
FusionInsight LibrA: Huawei’s Enterprise Cloud Data
Analytics Platform

Le Cai∗, Jianjun Chen†, Jun Chen, Yu Chen, Kuorong Chiang, Marko Dimitrijevic, Yonghua Ding
Yu Dong∗, Ahmad Ghazal, Jacques Hebert, Kamini Jagtiani, Suzhen Lin, Ye Liu, Demai Ni∗

Chunfeng Pei, Jason Sun, Yongyan Wang∗, Li Zhang∗, Mingyi Zhang, Cheng Zhu
Huawei America Research

ABSTRACT
Huawei FusionInsight LibrA (FI-MPPDB) is a petabyte scale
enterprise analytics platform developed by the Huawei data-
base group. It started as a prototype more than five years
ago, and is now being used by many enterprise customers
over the globe, including some of the world’s largest finan-
cial institutions. Our product direction and enhancements
have been mainly driven by customer requirements in the
fast evolving Chinese market.

This paper describes the architecture of FI-MPPDB and
some of its major enhancements. In particular, we focus on
top four requirements from our customers related to data an-
alytics on the cloud: system availability, auto tuning, query
over heterogeneous data models on the cloud, and the ability
to utilize powerful modern hardware for good performance.
We present our latest advancements in the above areas in-
cluding online expansion, auto tuning in query optimizer,
SQL on HDFS, and intelligent JIT compiled execution. Fi-
nally, we present some experimental results to demonstrate
the effectiveness of these technologies.

PVLDB Reference Format:
Le Cai, Jianjun Chen, Jun Chen, Yu Chen, Kuorong Chiang,
Marko Dimitrijevic, Yonghua Ding, Yu Dong, Ahmad Ghazal,
Jacques Hebert, Kamini Jagtiani, Suzhen Lin, Ye Liu, Demai Ni,
Chunfeng Pei, Jason Sun, YongyanWang, Li Zhang, Mingyi Zhang,
Cheng Zhu. FusionInsight LibrA: Huawei’s Enterprise Cloud
Data Analytics Platform. PVLDB, 11 (12): 1822-1834, 2018.
DOI: https://doi.org/10.14778/3229863.3229870

1. INTRODUCTION
Huawei FusionInsight LibrA (FI-MPPDB) [9] is a large

scale enterprise data analytics platform developed by Huawei.
Previous version known as Huawei FusionInsight MPPDB

∗The authors, Le Cai, Yu Dong, Demai Ni, Yongyan Wang
and Li Zhang, were with Huawei America Research when
this work was done.
†Dr. Jianjun Chen is the corresponding author, jian-
jun.chen1@huawei.com

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3229870

was launched in 2015 and has been adopted by many cus-
tomers over the globe, including some of the world’s largest
financial institutes in China. With the help of the success
of Huawei FusionInsight MPPDB, FusionInsight products
started appearing in Gartner magic quadrant from 2016.

The system adopts a shared nothing massively parallel
processing architecture. It supports petabytes scale data
warehouse and runs on hundreds of machines. It was orig-
inally adapted from Postgres-XC [14] and supports ANSI
SQL 2008 standard. Common features found in enterprise
grade MPPDB engine have been added through the years,
including hybrid row-column storage, data compression, vec-
torized execution etc. FI-MPPDB provides high availability
through smart replication scheme and can access heteroge-
neous data sources including HDFS.

Huawei is a leader in network, mobile technology, and
enterprise hardware and software products. Part of the
Huawei’s vision is to provide a full IT technology stack to
its enterprise customers that include the data analytics com-
ponent. This is the main motivation behind developing FI-
MPPDB that helps reducing the overall cost of ownership for
customers compared to using other DBMS providers. An-
other advantage is that the full stack strategy gives us more
freedom in deciding product direction and quickly providing
technologies based on our customer requirements.

The architecture and development of FI-MPPDB started
in 2012 and the first prototype came out in early 2014. The
main features in our initial system are vectorized execution
engine and thread based parallelism. Both features provided
significant system performance and were a differentiator for
us over Greenplum [31]. The FI-MPPDB release v1 based
on the prototype was successfully used by the Huawei dis-
tributed storage system group for file meta-data analytics.

With the success of the v1 release, Huawei started to
market the FI-MPPDB to its existing customers, especially
those in China’s financial and telecommunication industry.
The product direction and enhancements were driven by our
customer requirements, leading to key features in v2 like col-
umn store, data compression, and smart workload manage-
ment. In addition, we developed availability feature to retry
failed requests, and for scalability we replaced the original
TCP protocol by a new one based on the SCTP protocol.

In 2016, we observed that many of our customers captured
a lot of data on HDFS in addition to data on FI-MPPDB.
This led us to looking into supporting SQL on Hadoop.
We examined competing solutions available that included
Apache HAWQ [8], Cloudera Impala [24] and Transwarp In-
ceptor [17]. We decided to make our data warehouse tightly

1822

integrated with HDFS, allowing our MPP engine to directly
work on HDFS data and avoid data movement from HDFS
to the FI-MPPDB storage. This approach provides a seam-
less solution between MPPDB and HDFS with better SQL
performance than Transwarp Inceptor, and stronger ACID
support than Cloudera Impala. The HDFS support was
added to the FI-MPPDB in 2016 and successfully adopted
by many of our customers. As a result, FI-MPPDB became
part of Huawei FusionInsight product in 2016.

In 2017, we announced our first version of FI-MPPDB on
Huawei public cloud, a.k.a. LibrA. Based on our customers’
feedbacks on our cloud offering, the top requirements are 1)
system availability, 2) auto tuning, 3) support querying large
and diversified data models on the cloud, and 4) best utilize
modern hardware for achieving high performance over cost
ratio.

First, system availability requires that FI-MPPDB should
be able to add more nodes (elasticity) or go through an up-
grade with minimal impact on customer workloads. This
is critical for large systems with petabytes of data that can
take hours or even days to migrate and re-balance during
system expansion. Similarly, system upgrade can also take
hours to finish and make the system unavailable for the
end user. These requirements are addressed by our recent
features online expansion and online upgrade which greatly
minimize the impact of system expansion and software up-
grades. Due to the space limitation, we will only cover online
expansion in this paper.

Second, DBMS auto tuning minimizes the need for man-
ual tuning by system DBAs. For cloud deployment, such
tuning can be complex and costly with the elasticity of the
system and the access to heterogeneous data sources. Au-
tonomous database from Oracle [13] emphasizes self man-
aging and auto tuning capabilities, an indication that cloud
providers are paying great attention to this area. We have
been working on automatic query performance tuning through
runtime feedbacks augmented by machine learning.

