated with reach
axioms such as cardinality, functionality, or disjointness.
Evaluation: We evaluated the performance of Kensho on
several real-world scenarios designed to highlight the role of
knowledge translation in different tasks including KB popu-

2019



Figure 1: Red lines represent a correspondence.

lation, versioning, and migration. To show the performance
of mapping generation in complex scenarios, we have also
evaluated Kensho on a large number of synthetic scenarios.
Our results show that Kensho scales very well even for KBs
that are three times larger than DBpedia in terms of the the
number of concepts, with the largest bottleneck being the
number of possible interpretations of a correspondence. We
have also compared Kensho with existing KMGTs on three
existing benchmarks. Finally, we have included a small case
study to further investigate the effectiveness of Kensho.

2. METHODOLOGY
Kensho generates executable mapping rules in two steps:

semantic association discovery and correspondence inter-
pretation. When interpreted separately, correspondences
cannot describe how to translate the resources of KBs in
conjunction with each other. To determine a set of exe-
cutable mapping rules which weave these correspondences
together, we must understand what relationships exist be-
tween aligned resources within each of the two KBs. We call
these relationships semantic associations. The goal of the
first step is to discover these associations. The goal of the
correspondence interpretation step is to interpret the set of
given correspondences collectively in a way which respects
the discovered semantic associations among elements of each
KB. We begin by defining correspondences.

2.1 Correspondences
We distinguish between two important types of properties

in a KB: 1) a datatype property or attribute which represents
a relationship between an IRI and a Literal and 2) an object
property which expresses a relationship between two IRIs.
A property path is a list of properties in an RDF graph
between resources [70]. An attribute or an object property
is a property path of length one. Property paths are either
data property paths (a path between an IRI and a Literal) or
object property paths (a path between two IRIs). Property
paths can be expressed using a regular expression grammar.
We use the grammar from W3C [70] to represent them.
In this work, we define three types of correspondences.

First, a Concept2Concept correspondence associates a
concept s in the source to a concept t in the target,
represented as s ;c2c t. In Figure 2, C3 is a Con-
cept2Concept correspondence between the source concept
Person and the target concept Person. Second, a Rel2Rel
correspondence associates an object property path P in the
source to an object property path R in the target, repre-
sented as P(s1,s2) ;r2r R(t1,t2) where s1 and s2 are connected
by P and t1 and t2 are connected by R. In Figure 2, C4 is
a Rel2Rel correspondence that associates the source object
property employer with the target object property works_for.
An Attr2Attr correspondence associates a data property
path in the source with a data property path in the target,

represented as as ;a2a bt, where s and t are concepts that
are connected by a data path to attribute values of a and
b, respectively. In Figure 2, C2 is an Attr2Attr correspon-
dence that associates the source attribute address with the
target attribute address_line. Correspondences can represent
various relationships. In this work, we use correspondences
that express subset-or-equal relations since correspondences
produced by automated tools are often of this type [20].
Following the terminology of Euzenat and Shvaiko [20], we
call a set of correspondences an alignment.
We say a concept is an aligned concept if it either directly

participates in a Concept2Concept correspondence or if it
participates in an Attr2Attr correspondence (meaning for
as ;a2a bt, it is the concept s or some concept along the
path from s to the attribute a). Note that we treat Rel2Rel
correspondences differently, and use them to refine how con-
cepts are mapped collectively using a notion we call r2r va-
lidity defined in the next section. Finally, in general we
call any KB resource that participates in a correspondence
an aligned element. It is worth mentioning that Mosto also
uses another type of correspondence that matches an at-
tribute value to an instance of a concept. In these situa-
tions, we create an Atr2Atr that matches the attribute in
the source to the rdfs:label attribute of the concept in the
target. Note that this type of correspondence is different
from metadata-data correspondences [38, 49] which Kensho
does not support.

2.2 Semantic Association Discovery
In a KB, semantic associations between aligned elements

are represented as property paths between them. First, a
concept and its attributes indicate a semantic association
(sometimes called the internal structure of the KB [20]). In
Figure 2, the fact that trgt:name and trgt:work_phone are at-
tributes of the concept trgt:Person indicates that for each
individual of type trgt:Person, the value of these attributes
are semantically related. Second, two concepts (and their
attributes) are associated when there is a property path be-
tween them. For instance, information about an organiza-
tion and its employees may be modeled as a path containing
a number of concepts. Of course, in the presence of cycles,
the number of associations is infinite so Kensho will only
enumerate a finite set of these.
Definition 2.1. (Basic Association) Each aligned concept
defines a Basic Association that includes the concept along
with all its aligned attributes. We call the aligned concept
the root of the basic association. �
In addition to basic associations, aligned concepts can be

associated by the relational [20] structure of a KB. To define
these associations, we use property paths between the roots
of basic associations.
Example 2.2. In Figure 2, the source concepts Organization

and Country are associated through the path located_in. The
instances of this association can be retrieved using the fol-
lowing two queries.
SELECT * WHERE {

?o a src:Organization.

OPTIONAL

{?o src:located_in ?ozCountry.

?ozCountry a src:Country.}}

SELECT * WHERE {

?c a src:Country.

OPTIONAL

{?c src:located_in
∧

?czOrganization.

?czOrganization a src:Organization.}}

The property src:located_in models the relationship be-
tween the two aligned concepts Organization and Country

which are the roots of basic associations.
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Figure 2: RDFS layer of two KBs and correspondences between them.

Note that in KBs, the source might be incomplete, hence,
the query needs to contain the OPTIONAL keyword. �
To directly associate two aligned concepts, we use paths,
called association paths that do not go through other aligned
concepts. We limit the length of these paths to D. To
simplify notation, we assume that each instance in our KBs
has exactly one most-specific type. This is not an essential
assumption. In our TR [31], we briefly discuss how this
assumption may be relaxed by generalizing the definition of
Association Path.
Definition 2.3. (Association Path) An association path
p between aligned concepts u0 and u1 is an ordered list
of resources on object property path Π which matches:
(rdfs:domain∧|rdfs:subClassOf)/ (rdfs:domain∧|

rdfs:domain|rdfs:range|rdfs:range∧|rdfs:subClassOf)∗
such that (u0, u1) is in the evaluation of Π, and there is no
aligned concept along Π. The concept u1 (also called tail of
the association path) is part of the path, but u0 (also called
the root of the association path) is not part of the path. �
Example 2.4. In Figure 2, there is only one association
path that connects the target concept Organization to Country,
namely [located_in, Country]. Note there are no association
paths from Country to Organization (because R does not in-
clude rdfs:range

∧). This is simply to prohibit enumerating
redundant paths. If we consider Employee to Person (again
in the target), then [Person] is an association path which
is created by going through the rdfs:subClassOf property
path from Employee. If Organization were not aligned then
[works_for, Organization, alumnus

∧
, Person] would also be an

association path. �
We use association paths to connect basic associations.

Semantic associations start with a basic association for an
aligned concept u0. We add to u0 all association paths to
other aligned concepts ui together with the basic association
for ui. We repeat this process recursively adding to the
semantic association paths from ui to other aligned concepts
uj together with the basic association of uj . We limit the
length of the longest path in the semantic association to L.
Definition 2.5. (Semantic Association) The semantic asso-
ciation for aligned concept u0, denoted A(u0), contains the
basic association for u0. In addition, if ui is a concept in

A(u0) and there is an association path p from ui to aligned
concept uj and if adding p to A(u0) does not create a path
longer than length L in A(u0), then the association path p is
in A(u0) and the basic association of uj is also in A(u0). For
each concept in each p added to A(u0), a new node will be
created (even if a node representing that concept is already
in A(u0)). A semantic association A(u0) can be thought of
as a tree, where the concepts in A(u0) are nodes and the
root is a node representing concept u0. We define this tree
such that if ui and uj are associated via a rdfs:subclassOf

path, then there is an edge between them labeled with a.
Otherwise, the edge is labeled with the corresponding prop-
erty. Each node n ∈ A(u0) is assigned a variable (denoted
var(n)) and we use the notation concept(n) to denote the
concept that n represents. Also, if the basic association of
concept(n) is in A(u0), each attribute a in this basic asso-
ciation is assigned a variable (denoted var(n, a)). For a se-
mantic association A, we call the set of all variables assigned
to its nodes and attributes, denote Avars, the variables of
the semantic association. �
For the KBs of Figure 2, the semantic associations of the

source and target Employee concepts are depicted in Figure 3.
Note that cycles and KBs with multiple property paths be-
tween the same concepts can lead to semantic associations
containing multiple nodes for the same concept.

2.3 From Correspondence to Mapping
Semantic associations (within the source and target) can

be used to understand correspondences collectively.
Example 2.6. The correspondences C1 and C2 of Figure 2
can be interpreted independently. If we do this, we would get
mappings that can be represented by the following queries.
construct{

-:trgtPerson a trgt:Person.

-:trgtPerson trgt:name ?trgtName.}

where{

?srcPerson a src:Person.

?srcPerson src:name_person ?srcName.

bind(?srcName as ?trgtName)}

construct {

-:tAddress a trgt:Address.

-:tAddress trgt:address_line ?trgtAddress.}

where {?srcPerson a src:Person.

?srcPerson src:has_worked_for ?srcOrg.

?srcOrg src:address ?srcAddress.

bind(?srcAddress as ?trgtAddress)}

These mappings create target addresses from source addresses

(and target names from source names), but do not associate
names and addresses in the target. To preserve source informa-
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Figure 3: Semantic associations A(src:Employee) and A(trgt:Employee) with attribute variables omitted.

tion, specifically the association between resources, we need
to understand when a set of correspondences can be inter-
preted collectively. For instance, if C1, C2, and C3 were the
only correspondences in Figure 2, then the following map-
ping is a better interpretation of the correspondences.

construct {?trgtPerson a trgt:Person.1
?trgtPerson trgt:name ?trgtName.2
?trgtPerson trgt:work_address -:trgtAddress.3
-:tAddress a trgt:Address.4
-:tAddress trgt:address_line ?trgtAddress.5

}6
where {?srcPerson a src:Person,7

OPTIONAL{?srcPerson src:name_person ?srcName}8
OPTIONAL{?srcPerson src:has_worked_for ?srcOrg9

OPTIONAL{?srcOrg src:address ?srcAddress}}10
bind(?srcName as ?trgtName)11
bind(?srcAddress as ?trgtAddress)12
bind(?srcPerson as ?trgtPerson)}13

Similar to the mappings that interpret each correspon-
dence independently, the above mapping dictates how to
create target addresses, names, and persons from the resources
of the source. However, this mapping also preserves the rela-
tionships among the translated elements, and thus is usually
more desirable. �
The first step of query generation is to find correspon-

dences that can be interpreted together. To do this, we
consider pairs containing one source semantic association
and one target semantic association and define the set of
correspondences that are covered by this pair (e.g., the pair
〈A(src:Person), A(trgt:Person)〉 covers the three correspon-
dences in the above example). Following the terminology
used in Clio [56], a Skeleton is a pair 〈S, T 〉 where S is
a source semantic association and T is a target semantic
association. To identify how a correspondence C can be
interpreted using a skeleton, or in other words to identify
the coverage of correspondence C by a skeleton, it is not
enough to check whether the semantic associations include
the aligned elements which are participating in the corre-
spondence C. One reason is that the same concept of the
KB might be included more than once in a semantic associ-
ation. Hence, we define a renaming function that associates
target variables of the target association to variables of the
source association. We do this in a way that respects the
correspondences. In general, there may be multiple ways to
cover a correspondence with respect to a pair of source and
target semantic associations and each represents a specific
(different) interpretation of the correspondences. We give
an example, then formally define coverage.
Example 2.7. Figure 3 depicts a pair of source and tar-
get semantic associations. All nine correspondences shown
in Figure 2 are covered by this pair of semantic associa-
tions. Some of the correspondences such as src:Country ;c2c

trgt:Country can be covered in multiple ways. Intuitively,
there are six possible interpretations of the country corre-
spondence. The country of the organization where an em-
ployee works (target variable tC1) can be populated with

Figure 4: Two of the possible renamings of
〈A(src:Employee),A(trgt:Employee)〉.