Third, our cloud customers now have huge amount of data
in various formats stored in Huawei cloud storage systems,
which are similar to S3 and EBS in AWS. Recently, the
notion of Data Lake becomes popular which allows data re-
siding inside cloud storage to be directly queried without
the need to move them into data warehouse through ETL.
AWS Spectrum [3] and Athena [1] are recent products that
provide this functionality. Our product provides SQL on
Hadoop (SQLonHadoop) support (a.k.a. ELK in FusionIn-
sight) which was successfully used by many of our customers.

Fourth, modern computer systems have increasingly larger
main memory, allowing the working set of modern database
management systems to reside in the main memory. With
the adoption of fast IO devices such as SSD, slow disk ac-
cesses are largely avoided. Therefore, the CPU cost of query
execution becomes more critical in modern database sys-
tems. The demand from cloud database customers on high
performance/cost ratio requires us to fully utilize the great
power provided by modern hardware. An attractive ap-
proach for fast query processing is just-in-time (JIT) compi-
lation of incoming queries in the database execution engine.
By producing query-specific machine code at runtime, the
overhead of traditional interpretation can be reduced. The
effectiveness of JIT compiled query execution also depends
on the trade-off between the cost of JIT compilation and
the performance gain from the compiled code. We will in-

Figure 1: FusionInsight MPPDB System High-level
Architecture

troduce our cost based approach in JIT compilation in this
paper.

The rest of this paper is organized as follows. Section
2 presents an overview of the FI-MPPDB architecture fol-
lowed by the technical description of the four major direc-
tions discussed above. Our experimental results are pre-
sented in section 3, which show the efficiency of our online
expansion solution, the benefit of auto tuning, the effective-
ness of the co-location strategy of SQLonHDFS, and the per-
formance gain from the JIT generated code. Related work is
discussed in Section 4 which compares our approaches with
other industry leaders in the four cloud key areas. Finally,
we conclude our paper in section 5 and discuss future work.

2. TECHNICAL DETAILS
In this section, we first give an overview of FI-MPPDB,

and then we present our solutions to the four top customer
requirements described in section 1.

2.1 System Overview
FI-MPPDB is designed to scale linearly to hundreds of

physical machines and to handle a wide spectrum of interac-
tive analytics. Figure 1 illustrates the high level logical sys-
tem architecture. Database data are partitioned and stored
in many data nodes which fulfill local ACID properties.
Cross-partition consistency is maintained by using two phase
commit and global transaction management. FI-MPPDB
supports both row and columnar storage formats. Our vec-
torized execution engine is equipped with latest SIMD in-
structions for fine-grained parallelism. Query planning and
execution are optimized for large scale parallel processing
across hundreds of servers. They exchange data on-demand
from each other and execute the query in parallel.

Our innovative distributed transaction management (GTM-
lite) distinguishes transactions accessing data of a single
partition from those of multiple partitions. Single-partition
transactions get speed-up by avoiding acquiring centralized
transaction ID and global snapshot. GTM-lite supports
READ COMMITTED isolation level and can scale out FI-
MPPDB’s throughput manifold for single-partition heavy
workloads.

2.1.1 Communication
Using TCP protocol, the data communication requires a

huge number of concurrent network connections. The maxi-
mum concurrent connections will increase very quickly with
larger clusters, higher numbers of concurrent queries, and

1823

more complex queries requiring data exchange. For exam-
ple, the number of concurrent connections on one physical
host can easily go up to the scale of one million given a
cluster of 1000 data nodes, 100 concurrent queries, and an
average of 10 data exchange operators per query (1000 *
100 * 10 = 1,000,000). To overcome this challenge, we de-
signed a unique communication service infrastructure where
each data exchange communication pair between a consumer
and a producer is considered a virtual or logical connection.
Logical connections between a given pair of nodes share one
physical connection. By virtualizing the data exchange con-
nections with shared physical connections, the total number
of physical connections on a physical host system is signifi-
cantly reduced. We chose SCTP (Stream Control Transmis-
sion Protocol) as the transport layer protocol to leverage its
built-in stream mechanism. SCTP offers reliable message-
based transportation and allows up to 65535 streams to
share one SCTP connection. In addition, SCTP can sup-
port out-of-band flow control with better behavior control
and fairness. All those features match the requirements of
our design of logical connections and simplify the implemen-
tation compared to the customized multiplexing mechanism.

2.1.2 High Availability and Replication
It is always a challenge to achieve high availability of

database service across a large scale server fleet. Such sys-
tem may encounter hardware failures so as to considerably
impact service availability. FI-MPPDB utilizes primary-
secondary model and synchronous replication. The amount
of data stored in data warehouses are normally huge, up to
hundreds of TB or even PB, so saving storage usage is a crit-
ical way to lower overall cost. A data copy is stored in pri-
mary and secondary data nodes, respectively. In addition,
a dummy data node maintains a log-only copy to increase
availability when secondary data nodes fail. Introducing
the dummy data node solves two problems in synchronous
replication and secondary data node catch-up. First, when
secondary data nodes crash, primary data nodes can exe-
cute bulkload or DML operations because log can still be
synchronously replicated to the dummy data nodes. Sec-
ond, after recovering from crash, secondary data nodes need
to catch up with primary data nodes for those updates hap-
pening when secondary data nodes are down. However, the
primary data nodes may have already truncated log, causing
secondary data nodes’ recovery and catch-up to fail. This is
solved by dummy data nodes providing the needed log.

2.1.3 Workload Management
The performance of analytical query processing is often

sensitive to available system resources. FI-MPPDB depends
on a workload manager to control the number of concur-
rently running queries. The workload manager optimizes
system throughput while avoiding the slow-down caused by
queries competing for system resources.

The workload manager consists of three main components:
resource pools, workload groups, and a controller. Resource
pools are used for allocating shared system resources, such
as memory and disk I/O, to queries running in the system,
and for setting various execution thresholds that determine
how the queries are allowed to execute. All queries run in a
resource pool, and the workload group is used for assigning
the arriving queries to a resource pool. Workload groups are
used to identify arriving queries through the source of the

queries such as its application name. The controller evalu-
ates queries and dynamically makes decisions on execution
based on the query’s resource demands (i.e., costs) and the
system’s available resources (i.e., capacity). A query starts
executing if its estimated cost is not greater than the sys-
tem’s available capacity. Otherwise, the query is queued.
Resource bookkeeping and feedback mechanisms are used
in keeping tracking of the system’s available capacity. The
queued queries are de-queued and sent to the execution en-
gine when the system’s capacity becomes sufficient.

2.2 Online Expansion
Modern massively parallel processing database manage-

ment systems (MPPDB) scale out by partitioning and dis-
tributing data to servers and running individual transactions
in parallel. MPPDB can enlarge its storage and computa-
tion capacity by adding more servers. One of the important
problems in such scale-out operation is how to distribute
data to newly added servers. Typically, the distribution
approach uses certain algorithms (such as hash functions,
modulo, or round-robin) to compute a value from one col-
umn (called distribution column in a table). This value is
used to determine which server (or database instance) stores
the corresponding record. The result of those algorithms de-
pends on the number of servers (or database instances) in
the cluster. Adding new servers makes those algorithms in-
valid. A data re-distribution based on the number of servers,
including newly added ones, is needed to restore the consis-
tency between distribution algorithms’ result and the actual
location of records. In addition, hash distribution may be
subjected to data skew where one or more servers are as-
signed significantly more data, causing them to run out of
space or computing resource. In such cases, one can choose a
different hashing function, re-compute the distribution map,
and move data around to eliminate the skew and balance the
load.

2.2.1 Solution Overview
A naive implementation of redistribution is to take the ta-

ble offline, reorganize the data in place, and move relevant
data to newly added nodes. During this process, the table
cannot be accessed. Alternatively, one can create a shadow
table and load it with the data while keeping the original ta-
ble open for query. But until the data is redistributed to the
new nodes, the distribution property does not hold among
the new set of nodes. In order to make the table available
for query during the redistribution process, one choice is to
change table distribution property from hash to random as
done in Greenplum [20]. Such an approach allows the data
to be queried, but the query performance is degraded since
data locality information is lost and collocated joins are not
possible. In addition, data modification operations (such as
IUD) are blocked on the table during redistribution, causing
interruption to user workloads for extended period of time.

For our solution, we use the shadow table approach for re-
distribution. But instead of making the table read-only, we
modify the storage property of the original table to append-
only mode and prevent the recycling of the storage space.
This gives us an easy way to identify the new records added
to the table (called append-delta) during data redistribu-
tion. Additionally we create a temporary table to store the
keys (rowid) of deleted records (called delete-delta). After
the existing data has been redistributed, we lock down the

1824

table, reapply the append-delta, and then delete-delta on
the shadow table. To facilitate the application of delete-
delta, the shadow table is created with additional column
that stores the rowid from the original table. This way we
can join the shadow table with delete-delta table to apply
the delete-delta.

Our approach offers the following advantages

• Our solution allows DML operations including insert,
delete, and update while the table is being redistributed.

• Our method of redistribution of a table can be con-
figured to progress in small batches. Each batch can
be done quickly to minimize load increase to the sys-
tem. Each unit is done as a transaction and the whole
redistribution can be suspended and resumed between
tables.

• Our method requires only one scan of data in the orig-
inal table for the redistribution. This improves the
overall redistribution performance. The only addi-
tional scan of data is done on the shadow table when
delete-delta is being applied.

• Our method can also be used for cluster downsizing
without any changes. In both cases, extra space on
each member of the new cluster is needed to store the
temporary shadow table. The total size of the tempo-
rary shadow table is the same as the size of the original
table.

2.2.2 Core Algorithm
Algorithm 1 illustrates the algorithm to execute the redis-

tribution while still allowing normal DML operation on the
table.

Algorithm 1 Algorithm Redistribution DML

1: Create a shadow table S with the same schema as the
original table T to be redistributed

2: Mark T as append only
3: Disable garbage collection on T
4: Create a delete-delta table D for deletes on T
5: Redistribute a segment of T into S.
6: Apply D on S and reset D when finished.
7: Commit the change.
8: Repeat steps 5-7 until the remaining records in T is

smaller than a threshold
9: Lock the original table. Redistribute the remaining in-

sert and delete delta, just as in step 5 and 6.
10: Switch the T with S in the catalog.
11: Commit the changes.
12: Rebuild indexes

In Algorithm 1, steps 1 through 4 prepare the table T for
redistribution. In step 1, we create a shadow table S with the
same schema as T plus a hidden column (original tuple key)
to store the original tuple key of records moved from T. In-
dexes on S are disabled during this phase until all redistri-
bution is done. In step 2, we mark T as append-only and
disable reuse of its freed space. With this conversion, inserts
to T will be appended to the end of T, deletions are handled
by marking the deleted record, and updates on the T are in-
ternally converted to deletions followed by inserts. In step
3, we disable the garbage collection on T to keep records

Figure 2: Example of Redistribution Phases

of its original position during the data redistribution pro-
cess. In step 4, a temporary table delete-delta D is created
to keep track of the original tuple keys of deleted records.
Since the space in the original table is not reused after the
redistribution has begun, the tuple key can uniquely iden-
tify a version of a record, allowing us to apply the deletions
in the new table later on.

In steps 5 through 7 we start rounds of redistribution of
records from T, one segment at a time. In step 5, we get a
snapshot and start to scan a segment of the table, move all
visible records to S, distribute them into a new set of nodes
according to the new distribution property (new node group
and/or new hash function), and record the unique original
tuple key from the original table in the hidden column of the
new table (explained in step one). In step 6, we apply the
deletion in this segment happened during the redistribution
of the segment by deleting the records in the new table us-
ing the original-tuple-key stored in D. D is reset after it is
applied and this phase is committed in step 7.

In step 8, we iterate over steps 5 through 7 until the re-
maining data in T is small enough (based on some system
threshold). Step 9 starts the last phase of the redistribu-
tion by locking T, redistributing the remaining data in T
the same way as steps 5-6. This is followed by renaming
the new table S to the original table T in step 10. Step 11
commits the changes. Finally, we rebuild the indexes on T
in step 12.

Figure 2 illustrates the redistribution process from step 5-
9 using an example with 3 iterations. In this example, T1 is
the original table, and T1 tmp is the shadow table with the
same schema as T1. All three iterations apply both insert
and delete delta changes introduced by Insert, Update and
Delete (IUD) operations of T1 onto T1 tmp while still taking
IUDs requests against T1. The last iteration which has small
set of delta changes locks on both tables exclusively in a brief
moment to redistribute the remaining insert and delete delta
as described in step 9.