the country of an organization which is her employer (sC1),
or the country of an organization for which she has worked
(sC2), or with the country where she was born (sC3). Sim-
ilarly, the country of the organization of which a target em-
ployee is an alumni (variable tC2) can be populated with
any of these three source options. Note that there are other
options, for example, one might decide to map both tar-
get countries to source data, or to leave one of these target
countries unmapped. Also note that we are mapping each
employee with a country (maintaining this association), so
some of these options may require value invention for con-
cepts along a target path that do not exist in the source. �
We now define this formally by defining renamings from

the variables of T (denoted by Tvars), to the variables
of S (denoted by Svars). A renaming is a total function
that maps each variable of T either to a variable of the
source or to ε which will be an indication that the map-
ping query might need to perform value-invention for this
variable (something we discuss in Section 2.4).
Definition 2.8. (Correspondence Coverage) A correspon-
dence C is covered by a skeleton 〈S, T 〉 if there is a renaming
< : Tvars → Svars ∪ {ε}, where:
• (Concept2Concept) If C : s ;c2c t, then ∃n ∈ S,m ∈ T ,
<(var(m)) = var(n), concept(n) = s, concept(m) = t.
• (Rel2Rel) If C : P(s1,s2) ;r2r R(t1,t2), then ∃n1, n2 ∈
S and ∃m1,m2 ∈ T , <(var(m1)) = var(n1),
<(var(m2)) = var(n2), concept(n1) = s1, concept(n2) =
s2, concept(m1) = t1, and concept(m2) = t2.
• (Attr2Attr) If C : as ;a2a bt, then ∃n ∈ S,m ∈
T , concept(n) = s, concept(m) = t, <(var(m, b)) =
var(n, a).

If a correspondence C is covered by 〈S, T 〉 using a renaming
<, then we call < an interpretation of C. �
Notice that a single renaming may be an interpretation for
many correspondences.
Definition 2.9. (Skeleton Renaming) Given a skeleton
〈S, T 〉 and a set of correspondences C, then < is a renaming
for C if it includes at least one interpretation of each corre-
spondence in C. The set <̄S,T denotes all possible <s over a
skeleton 〈S, T 〉. �
Example 2.10. In Figure 2, let C contain all correspon-
dences except C4. Figure 3 depicts source and target asso-
ciations for the skeleton 〈A(src:Employee),A(trgt:Employee)〉.
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Figure 5: Red line represents a correspondence.

Given C, Figure 4 shows two possible renamings (<1 and
<2) for this skeleton. In comparison with <1, <2 does not
use the source variables sO2 and sC2, and the target vari-
ables tO2 and tC2 now map to ε. The renaming <2 might
be desirable if a data engineer decides that the relation-
ship trgt:alumnus between trgt:Person and trgt:Organization in
the target is not expressed by any property path between
src:Person and src:Organization in the source, and thus should
not be part of the translation. �
To accommodate the modeling flexibility of KBs, we have
defined semantic associations to include any paths up to a
given length (not just functional, total, or user indicated
paths). Thus, there can be a large number of possible re-
namings for a pair of semantic associations. We define three
notions of validity, each of which reduces the number of pos-
sible renamings without excluding desirable renamings.
The first is similar to what is used now by existing

KMGTs [58, 60, 63] and requires that the renaming only
map concepts and attributes for which there is a correspon-
dence (and map them as indicated by the correspondence).
The second requires the renaming to respect all correspon-
dences between relationships (property paths). Note that
the set of Rel2Rel correspondences may be incomplete (due
to limitations of current alignment tools), but if present,
the renaming must respect them. The third requires the
renaming to respect the internal structure of the KB and
interconnection between concepts and attributes, and map
the attribute values to individuals correctly.
Definition 2.11. (Baseline Validity) Given a set of corre-
spondences C and skeleton 〈S, T 〉, renaming < is baseline
valid if:
• ∀n ∈ S,m ∈ T , if <(var(m)) = var(n), concept(n) =
s, and concept(m) = t, then there is a correspondence
s;c2c t ∈ C
• ∀n ∈ S,m ∈ T , if <(var(m, b)) = var(n, a), concept(n) =
s, concept(m) = t, then ∃ as ;a2a bt ∈ C �

The number of baseline valid renamings can still be large.
Kensho use path correspondences (Rel2Rel) to narrow down
the set of possible valid renamings.
Definition 2.12. (r2r Validity) Given a Rel2Rel correspon-
dence C : P(s1,s2) ;r2r R(t1,t2) and skeleton 〈S, T 〉, a re-
naming < is r2r valid for C if: ∃m1,m2 ∈ T , and ∃n1, n2 ∈
S, where concept(m1) = t1 and concept(m2) = t2 and
concept(n1) = s1 and concept(n2) = s2, and <(var(m1)) =
var(n1) and <(var(m2)) = var(n2), and n1 and n2 are
connected through P in S, and m1 and m2 are connected
through R in T . �
Previous KMGTs do not take advantage of Rel2Rel corre-
spondences in which the length of the corresponding prop-
erty paths is greater than one. For instance in Figure 5,
none of the current KMGTs consider a correspondence that
represents the fact that two persons who are working on a
project in the source are related in the target since this re-
quires mapping the hasWorkedOn/contributer property path in
the source to the related property in the target. Note this
example requires no value invention and yet is typically not

considered in the literature. In addition, Kensho considers
path correspondences where not every resource on the tar-
get path exists in the source, and hence value invention is
required. (See Section 2.4 for more detail.)
An important innovation in Kensho is to consider the dif-

ferent ways in which each correspondence can be covered in a
mapping. Our associations can capture multiple interpreta-
tions of the same correspondence even in a single renaming
(see Example 2.7). This functionality is important espe-
cially in cases where value invention is needed, since correct
mapping requires that all desired resources and their rela-
tionships must be in a single query so that the newly created
blank node IRIs can group resources properly. However, by
allowing multiple interpretations of a correspondence, a re-
naming might need to map multiple attributes or concepts
of the same type. For instance, in Figure 6 our association
needs to express a rule that describes an employee, her cur-
rent employer address, and the address of places where she
has worked in the past. In such cases, we need to make
sure that the addresses are mapped to the correct organi-
zations. Kensho uses c2a validity to ensure concepts and
attributes are collectively mapped properly. The main goal
of c2a validity is to require the mappings to respect the in-
ternal structure of the source KB and interconnections be-
tween concepts and attributes, so that the attribute values
of individuals are preserved.
Definition 2.13. (c2a Validity) Given two correspondences
C1 : s ;c2c t and C2 : as ;a2a bt, and a skeleton 〈S, T 〉, a
renaming < is c2a valid for C1 and C2 if: ∀n ∈ S,m ∈ T ,
such that concept(n) = s, concept(m) = t, if <(var(m)) =
var(n), then <(var(m, b)) = var(n, a). �
Note that a data engineer might choose a renaming that
does not transfer the attribute value(s) at all, but if the
value is mapped, then that value should be associated with
the same individual which is mapped from the source. Al-
though current KMGTs do not consider this validity, tradi-
tional mapping generation tools (MGTs) produce mappings
which are c2a valid. We have defined additional notions
of validity [31] for scenarios where multiple attributes of a
concept are mapped, but their concept is not.