2.3 Auto Tuning in Query Optimizer
Our MPPDB optimizer is based on Postgresql optimizer

with fundamental enhancements to support complex OLAP
workloads. We briefly describe the main architectural changes
in our optimizer. First, our optimizer is re-engineered to
be MPP aware that can build MPP plans and apply cost
based optimizations that account for the cost of data ex-
change. Second, the optimizer is generalized to support

1825

Figure 3: Statistics Learning Architecture

planning and cost based optimizations for vector executions
and multiple file systems including Apache ORC file format.
Query rewrite is another major ongoing enhancement to
our optimizer, including establishing a query rewrite engine
and adding additional rewrites which are critical to complex
OLAP queries.

The enhancements mentioned above are common in other
commercial database and big data platforms. We believe
that we are closing the gap with those established prod-
ucts. In addition, we are working on cutting edge technology
based on learning to make our optimizer more competitive.
Our initial vision of a learning optimizer is in the area of car-
dinality estimation (statistics), which is one of the core com-
ponents of cost based optimization. Traditional and classi-
cal methods of statistics used for cost based optimizations
are complex, require large capital investment, and evolve
through time. Different sources of data with their differ-
ent formats pose additional challenges to collecting statistics
with reasonable accuracy.

Based on the above challenges in the optimizer statistics
area, we are developing a learning component in the DBMS
that selectively captures actual execution statistics. The
captured data in turn can be used by the optimizer for more
accurate statistics estimates for subsequent similar queries.
Our experience shows that most OLAP workloads are fo-
cused on specific queries/reports and therefore the approach
of capturing execution plans and re-using them is promising
and expected to mitigate the optimizer statistics limitations.
This approach is also appealing, given that its engineering
cost is much less than the traditional methods of collecting
and using optimizer statistics, which it took decades to de-
velop for the big players of OLAP and data warehousing,
such as IBM DB2, Oracle and Teradata.

Figure 3 is a high level illustration of our statistics learning
approach. The new architecture has two sub-components:
capturing execution plans and re-using them by the opti-
mizer. Based on user settings/directives, the execution en-
gine (executor) selectively captures execution plan into a
plan store. The plan store schema is modeled after the plan
execution steps. Each step (scan, join, aggregation, etc)
is captured with the estimated and actual row counts. To
make the store more efficient and useful, the executor cap-
tures only those steps that have a big differential between
actual and estimated row counts. A related but different
store is general MPPDB plan store which is more detailed
and used for auditing and off-line analysis.

The optimizer gets statistics information from the plan
store and uses it instead of its own estimates. This is done
efficiently through an API call to the plan store which is
modeled as a cache. The key of the cache is encoded based
on different steps description that includes step type, step

predicate (if any), and input description. Obviously, the use
of steps statistics is done opportunistically by the optimizer.
If no relevant information can be found at the plan store,
the optimizer proceeds with its own estimates. Our initial
proof of concept for statistics learning is done for scan and
join steps. We call this approach selectivity matching.

In addition to exact matches with previously stored pred-
icates, auto tuning can be applied to similar predicates as
well. We can gather predicate selectivity feedbacks in a
special cache (separate from the plan store cache described
above) and use it to estimate selectivity for similar condi-
tions. Many machine or statistical learning algorithms can
be used for this purpose. We call this second learning tech-
nique similarity selectivity and we also call this special case
as predicate cache.

Our similarity selectivity model is initially applied to com-
plex predicate like x > y+c where both x and y are columns
and c is a constant. Such complex predicates are common
with date fields. For example, some of the TPC-H queries in-
volve predicates like l receiptdate > l commitdate+c which
restricts line items that were received late by c days. These
predicates pose a challenge to query optimizers and they are
good candidates for our similarity selectivity. The more gen-
eral form of these predicates is x > y + c1 and x <= y + c2.
For example, P1 = l receiptdate > l commitdate + 10 and
l receiptdate <= l commitdate + 20 retrieves all line items
that are between 10 and 20 days late.

We choose KNN (K Nearest Neighbors) as the approach
for our similarity selectivity. The selectivity of a new predi-
cate is estimated to be the average selectivity of its K nearest
neighbors in the predicate cache. The rationale here is that
events close to each other have similar properties. For exam-
ple, late line items tend to be fewer and fewer as the differ-
ence between the receipt date and commit date gets bigger.
The distance metric used by KNN is simply the Euclidean
distance based on c1 and c2. For example, the distance be-
tween P1 above and P2 = l receiptdate > l commitdate
and l receiptdate <= l commitdate + 15 is computed as
the Euclidean distance between the two points (10,20) and
(0,15).

2.4 MPPDB over HDFS (aka SQLonHDFS)
As big data platform and cloud become popular in re-

cent years, many of our customers store huge amount of
semi-structured and nonstructural data in Hadoop HDFS
[11] in addition to storing their structured data in MPPDB.
Hadoop HDFS is capable of scaling to petabytes of data and
is steadily improving its performance and availability. One
significant customer requirement is to be able to query data
across heterogeneous data storage systems including HDFS.
In this section, we discuss how our system addresses such
needs.

2.4.1 SQLonHDFS using Foreign Data Wrapper
FI-MPPDB first adopted the HDFS as an external data

source through PostgreSQL’s Foreign Data Wrapper (FDW).
We introduced a Scheduler component to bypass Hadoop
Map-Reduce framework, and dynamically assigned splits of
data files to MPP data nodes for efficient processing and
load balancing. Similar architecture can be found on other
open source SQLonHDFS solutions such as HAWQ [8] and
Impala [24]. Figure 4 illustrates the flow of FI-MPPDB
query processing:

1826

Figure 4: MPPDB Foreign HDFS Data Architecture

1. Our Gauss MPP coordinator receives the query in SQL
format.

2. Planner constructs the query plan while Scheduler sched-
ules tasks for each MPP data node according to table
splits information from HDFS name node.

3. Coordinator ships the plan fragments with task-to-
Datanode map to each MPP data node.

4. Each MPP data node reads data in a local-read pre-
ferred fashion from HDFS data nodes according to the
plan and task map.

In general, a HDFS directory is mapped into a database
foreign table which is stored like a native relational table
in FI-MPPDB. Foreign tables can be defined as partitioned
tables. A HDFS partition is normally stored as a HDFS
directory that contains data sharing the same partition key.
Both of our planner and scheduler can take advantage of this
to generate plans that skip irrelevant partitions at run time
to reduce I/O. Furthermore, some popular formats of HDFS
file such as ORC or Parquet embed some level of indexes and
synopsis within the file itself. Our planner and execution
engine can leverage this information to push predicates down
to file readers in order to further improve query performance.
Other improvements we have done include leveraging our
vectorized execution engine for efficient query execution and
using dynamic multi-dimension runtime filter from star-join
to further prune partitions and reduce data accessing from
HDFS storage.