2.4 Mapping Generation
For each skeleton renaming (〈S, T 〉, C,<), we can create

a mapping. We use the semantic associations S and T to
create source and target query patterns. Then we use <
to create what is effectively an inclusion dependency from
the source query pattern to the target query pattern. We
first describe how an association query pattern is defined
based on a semantic association. Given a semantic associa-
tion A(u0), to create an association query pattern, we start
from the root node n0 (where concept(n0) is u0). We use
var(n0), v0, to create a SPARQL pattern that expresses the
type of instances of node n0. That is, ?v0 a u0. For each
of the root’s children, ni, we create a fact that represents
l(u0, concept(ni)), where l is the label of the edge which
connects n0 to ni. That is, ?v0 l ?vi, where vi is var(ni)
unless l is label a, in that case, the variable of the parent,
v0, will be used instead for representing that node through
out the whole process of query generation. We repeat the
process recursively for each of n0’s children. If l is anything
other than label a, we will nest what follows for that child
in the OPTIONAL clause. Also, for each node, nj , j ≥ 0, we will
express each of concept(nj)’s attributes q, using statements
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Figure 6: Query generation process.

like ?vj q ?attrj , where attrj is var(nj , q), and vj is var(nj).
Each of these attribute statements will be nested within an
OPTIONAL clause.
Example 2.14. Figure 6 Box A and B, are association
query patterns created from the semantic association trees
of A(src:Employee) and A(trgt:Employee) of Figure 3 respec-
tively. Note that in both patterns, the Employee variable is
used for representing the Person - and the clause that rep-
resents the fact that an employee is a person is not nested
within an OPTIONAL keyword. The reason is that the seman-
tics of inheritance implies that if B is a subclass of A, then
every individual of type B is also of type A. �
Given source and target association query patterns gen-

erated from a skeleton 〈S, T 〉, we now consider how skeleton
renamings can be used over association query patterns to
create mappings. We create a SPARQL construct query for
each skeleton. Assuming that there are N possible renam-
ings for skeleton 〈S, T 〉, (that is, |<̄S,T | = N), for each re-
naming < ∈ <̄S,T , an association query pattern of S will be
expanded with a set of binding clauses created from < to cre-
ate an S< graph pattern. More specifically, for each target
variable vi which is mapped to a source variable <(vi), the
binding clause “bind <(vi) as vi” will be created and added
to the triple pattern of S<. The final Where clause of the
construct query will be the union of all graph patterns (see
Figure 6 Box C for an example.) Note that a data engineer
can choose to only use a subset of the renamings in <̄S,T .
In particular, in practice, we expect to only be working with
valid renamings.
In order to create the construct clause of our mapping

query, it is important to note that some variables of the
target’s semantic association may be mapped to ε. In order
to materialize the target, sometimes we will have to fill in the
values for the undetermined variables. For instance, the re-
naming <2 of Example 2.10, shown in Figure 4, represents a
translation which transfers the attribute values of sO1address

to tA1address_line. However, tA1 maps to ε. For this ex-
ample, new blank nodes need to be created for tA1 if we
want our construct query to be able to transfer the values in
the source sO1address attribute to the target tA1address_line

attribute. These blank nodes correspond to existential vari-
ables that are common in data exchange [23]. In the same

example, the renaming <2 maps some of the other target
variables such as tO2 to ε. In this case, no value invention is
need to maintain the structure of the translated data, we can
simply not map any data to this node. For target attribute
values, generally value invention is not required.
To summarize, Kensho will create blank nodes for a vari-

able in the target construct query if that variable is repre-
senting a concept which is not an aligned concept or if it
represents an aligned concept which is mapped to an ε and
if these variables (whether they are aligned or not) are in
a path that leads to mapped concepts or mapped attribute
variables. To generate the Construct clause of the query, the
association query pattern of T will be used (without the
OPTIONAL keywords). In addition, as described above, the
variable names in this pattern will be converted to blank
nodes, if necessary. Elsewhere we have provided additional
details about how these blank nodes are created [31].

3. MAPPING RANKING
For a given skeleton, the set of possible renamings, even

valid renamings, each of which creates a different mapping,
might be large due to the diverse ways in which knowledge
can be represented in KBs. Thus, we introduce a set of
heuristics that help rank renamings of each skeleton. A
data engineer can then browse through the ranked set of
mappings (or through a set of examples created using map-
ping queries) and choose the most desirable set.
Many cues in the KB can be used to rank our mappings.

For instance, Maponto [7], which produces mapping rules
in settings that involve relational models and KBs (see Sec-
tion 5 for details) suggests that reach axioms such as func-
tionality or cardinality can be used to select better map-
pings. However, these reach axioms are usually not avail-
able [16]. In addition, instances of source and target KBs
can be used to select mappings which exchange more facts
that are already present in the target [57]. However, one of
the most important applications of this work is to populate a
target, and thus it is not reasonable to assume that target is
already populated with a large amount of the source’s data.
Furthermore, in the presence of set of positive or negative
facts, rule mining approaches (s.a. [28, 48, 52]) can help
identify important paths (or rules) that best fit a set of given
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examples. However, we cannot always assume that such ex-
amples exists and creating a good set of examples is itself
an interesting research challenge. In this work, we present
three complementary heuristics that do not require the in-
formation mentioned above, but that can be used in concert
with other information when available. Our first two heuris-
tics are structural, giving higher ranks to mappings that are
more consistent with the structure of the KBs, the third is
based on the coverage of the mappings, giving higher ranks
to renamings that cover more target elements.
First, we rank mappings based on the degree to which

source and target paths are collectively mapped. Recall
that an association path does not go through any other
aligned concept. If a mapping maps two target concepts be-
tween which there is an association path, to two source con-
cepts that have no association path between them, we rank
this mapping lower than a mapping that uses two source
concepts which are connected with an association path.
Definition 3.1. (Path Priority) Assume s0 ;c2c t0. For
any association path p with root s0, the cost of adding p to s0
with respect to the target KB, Cost(s0, p), is 1 if there exists
no association path between t0 and t1, where s1 ;c2c t1, and
s1 is the tail of p, and is 0 otherwise. The cost of adding
a set of ordered association paths, {p1, ...pk}, to s0, where
k > 2, and s0 is the root of p1, si is the tail of pi and the
root of pi+1, with respect to the target KB, Cost(s0, pk), is:

Cost(s0, p1) +

k−1∑
i=1

Cost(si, pi+1)

For node n in A(u0), where concept(n) is an aligned concept,
a set of ordered association paths, P , can be defined such
that P includes association paths that are used to connect
n0 to n, in that order, where n0 is the root of the association
tree. The Path score of variable v of node n is the cost of
adding P to u0, and is score(v,A(u0)). For Skeleton 〈S, T 〉,
The Path cost of < is:

Pathcost(<, 〈S, T 〉) =
∑
v

score(v, S)

where v ranges over all the variables of nodes of aligned
concepts in S. We say <i has higher Path priority than <j

if it has a lower cost. �
Example 3.2. In Figure 3, the score(sC3,A(src:Employee))
is 1, since there is no association path between
trgt:Employee and trgt:Country in the target KB, while
score(sC1,A(src:Employee)) or score(sC2,A(src:Employee)) are
0. Note that sometimes it is tempting to pick the shortest
path between two concepts as the best property path that
describes the relationship between them (e.g., src:born_in

here), however this example shows that the shortest path
is not always best. �
Next, we consider semantic associations that include

multiple subpaths containing identical concepts (like the
two Organization, Country paths in our running example).
These paths will have identical Path scores. Mappings
that only use a single one of these multiple paths (rather
than mixing concepts in two or more such identical paths)
are generally better reflections of the domain. To define
Consistency Priority, we note that the variables in a
semantic association (either S or T ) are organized in a tree
starting at the variable for the root. We say vj is reachable
from vi, if vj is a descendant of vi in this tree.

Definition 3.3. (Consistency Priority) For skeleton
〈S, T 〉, set the Consistency cost of the renaming <,
Consistencycost(<, 〈S, T 〉), to zero. For each pair of tar-
get variables vi and vj which both are bounded by some
source variables in <:
• if vj is reachable from vi (in T ), and <(vj) is
not reachable from <(vi) (in S), then increase
Consistencycost(<, 〈S, T 〉) by 1;
• if vj is not reachable from vi (in T ) and <(vj)
is reachable from <(vi) (in S), then increase
Consistencycost(<, 〈S, T 〉) by 1;

We say < has higher priority if it has lower cost. �
In addition to the two structural heuristics, we also use
Coverage Priority which prioritizes renamings that con-
tain translations for (or cover) more target elements.
Definition 3.4. (Coverage Priority) For a skeleton
〈S, T 〉, Coverage cost of <, Coveragecost(<, 〈S, T 〉), is the
number of variable in T that are mapped to ε. We say <
has higher priority if it has lower cost. �

4. EVALUATION
We begin by discussing current benchmarks for knowl-

edge exchange and comparing Kensho with other KGMTs in
handling the scenarios in these benchmarks. Then, in Sec-
tion 4.2, we showcase some of the most important real-world
applications of KB translation and show the effectiveness of
Kensho in these contexts. In Section 4.3, we use 50 synthe-
sized settings to stress test the performance of Kensho. Note
that we use a version of Kensho which creates renamings in
which each source variable is assigned to at most one tar-
get variable. This strategy significantly reduces the number
of possible renamings produced, at a cost of not being able
to produce some valid renamings in rare cases. We have
also done a small case study which compared the results of
data engineers manually writing mapping rules vs. selecting,
using data examples, mappings generated by Kensho.

4.1 Benchmark Evaluation
STBenchmark [4] introduced the use of (micro) scenarios

for comparing data exchange systems that use a structured
or semi-structured model. This idea was generalized by the
meta-data generator iBench [12] that permits the efficient
creation of benchmarks with large and complex schemas and
data exchange scenarios. DTSBenchmark [61] provides a
set of scenarios where the source and target are both KBs.
These scenarios were later refined in LODIB (linked open
data integration benchmark) [66] which is mainly designed
to benchmark the expressive power of mapping languages.
Both Mosto and Kensho can automatically generate the de-
sirable mapping rules for all the scenarios proposed in DTS-
Benchmark. In addition, it is reported that queries gen-
erated by Mosto can support the expression of all fifteen
LODIB scenarios except for three (the ones which need con-
ditional clauses or aggregation queries) [66]. Queries gener-
ated by Kensho have the same expressive power. Kensho,
like Mosto, cannot automatically learn the relationship be-
tween values (e.g., when a value must be transformed using
function usDollarsToEuros), and thus it cannot automatically
generate the mapping rules for the LODIB scenarios that
require these types of transformations.
Additional scenarios have recently been identified that

need to be supported by KMGTs [30]. Two of these scenarios
are inspired by value invention in relational data exchange.
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A third involves handling source KBs that are incomplete.
A fourth involves mapping creation even when the set of
given correspondences are incomplete (a very common case
in practice). Finally, a fifth scenario involves mappings that
use cyclic property paths. Kensho can handle all five sce-
narios while the previous approaches (Mosto and Qin et al.)
cannot. It is important to note that since the associations
that existing KMGTs create are a subset of what Kensho
creates, and since their mapping language is not more ex-
pressive than Kensho’s, there would be no scenario in which
these KMGTs can create a mapping which Kensho cannot.

4.2 Knowledge Translation Usecases
We now investigate the effectiveness of mapping gener-

ation and ranking strategies implemented in Kensho us-
ing several scenarios that showcase some of the important
applications of KB translation. Note that it is important
to evaluate Kensho on real scenarios because all mappings
which are created by our algorithm are valid interpretations
of the set of correspondences, however, depending on the
context, some mappings may be more desirable than oth-
ers. In all settings presented, an expert identified the de-
sired (gold) mapping rule in the selected skeleton, hence-
forth called <gold. For each scenario (described below), in
Table 1, column baseline reports the number of mappings
which are baseline valid, column c2a reports the number of
mappings which are baseline and c2a valid, column r2r re-
ports the number of mappings which are baseline and r2r
valid , and column Kensho shows number of mappings that
adhere to all of our validity constraints. Table 1 also shows
the effect of our ranking methods in facilitating the selection
of the best set of mappings. For the different ranking strate-
gies, we report on the rank of <gold in the Kensho rankings,
and since our rankings can have ties, we report on the num-
ber of other mappings ranked better than <gold, then the
number of mappings ranked equal to <gold (cols. 9-12). For
example, 2-1-0 means <gold was ranked second, with only
one other mapping ranked ahead of <gold and with no ties.
The last column of Table 1 reports the similarity between
the two KBs (informally, the number of resources that model
the same real world entities).