After its release, our SQLonHDFS feature becomes pop-
ular since our customers can directly query large amount
of data inside HDFS without using ETL to reprocess and
load data into FI-MPPDB. For further improvements, our
customers make two important requirements:

1. Data collocation: as SQLonHDFS feature gets used
for more critical analytics workloads, customers want
better performance through data collocation.

2. DML/ACID support: as most of our customers mi-
grate from commercial relational data warehouses where
DML and ACID property are maintained, they expect
similar functionalities from our system.

In the following sections, we will discuss our recent im-
provements in these areas.

2.4.2 Advanced Data Collocation and Hash Parti-
tioning

HDFS doesn’t support data collocation through consis-
tent hashing algorithm which is a performance enhancement
technique widely adopted in commercial MPPDB systems
including FI-MPPDB. This means standard database op-
erations such as JOIN, GROUP BY, etc will often require
extra data shuffling among the clusters when performed on
HDFS storage.

There are two kinds of data collocation schemes we con-
sidered:

1. Data collocation between MPPDB data nodes and HDFS
data nodes: this allows MPP data nodes to scan data
in HDFS through short-circuit local read interface where
higher scan speed can be achieved.

2. Table collocations in HDFS data nodes: tables are par-
titioned on HDFS data nodes so that co-located join
or group by operations can be performed to reduce
network data shuffle cost.

When FI-MPPDB writes data to the HDFS system, it
can apply consistent hash partition strategy. As illustrated
in Figure 5, FI-MPPDB data nodes are co-located with the
HDFS data nodes, where both local and distributed file sys-
tem are presented. Direct local reads on HDFS can be done
through the HDFS short-circuit read interface. When we
load data into HDFS through our MPPDB data node, we
use a local descriptor table to record each file’s ownership
within each data node. The descriptor table is shown as
the Block Map in Figure 6. The table consists of columns
for block id, min/max values for each columns in a block,
a bitmap for deleted records in that block, and a block lo-
cater. Once the data is distributed to each MPP data node,
it will serialize the incoming data stream into specific PAX
style files such as ORC or Parquet and then write these files
directly to the HDFS. The file replication is taken care of
by HDFS itself. By default, three copies of the file are writ-
ten. According to the file placement policy, one of the copies
will be placed in the local machine, which is how the data
co-location is achieved.

Note with this architecture, the block map dictates what
HDFS files a node should access according to data partition
strategy. It only preserves a logical HDFS locality of the
files to their MPP worker nodes. The files in HDFS can be
moved around by HDFS without notifying the MPP cluster
due to storage re-balancing or node failures. To reduce the
chance of remote file access, we use a HDFS hint to instruct
HDFS name node to try its best to preserve the original
location of specified files.

2.4.3 DML support
Since HDFS is append-only storage and not optimized for

reading or manipulating small chucks of data, DML opera-
tions on HDFS can be complex and inefficient. We adopt
a hybrid architecture to support DML operations by com-
bining a write optimized row format of our MPPDB with
a read optimized PAX format in HDFS. DML support ad-
dresses our customer’s requirement of performing occasional
DML operations on data in HDFS cluster with strong ACID

1827

Figure 5: MPPDB Native HDFS Table Architecture

Figure 6: Native HDFS Table Representation

property. The visibility of block map determines the visi-
bility of the rows in a block. Specifically, we store inserted
rows first in a row-based delta table. Only after the delta
table reaches certain size, it will then be converted and writ-
ten into the HDFS as read optimized PAX format. For the
delete operation, there are two scenarios: 1) if a deleted row
is found in the local delta table, it can be deleted from there
immediately; 2) if the deleted row is found in a PAX file,
we mark the row deleted in the corresponding bitmap of the
block map. In this way, we avoid physically rewriting the
whole file on HDFS before a delete commits. Compaction
can be done later to physically re-construct the data based
on the visibility information recorded in the block map when
there are enough rows deleted. An update operation is sim-
ply a delete of the existing rows followed by an insert of new
rows into the delta table. The access interfaces are illus-
trated in Figure 6.

2.5 Intelligent JIT Compiled Execution
In our FI-MPPDB, we designed and implemented the

Just-In-Time (JIT) compiled query execution using LLVM
compiler (for short we just refer to it as JIT) infrastructure.
The JIT compiled code targets CPU intensive operators in
our query execution engine. Our goal is to produce JIT com-
piled code with less instructions, less branches, less function
calls, and less memory access compared with the previous
approach of interpreted operator execution. The JIT com-

pilation can be extended further to cover more compiler op-
timizations, such as loop unrolling, function in-lining, con-
stant propagation, and vectorization etc. In addition, some
frequently used database functions can be replaced by hard-
ware instructions. For example, CRC32 instruction in x86
hardware can be used as a hash function in various opera-
tors (hash join, hash aggregation), and the hardware over-
flow flag can replace the software code for integer overflow
check.

JIT compiled execution may not always be better than the
standard code interpretation approach. This could be the
case for small data sets where the overhead of JIT compi-
lation is more than the execution speedup. Also, additional
optimizations can be applied on the JIT compiled code. Ex-
amples of such optimizations include function in-lining, loop
unrolling, constant propagation, and vectorization. Such op-
timizations also have a trade-off between the optimization
overhead and the speedup they provide. We tackle these
trade-offs by making an intelligent decision among these
three possibilities: (1) use interpreted code without JIT code
generation, (2) JIT code generation without additional op-
timizations (3) JIT code generation with additional code
optimizations.

For a specific query, the cost model (for intelligent deci-
sion making) chooses no code generation if the data size of
the query is small and the performance gain from the gen-
erated code is less than the JIT compilation cost. If the
workload size is large enough, the cost model will choose
the optimal method to generate the most cost effective code
based on the data size and the cost of JIT compilation. Our
cost model is based on the formula (1) below to estimate
the performance gains by applying a specific method of JIT
compiled execution on a specific function or a piece of code.

P = (T1 − T2)×N − TJITcost (1)

In the formula (1) shown above, T1 is the cost of one time
execution on the original code, T2 the cost of one time ex-
ecution on the JIT compiled code, N the data size of the
workload, TJITcost the JIT compilation cost, and P the per-
formance gain. The estimation of execution cost is similar
to the cost model applied in the database optimizer. The
JIT compilation cost is estimated according to the size of
the generated code. Our experiment results show that the
actual JIT compilation cost is proportional to the size of the
generated code.