4.2.1 Populating a KB using Open Data
We believe the most important application of Kensho is

populating an existing domain-specific ontology using other
currently available structured data sources where the data
source does not have to be a KB as long as it can be au-
tomatically converted to one. Expertise finding is one area
for which having a domain-specific KB can be very benefi-
cial [37, 53]. For this reason, there are carefully designed
ontologies in the literature that model expertise for compe-
tency management. In this setting, for our target KB, we use
one of these ontologies [26] and augment it with two more
concepts, Employee and Organization, to be able to model the
skills of employees in various companies. Our goal in this
scenario (Row 1 of Table 1) is to generate mapping rules
that can be used to populate this KB using open data pub-
lished by the US Patent and Trademark Office (USPTO).
To use the USPTO corpus as our source KB, we started
with a subset of the USPTO’s patent XML corpus [2] and
automatically created a linked data corpus from it using
Xcurator [77] and further enriched it using Vizcurator [29].
The original set of correspondences was provided by a do-

main expert and then was verified by the crowd using the
protocol proposed by Sarasua et al. [67].
Our two KBs mainly model different domains (one models

skills in an organization and the other models patent appli-
cations), so the similarity between these two KB is low with
only 2.6% of the concepts and properties modeling the same
information (last column of Table 1). Additionally, there
are two correspondences between concepts and only one be-
tween attributes (col. 4). Mosto and Qin et al. [58] cannot
find the gold mapping which connects the associated con-
cepts and attributes through properties with no correspon-
dences. Kensho produces two possible mappings including
the gold mapping.
One side benefit of our approach is that the results can

be used to enrich the alignment. For instance, in this sce-
nario <gold suggests that a Rel2Rel correspondence may ex-
ists between the source Patent - Inventor path and the target
hasSkill - Skills path.

4.2.2 Migrating Data between KBs
This example (Row 2 in Table 1) is from Mosto [63], the

source is a portion of DBpedia version 3.2 and the target
is the similar portion of DBpedia version 3.6. In order to
generate the mapping rules in this scenario, Mosto requires
the correspondences and also a user-provided axioms called
mosto:strongRange. Note that Kensho does not require users
to specify axioms such as these to guide the algorithm. In
Mosto, if two source concepts (s1 and s2) have correspon-
dences to two target concepts (t1 and t2) then these con-
cepts will only be included in the same mapping if both the
source and the target concepts are in a subclass relation, or
if they are the domain and range of an aligned property, or
if a data engineer has manually added a mosto:strongRange or
mosto:strongDomain relation between them. In this scenario,
without the annotation, Mosto would exchange the Actor

and AcademyAward data in DBpedia, but not the relationship
between these two concepts (representing about 850 facts
indicating who won which award).
In this scenario, Kensho generates four mappings. If we do

not use our r2r strategy, then we generate seven mappings.
(including some that are inconsistent with the Rel2Rel cor-
respondences). The four mappings that Kensho produces
include <gold and another three that are less complete (con-
taining some existential target variables). Our Coverage
ranking strategy correctly ranks the gold mapping before
these more incomplete mappings.

4.2.3 Enriching the Result of Ontology Alignment
In this scenario (Row 3), we highlight the fact that Ken-

sho can enrich the rules produced by the current state-of-
the-art alignment tools. Note that while alignment tools
generate correspondences, Kensho enriches these correspon-
dences and produces executable queries by interpreting the
correspondences collectively. Previous to this work, KMGTs
assumed that the set of property correspondences are com-
plete. Thus, if there is no correspondence to or from an
object property, the KMGT did not automatically consider
any path that included that property. One of the main ad-
vantages of Kensho is that it considers such properties in
mapping generation. To show the benefit of this approach,
in this experiment, we have used two KBs from the OAEI
(Ontology Alignment Evaluation Initiative) campaign and
the correspondences between them which were produced by
AML (Agreement Maker Light) – one of the best performers
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Table 1: Mapping Generation and Ranking Performance. Generation time is not mentioned if it is < 1 sec.
Number of mapping generated Effect of Ranking

<gold’s rank–# <s ranked better–# <s ranked equlaSec Source Target Corr baseline r2r c2a Kensho Coverage Path Consistency Path + Consistency Similarity

4.2.1
#classes(C): 64

#Attributes(A):67
#objectProp(P):69

C: 10
A:2
P:11

#c2c: 2
#atr2atr: 1
#rel2rel: 0

2 2 2 2 1-0-0 2-1-0 1-0-1 2-1-0 Low
(2.6%)

4.2.2
C: 5
A:2
P:2

C: 6
A:3
P:3

#c2c: 5
#atr2atr: 2
#rel2rel: 2

7 4 7 4 1-0-0 1-0-3 1-0-3 1-0-3 High
(91%)

4.2.3
C: 38
A: 23
P: 13

C: 49
A:11
P:17

#c2c: 4
#atr2atr: 1
#rel2rel: 0

26 26 26 26 2-6-11 1-0-25 3-15-3 3-15-3 Low
(10%)

4.2.4
C: 6
A: 12
P: 5

C: 5
A: 14
P: 6

#c2c: 4
#atr2atr: 7
#rel2rel: 1

407 ×105

creation time:
∼ 2.5 hr

65700
creation time:
∼ 10 min

4015 657 1-0-447 1-0-20 1-0-15 1-0-3 High
(81%)

in the 2018 matching challenge [25]. The KBs we have used,
confTool and Sigkdd, are from the OntoFarm dataset [78] of
the Conference track of the OAEI.
In this scenario, Kensho produces 26 mappings (including

the gold mapping). These two KBs are not very similar, so
our structural rankings are not helpful. For example, our
Path ranking ranked all 26 mappings equally. Our Con-
sistency ranking did better with only eighteen mappings
ranked equal or higher than the gold mapping. Our results
suggest some interesting possible correspondences between
two KBs which are not provided in the results of AML, for
instance, inverse property correspondences such as:

sigkdd:submit
∧ ;r2r conftool:writtenBy

In this scenario, the number of given property correspon-
dences is very low. As a result, existing KMGTs do not
create the gold mapping.

4.2.4 Translating KBs with Cycles
In this scenario (Row 4), we show that unlike existing

KMGTs, Kensho can handle cycles, a situation that occurs
in many existing KBs such as those created from social net-
works. Cycles define associations between resources of the
same type such that multiple resources in the source can
be mapped into multiple resources in the target, a situation
resulting in a large number of possible mappings. This sce-
nario showcases that our mapping generation and ranking
strategies are especially useful in cases where the number
of possible interpretations becomes very large due to the
existence of cyclic paths.
This setting (depicted in Figure 2) was created from the

example proposed by Qin et al. [58] which was developed us-
ing Carnegie Mellon’s Person & Employee Ontology and the
University of Maryland’s People Ontology. To add complex-
ity, we incorporated a cycle by adding an additional object
property, src:related, which has src:Employee as its domain
and range. This caused a large number of mappings to be
created. However, our mapping generation validity strate-
gies reduce the number of mappings to a few hundred (which
is still unmanageable for a human), but the Consistency
ranking ranks the gold mapping first, in a tie with only 15
other mappings (a much more reasonable task for an engi-
neer to understand). Together, our Path and Consistency
ranking reduces the ties to only three.

4.3 Performance Evaluation
Mapping generation tools are usually evaluated using

metadata generators [4, 12]. They allow the data engi-
neer to systematically vary specific parameters that influ-
ence the difficulty of relational mapping creation or data
exchange. In a similar vein, MostoBM [62] identifies three
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Figure 7: Increasing Breadth(C) E1 & Depth(L) E2.

schema-level parameters (namely, L or depth of the class
relationships, C or breadth of the class relationships, and
D, the number of attributes) that can affect the complexity
of the task of KB mapping generation. To investigate the
effect of breadth, we followed the MostoBM approach and
generated ten settings for one of the MostoBM exchange
scenarios - called sink properties. More specifically, we fixed
D = 10, L = 1, and vary the value of C between one and
ten. We call this group of settings that vary C, E1. For the
first setting of E1, {L=1, C=1, D=10}, the source contains two
concepts, A0 and its child A1, and A0 is the domain of ten
attributes {d1,...,d10}. The target has the same structure,
except that the domain of d1 is A1. Resources with the same
labels correspond to each other (e.g., src:A0 ;c2c trgt:A0).
For the next setting in E1, {L=1, C=2, D=10}, A0 has one more
child, A2, in both the source and target and the domain of
d2 in the target is A2. We repeated the same procedure for
investigating the effect of depth and created a group of ten
depth settings, E2 by keeping C constant and varying L.
The difference here is that the new concept for each consec-
utive setting will be nested inside the most specific type (as
opposed to being added to the root). For instance, when
L = 2, A2 is a child of A1 and A1 is a child of A0. In this
section, we report on the number of all mappings created
(as opposed to the number of mappings created for a spe-
cific skeleton as was done in the previous section). Note
that changing D while fixing L and C will not change the
number of mappings created and so we did not include such
settings in our evaluation.
Figure 7 shows the number of mappings generated by Ken-

sho in each of the settings. Note that Mosto does not create
all possible mappings and thus in our evaluation we could
not compare it with Kensho. As the breadth (C) of the KB
increases, the number of mappings generated also increases
linearly and Kensho’s performance also scales linearly, re-
maining under a second for a setting with breadth of 8.
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and E3. ∆ = #mappings - #correspondences

In contrast, increasing the depth (L) has an exponential ef-
fect on the number of mappings generated. This is expected
since increasing the depth actually adds a layer of nesting.
Kensho’s performance passes one second at a depth of five
which corresponds to the generation of 21 mappings.
Settings in E1 and E2 include relatively small KBs. To

push Kensho further, we created a set of 10 settings, E3, for
the same scenario using parameters {L=x, C=2, D=10}, where
1 ≤ x ≤ 10. The taxonomy created using these parameters
contains 2n concepts at depth n from the root. For instance,
when L = 10, both the source and target contain 210 most
specific types (in total each contains more than 2000 con-
cepts - more than three times greater than the number of
concepts in DBpedia). Figure 8 left, shows the number of
mappings created in E3 vs. E1 and E2, note the scale change
on the Y-axis. When L = 10, Kensho creates more than 2000
mappings and the creation time is almost three hours. One
factor that affects the number of mappings is the number
of correspondences. In E3, the number of correspondences
grows as the depth L increases. To explain this effect, we
have also plotted ∆ as the difference between the number
of mapping rules generated for each setting and the num-
ber of correspondences. The right plot in Figure 8 shows
the result. Obviously, the difference ∆ is constant for the
E1 (breadth) settings (all have L = 2). However it is im-
portant to note that for E2 and E3, ∆ is exactly the same
for each value of the depth L. This is because the num-
ber of possible mappings becomes greater than number of
correspondences if there are various ways for interpreting
correspondences. As we have seen, correspondences can be
interpreted in various ways only if the resources can be as-
sociated with each other in multiple ways. In this scenario,
multiple interpretations are the result of various ways that
one can interpret Concept2Concept correspondences in con-
junction with Attr2Attr correspondences. Thus increasing
only the number of concepts and Concept2Concept corre-
spondences (as we are doing here) will not result in multiple
interpretations of the correspondences.
Nonetheless, Kensho is sensitive to the number of pos-

sible interpretations of a correspondence, so we created a
final set of 20 settings (E4) to understand how far we can
push Kensho on this dimension. We have used the setting
represented in Figure 2, our running example which already
includes multiple interpretations, as our least complex set-
ting (Setting 1). To create the rest of the settings, we in-
jected elements into the source, such that in each setting,
the number of possible assignments for each target variable
is increased by one. For instance, Figure 6 shows that there
are three source variables of type country that can be as-
signed to variable tC1. The next setting contains four pos-
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Figure 9: Effect of increasing # of interpretations.

sibilities for this variable, and so on. Figure 9 represents
the result of our various mapping strategies. The number of
mappings generated grows exponentially; however, this fig-
ure demonstrates that Kensho is able to reduce this search
space by only generating valid mappings. In our largest
setting, the source KB contains nearly 120 object proper-
ties and 5 concepts leading to over 500K interpretations (we
have kept the target fixed in this experiment). Only one fifth
of these properties corresponds to a property in the target.
Note that real world KBs usually contain many fewer object
properties among concepts. Kensho created 4579 possible
mappings for this setting. For the biggest skeleton in this
setting, Kensho ranked 42 mappings as rank one. This high-
lights one of the weaknesses of Kensho. As the number of
property paths among corresponding concepts or attributes
grows, the number of mappings generated by Kensho will
grow exponentially and this makes the process of selecting
the best set of mappings overwhelming. However, note that
in the previous experiment we have shown that Kensho is
not as sensitive to the increasing number of concepts, and
most large real world KBs such as medical KBs tend not to
have a large number of properties for all concepts as we do
in this case (which included an average of 24 properties for
every concept in this experiment).
In summary, we performed experiments on synthetic sce-

narios (inspired by existing KB exchange benchmarks [62])
to show how the performance of our mapping generation al-
gorithm is affected by increasing complexity of the scenarios.
Our results show that Kensho scales very well as the KB size
increases, with the largest bottleneck being the number of
possible interpretations of a correspondence.