For a specific query, according to the cost model, the per-
formance gain is linearly proportional to the data size of
workloads. Suppose, we have two methods of JIT compiled
execution for this query, the formula (2) below illustrates
how to choose different methods of JIT compiled execution
according to different size of workloads. If the workload size
is not larger than N1, we do not apply the JIT compiled
execution on this query. If the workload size is between N1

and N2, we apply the method with less optimizations and
less JIT compilation cost. If the workload size is larger than
N2, we apply the method with more optimizations and more
JIT compilation cost to achieve better performance.

P =


0 (x ≤ N1),

a1x + b1 (N1 < x ≤ N2),

a2x + b2 (x > N2).

(2)

1828

In the following, we use two queries extracted from real
customer use cases to illustrate how our cost model chooses
the optimal method of JIT compiled execution. Without
loss of generality, these methods of code generation and the
cost model can be applied to many other operators of execu-
tion engine in a database system, for example, IN expression,
CASE WHEN expression, and other aggregation functions
etc.

4-SUM query: SELECT SUM(C1), ... , SUM(C4) FROM
table;

48-SUM query: SELECT SUM(C1), ... , SUM(C48) FROM
table;

For each of the above two queries, we have two meth-
ods of code generation to apply JIT compiled execution. In
the first method, we applied various optimizations includ-
ing loop unrolling, function in-lining, and more code spe-
cialization, to generate the code. In the second method, we
generate the code without optimization. The first method
generates more efficient code but consumes more time to
produce. The second method has less optimized code but
requires less time to make compared to the first method.
Our experiment results in section 3.5 show that our cost
model picks the optimal choice between these two options
for the two queries.

3. EXPERIMENTAL RESULTS
In this section, we present and discuss experimental re-

sults of our work in the four areas described in section 2.

3.1 Online Expansion
Our online expansion tests start with a cluster of 3 phys-

ical machines, each of which has 516GB system memory,
Intel Xeon CPU E7-4890 v2 @ 2.80 Ghz with 120 cores, and
SSD driver. The actual expansion tests add 3 more physical
machines with the same configuration. We thought OLAP
was more appropriate for our test and we decided to use
the TPC-DS in our test. We loaded the cluster with TPC-
DS data with scale factor 1000 (1 Terabyte) and we ran all
the 99 TPC-DS queries. We also used the TPC-DS data
maintenance tests for inserts, updates, and deletes (IUDs).
Each transaction of IUD modifies or inserts an average of
500-1000 rows. We used a total of 5 threads running on the
cluster: one for online redistribution, one for queries, and
three for IUDs.

Figure 7 captures the results of our online expansion tests.
We have conducted two major tests. The first test is cov-
ered by the first 3 bars in Figure 7 (bars a, b and c). Bar a
is the total elapsed time for customer application workload
(including query and IUD operations) during online expan-
sion using our new online expansion method. Bar b and c
are the total elapsed time for the same workload but using
offline expansion method at different points of time. In b,
the workload is executed at the old cluster first followed by
the offline cluster expansion, while c is the opposite where
the expansion is followed by workload execution. The total
elapsed time using our new online expansion (bar a) is a lot
better than the workload first then offline expansion (bar b)
and close to the method of offline expansion first and then
running workload (bar c). Note that the result in bar a is
actually a lot better than those in bar c because it has a
better response time since user requests can be processed
during the expansion. The cost of online expansion is more
than offline expansion which is expected.

Figure 7: TPC-DS 1000x Query and IUD Workload
with Online Expansion

Next, we compare online expansion performance to show
the effect of scheduling the expansion order of tables in bar
e and d. For simplicity, we only executed query workload
(no IUD) during online expansion time. Bar d is the elapsed
time for query workload during online expansion with ran-
dom scheduling which does the table redistribution in ran-
dom order. Smart scheduling (bar e) on the other hand
orders the tables for redistribution according to the order
of tables in the query workload. The smart order basically
tried to minimize the interaction between the redistribution
and workload to speed up both processes. Comparing the
result from e with that in bar d, a schedule considering the
access pattern improves data redistribution performance by
roughly 2X, and improves the query performance by about
20%.

3.2 Auto Tuning in Query Optimizer
We prototyped capturing execution plans and re-using

them automatically by our optimizer. We conducted our
testing on a 8-nodes cluster running FI-MPPDB. Each node
is a Huawei 2288 HDP server with dual Intel Xeon eight-
core processors at 2.7GHz, 96GB of RAM and 2.7 TB of disk
running with CentOS 6.6. We loaded the cluster with 1 Ter-
abyte of TPC-H data with two variants of the lineitem and
orders tables. The first variant has both tables hash par-
titioned on orderkey to facilitate co-located joins between
them. The other variant has the lineitem table hash par-
titioned on part key and the orders table hash partitioned
on customer key. This variant is used to test the impact of
selectivity on network cost.

The next three subsections cover three tests that aim at
testing the impact of inaccurate predicate selectivity for ta-
ble scans. The three experiments are: wrong choice of hash
table source in hash joins, unnecessary data movement for
parallel execution plans, and insufficient number of hash
buckets for hash aggregation. The experiments are based
on a query shown below.

select o o r d e r p r i o r i t y , count (∗) as ct
from l i n e i t em , o rde r s
where l o r d e r k e y=o orderkey and
l r e c e i p t d a t e <op> l commitdate + date ‘:?’ ;

1829

Table 1: Comparison of actual and estimated selectivity for late line items predicate

Predicate Description Predicate Actual Selectivity Estimated Selectivity

line items received l receiptdata > l commitdata + 60 15% 33%
more than 60 days late
line items received more l receiptdata > l commitdata + 120 0.0005% 33%
than 120 days late
line items received l receiptdata ≤ l commitdata− 40 8% 33%
40 days early or less
line items received l receiptdata ≤ l commitdata− 80 0.05% 33%
80 days early or less

Note , <op> i s ‘<=’ f o r e a r l y l i n e items and
‘>’ f o r l a t e l i n e items

The above query checks late/early line items based on dif-
ference between receipt and committed dates. The predicate
that checks how early/late a line item like l receiptdata >
l commitdata + 120 poses a challenge to query optimizers
and we thought it is a good example of statistics learning.
Most query optimizers use a default selectivity for such pred-
icates (MPPDB use 1/3 as the default selectivity). Table 1
shows actual and estimated selectivity of these predicates
for different values of being late or early.