4.4 Case Study
In this study, we make use of a scenario from On-

toMerge [19]. It includes their Yale bibliography ontology
as our source, and their CMU bibliography ontology as our
target. We also use their manually curated mapping rules
as our gold standard. We manually identified the set of cor-
respondences between these two ontologies (from the gold
standard mapping rules). These ontologies are very simple,
the source contains only 6 classes and no object properties,
the target contains 9 classes and 3 object properties. In
Phase I of our experiment, we asked two collaborators, c1
and c2 (both experienced in SPARQL) to create mapping
rules by manually writing SPARQL queries. We gave each
collaborator 20 minutes to familiarize themselves with the
ontologies and one hour to write the mapping rules. The
queries created by c1 were able to transfer 78% of the facts
while queries created by c2 transferred 61% of the facts.
In Phase II, we used a ranked list of examples created by
Kensho and gave c1 and c2 each 30 minutes to go through
them and choose desirable examples. Note that examples
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were created based on query solutions obtained by running
queries using query pattern of each renaming. Both c1 and
c2 identified all (and only) the desirable examples. In Phase
III we gave them 20 minutes to update the queries they gen-
erated in Phase I, based on what they learned from the ex-
amples. Collaborator c2 was able to write all the queries
correctly while c1 was able to make changes such that 92%
of the facts translated correctly. It is possible that c1 and
c2 were able to more easily identify examples from Kensho’s
ranked list because in Phase I they had each tried to gener-
ate their own mapping rules. To account for this, we asked
a third collaborator c3 (also with SPARQL experience) to
first select desirable examples from Kensho’s automatically
generated list. Similar to c1 and c2, c3 was given 30 minutes
and was also able to pick the desirable (and only desirable)
examples. We then gave c3 one hour to write queries that
can transfer data from the source to the target. The result-
ing queries were able to transfer only 78% of the facts.
In summary, all participants were able to correctly iden-

tify the desirable examples (including the correct optional
combinations) which highlights the fact that it is more in-
tuitive for humans to select from examples than to write
queries manually.

5. RELATED WORK
Among mapping generation tools only Maponto [7], which

maps between a single relational table to a KB, traverses all
paths of the target ontology to find semantic associations
among concepts (as Kensho does for both source and tar-
get). Even to map a single table, Maponto relies heavily
on the existence of enriched ontological constraints (such as
cardinality) to narrow down the search over all paths. These
constraints are rarely present in real KBs.
The first step of any data sharing task is alignment,

which is the task of finding a set of suitable correspon-
dences between the source and the target. The second step
involves interpreting a set of candidate correspondences col-
lectively to solve a specific data sharing task (e.g., data ex-
change) [20]. The output of most alignment tools (Step 1),
are simple correspondences, each specifying that a resource
in the source (or multiple resources like a path) has some
set-theoretic relationship to a resource (resources) in the tar-
get. We take this output (from Step 1) as our input and find
queries that collectively interpret correspondences. Ontol-
ogy and schema structure have been used extensively in the
first step [18; 21; 39; 40; 44; 45; 47; 51; 54, et al.]. In con-
trast to these approaches, we assume the correspondences
are given as input and use the semantics and structure of
the KB to create (often complex) data exchange queries
that can be used to correctly translate a full source instance
into a full target instance without losing or changing the
semantics of the data and the way values are connected.
Note that although many heuristics for ranking correspon-
dences are proposed [20], they are not applicable here since
they are mostly designed to express the degree of similarity
of two resources and cannot rank the complex queries dis-
covered by Kensho. Nevertheless, the aggregation methods
used to combine various integration rankings [27, 59] could
potentially provide insight on aggregating the rankings of
the Kensho mappings.
Similar to our approach, rule mining approaches [28, 48,

52]) traverse a knowledge graph to associate a set of re-
sources, but they do this guided by a set of positive and/or

negative examples. We aim to find rules among correspond-
ing resources of two different KBs, so we find associations in
the source, associations in the target, and then we create our
rules by combining these associations using the constraints
imposed by the correspondences. On the other hand, the
discovery phase of most rule mining algorithms try to fit a
set of given examples. It would be interesting to investigate
how rule mining approaches can help in enriching the set of
constraints that we use in order to further refine our map-
ping rules. It is also interesting to see how these rules can
help in ranking the mapping rules by helping to find more
important paths which fit certain sets of examples.

6. CONCLUSION
We introduced Kensho, a tool that translates knowledge

between two KBs by generating mapping rules between
them. Kensho is the first KB mapping tool that is effec-
tive even when there are missing object property correspon-
dences. Kensho is also the first to take advantage of corre-
spondences between object or data paths, if they are avail-
able, though our approach also allows these to be incom-
plete. Kensho improves upon existing methods by produc-
ing mappings that perform value invention in a principled
way without assuming a complete source KB.
We are currently extending Kensho in the spirit of the in-

tegration by example paradigm [76]. A large body of tradi-
tional data exchange literature is dedicated to identifying or
exploiting examples that can shown to data engineers and
incorporating their feedback [3, 5, 15, 17, 33, 41, 57, 76].
Similarly, we are working on approaches for incorporating
user feedback to improve upon our mapping rules.
When source or target instances are available, Kensho can

simplify the semantic associations by running queries which
are built using the graph pattern representation of the se-
mantic association. We can remove the parts of the query
in which the variables are not being bound. In this mode,
OPTIONAL keywords can be removed if adding them to the
query does not exchange additional facts. Note that all of
our experiments are performed without this feature. Al-
though using the above technique can help, the queries gen-
erated by our tool might still contain a considerable num-
ber of OPTIONAL clauses. Thus, we believe our approach can
benefit from research on how to optimize the execution of
SPARQL OPTIONAL queries [75].
As part of our ongoing work, we are exploring ideas on

dealing with scale using slicing and we plan to investigate
whether sophisticated methods such as modularization [32,
34, 35, 43, 72] or partitioning [36, 69, 71] may help in deal-
ing with knowledge translation between large KBs. We will
also consider how the process of mapping generation can be
refined in the presence of other constraints such as function-
ality or cardinality [24]. Ontology based data access initia-
tives (OBDA) [74] facilitate the exchange and integration
of data between a relational source and a target KB. It is
interesting to see how our approach can be adopted in such
settings.
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