3.2.1 Hash join plan problem
We ran the early/late line items query using the differ-

ent options for being early/late per the entries in Table 1.
Figure 8 illustrates the performance difference between the
current optimizer and our prototype for the early/late order
query. The join in this query does not require shuffling data
since both tables are co-located on the join key (this is the
first variant). Assuming hash join is the best join method
in this case, choosing the right hash table build is the most
critical aspect of the plan for this query. The orders table
is 1/4 of the lineitem table, and the current optimizer as-
sumes 1/3 of the rows in lineitem satisfying the early/late
predicate. This leads the current optimizer to choose the
orders table as the hash build side for all the variations of
the query.

The inaccurate estimate of the selectivity did not have an
effect on the plan for line items with relatively close values of
l receiptdate and l commitdate (line 1,2 and 5 in Table 1).
The reason is that the orders table is still smaller than the
lineitem table for those cases and placing it in the hash table
is a good execution plan. The other cases of too late/early
(lines 3, 4, 6 and 7 in Table 1) have the opposite effect with
smaller lineitem table, and in those cases the auto tuning
estimate outperformed the standard estimate.

3.2.2 Unnecessary data shuffle
Inaccurate predicate selectivity could also have an impact

on the amount of data shuffled in MPP join plans which
are typically used to place matching join keys on the same
node. This problem is tested by running the same early/late
line items query discussed in the previous section on the
second variant of lineitem and orders tables where they are
not co-located on the join key. With this data partitioning,
the optimizer has three options to co-locate the join keys
and perform the join in parallel on the data nodes. These
options are: re-partition both tables on orderkey, replicate

Figure 8: Performance comparison on early/late re-
ceived orders query (in min.)

orders table, or replicate lineitem table. Note that big data
engines always have these three options for joining tables
since HDFS data are distributed using round robin and thus
join children are not co-located on the join key.

The query optimizer chose the shuffle option (among the
three above) which involves the least amount of data move-
ment to reduce the network cost. The standard optimizer
elects to re-partition both lineitem and orders tables (op-
tion 1 above) for all variations of the early/late line item
query. This is the case since the size estimates of both ta-
bles are close. This plan is coincidentally the best plan for
three cases of the variations (line 1,2 and 5 in Table 1) of
the early/late line items query. However, this plan is not
optimal for the other cases where the filtered lineitem is
smaller than orders table. Figure 9 captures the run-time
for this case of early/late line items query. The performance
difference is more compelling than those in Figure 8 since
it includes both the extra data shuffle and the original hash
table plan problem.

3.2.3 Insufficient hash buckets for hash aggregation
For the third and last test, we ran the official TPC-H Q4.

As explained in the introduction section, The performance of
the plan of TPC-H is sensitive to the size of the hash aggre-
gation table set by the optimizer. The hash table size is set
based on the number of distinct values for l orderkey which
is impacted by selectivity of l receiptdate > l commitdate.
The standard default selectivity of “1/3” produced under-
estimates on number of rows and thus a lower estimate on
the number of distinct values which misled the optimizer
to use less hash buckets than needed for the hash aggregate
step. This resulted in almost 2X slowdown (53 seconds vs 28

1830

Figure 9: Performance comparison on early/late re-
ceived orders query with shuffle (in min.)

Table 2: Selectivity Estimation Error for Early/Late
Line Items

Cache Size Cache Hits KNN Error

100 218 1.2%
50 118 2.0%
25 65 3.6%

seconds) compared to the optimal number of hash buckets
computed using our prototype.

3.2.4 Join Selectivity Experiment
The previous sub-sections cover in details three scenarios

where selectivity learning for table scans has significant im-
pact on query performance. We also did one experiment for
learning join predicates selectivity. The experiment is based
on the query shown below.

select count (∗)
from l i n e i t em , orders , customer
where l o r d e r k e y=o orderkey and
l s h i p d a t e >= o orderdate +
interval ‘121 days’
and o custkey=c cus tkey
and c a c c t b a l between
(select 0 .9∗min(c a c c t b a l) from customer) and
(select 0 .9∗max(c a c c t b a l) from customer)
group by c mktsegment ;

The query above finds those line items that took 121 days
or more to process and handle. The query excludes top and
bottom 10% customers in terms of their account balance.
The query runs in 425 seconds with our current optimizer.
The execution plan is not optimal and it joins customer and
orders first and then joins the result to line item table. The
root cause is that the optimizer uses 33% as the default
selectivity for l shipdate ≥ o orderdate + interval′121day′

instead of the actual 1% selectivity. Using our learning com-
ponent, we get the optimal plan which runs in 44 seconds
with more than 9X improvement.

3.3 Cache Model-based Selectivity Estimation
In this section, we demonstrate the use of KNN for our

similarity selectivity approach. We tried varying K and
found that K = 5 worked well for various cases. In this ap-
proach, the selectivity of a predicate is estimated to be the
average selectivity from its 5 nearest neighbors in the pred-
icate cache. We pick two predicates for experiment: one
for early/late items and the other for normal items. The

Table 3: Specific Selectivity Estimation Error for
Early/Late Line Items

Cache c = -80 c = -40 c = 60 c = 120

Size selectivity 8% 15% 0.0005%

= 0.05%

100 0.2% 0% 0% 0.05%
50 0.7% -0.2% 3.8% 0%
25 5.0% 0.8% -4.6% 0.8%

Table 4: Selectivity Estimation Error for Normal
Line Items

Cache Size Cache Hits KNN Error

100 4 3.1%
50 1 4.0%
25 1 6.0%

former predicate is modeled with a single parameter (how
early/late) in the predicate cache while the latter by two.
Overall, our experiments show that the KNN approach is
highly accurate in selectivity estimation: the absolute esti-
mate errors are no more than 4% for single parameter case
and no more than 6% for two parameters case. The details
are described below.

We use the lineitem table from the TPC-H which has 6M
rows. We focus on the early items satisfying the condition
l receiptdate ≤ l commitdate− c days, and late items satis-
fying the condition l receiptdate > l commitdate + c days.
We can combine early and late items and model them with
a single predicate cache: the parameter is the difference be-
tween l receiptdate and l commitdate with early items hav-
ing negative differences (c) and late items positive ones. We
randomly generate 500 predicates with c between −80 and
120. The average selectivity of such predicates is found to
be 18%. For each predicate, we find its actual selectivity,
use the KNN to estimate its selectivity, and compute the
estimation error. We repeat this experiment with different
cache sizes of 100, 50, and 25. The average absolute estima-
tion errors for the 500 tests are shown in Table 2. We can see
that larger caches provide better results but even with the
smallest cache, the error is still pretty small (3.6%). Note
that the cache is seeded with a random c before it is used
for selectivity estimation. When the cache is full the LRU
policy is used. The predicates only have 200 possible val-
ues for c so the cache hits are relatively high. For example,
with a size of 25, the cache stores 1/8 of the possible values
and there are 65 cache hits among the 500 tests. To see the
KNN in use, we test it with specific predicates from Table 1
where c is in {−80,−40, 60, 120}. The estimated selectivity
errors (negatives are under-estimation) are shown in Table
3. Overall, the estimation is pretty accurate with the biggest
errors at about 5% with a cache size of 25.

To demonstrate the effectiveness of KNN with 2 param-
eters, we also do experiments for the normal line items:
predicate l receiptdate between l commitdate−c1 days and
l commitdate + c2 days are generated with two uniformly
distributed variables 1 ≤ c1 ≤ 80 and 1 ≤ c2 ≤ 120. The
average selectivity of such predicates is 67%. The results are
shown in Table 4. The estimation errors are pretty small rel-
ative to the average selectivity of 67%. Note that the cache

1831

Figure 10: Performance comparison

hits are much less as there are 9600 possible combinations
of c1 and c2. With the smallest cache size of 25, which is
only 0.3% of possible combinations with a single cache hit,
the estimation error is only 6%.

As stated above, we start using the cache for selectivity
estimation when it only has a single predicate. This is a
valid approach as the single selectivity is likely to gives us a
estimate for similar predicates. This is probably better than
a default selectivity such as 33%. Our experiments show
that the cache estimation errors stabilize quickly as more
feedbacks are available. In practice, we can allow the user
to control the use of the cache for unseen conditions, e.g.,
use the cache for prediction only when it has entries more
than a threshold. The cache can also keep the estimation
errors, and the use of it can be shut down if the errors are
excessively large for a certain number of estimations. This
can happen when there are very frequent updates on the
predicate columns.

3.4 Advanced Data Collocation Performance
Improvement for SQLonHDFS

As described in section 2.4, we enhanced our SQLonHDFS
solution by applying the FI-MPPDB hash distribution strat-
egy to the HDFS tables and leverage upon the data distri-
bution property through SQL optimizer to produce efficient
plans. We conducted performance testing on an 8-node clus-
ter running FI-MPPDB with the HDFS storage to demon-
strate the performance improvement. Each node is a Huawei
2288 HDP server with dual Intel Xeon eight-core proces-
sors at 2.7GHz, 96GB of RAM and 2.7 TB of disk running
with CentOS 6.6. We loaded the cluster with 1 terabyte of
TPC-H data in two flavors: one data set is randomly dis-
tributed while the other data set is hash distributed based
on distribution columns. In the second case, the distribution
columns are carefully selected for each TPC-H table accord-
ing to the popular join columns in order to avoid expensive
data shuffling for the workload.

Figure 10 shows the results running the 22 TPC-H queries
on the two data sets with different distribution properties.
By taking advantage of data collocation, hash distribution
clearly provides much better performance by lowering the
network shuffling cost. It obtains over 30% improvement
(geometric mean) in query elapsed time.

3.5 Intelligent JIT Compiled Execution
Our experiment setup is a single node cluster with one

coordinator and two data nodes, and the server node is a
Huawei 2288 HDP server with dual Intel Xeon eight-core
processors at 2.7GHz, 96GB of RAM and 2.7 TB of disk

Figure 11: Speedups on different queries by apply-
ing different methods of code generation

Figure 12: Performance gains from JIT compiled
execution on TPC-H

running with CentOS 6.6. We tested our intelligent JIT
compilation strategy on the two queries mentioned in section
2.5: 4-SUM and 48-SUM queries. The queries are extracted
from actual Huawei use cases, and the table has about 100
million rows. Figure 11 shows the results for these queries.
The optimal solution for 4-SUM is the first method of code
generation with LLVM post-IR optimization while the speed
up is better for 48-SUM query without LLVM post-IR opti-
mizations. For both queries, our intelligent decision making
system (cost model) selected the optimal solution.

Our more comprehensive test is based on the TPC-H
workload with 10X data. Figure 12 shows that our JIT
compiled execution approach outperforms the previous ap-
proach with no code generation. The average performance
improvement on the 22 queries is 29% (geometric mean).

4. RELATED WORK
In this section, we discuss some work related to the four

major technical areas presented in this paper.
Online Expansion We could not find in literature about

online cluster expansion over large data warehouses with
concurrent DML operations without downtime. The clos-
est known work is about online expansion in Greenplum
[20] which supports redistributing data efficiently without
noticeable downtime while guaranteeing transaction consis-
tency. However, their solution blocks DML operations dur-
ing online expansion because their data redistribution com-
mand uses exclusive table locks during expansion. Amazon
Redshift [2] also provides cluster resizing operation. How-
ever, it puts the old cluster in read-only mode while a new
cluster is being provisioned and populated. Snowflake [15]
takes a different approach in cluster expansion that allows

1832

users to dynamically resize the warehouse with predefined
size such as SMALL , MEDIUM, and LARGE etc. Carlos et
al. [21] provide a design tool, FINDER, that optimizes data
placement decisions for a database schema with respect to
a given query workload.

Auto Tuning Early known work on database auto tun-
ing include Database Tuning Advisor [18] from Microsoft
SQL Server and LEO [30] from IBM DB2 system. LEO is a
learning based optimizer that focuses on predicate selectiv-
ities and column correlation but does not cover the general
case of operator selectivities. Our learning approach is sim-
pler and more general since it captures actual and estimates
for all steps and re-use the information for exact or similar
steps in future query planning.

Using machine learning in query optimization, performance
modeling, and system tuning has increasingly drawn atten-
tion to the database community [32, 19]. Recent works [22,
25, 26] use machine learning methods to estimate cardinality
for various database operators. The approach using machine
learning technique is promising as it allows the system to
learn the data distribution and then estimate the selectivity
or cardinality. In contrast, the traditional statistics based
selectivity estimation has its limitation on the information
a system can store and use. However, we need to carefully
assess the benefits of adopting machine learning based ap-
proaches in commercial database query optimizer as they
may require significant system architecture changes. For
example, [25, 26] use neural networks to model selectivity
functions which require significant training to approximate
the functions. In addition, the training set takes consider-
able system resources to generate. In comparison, our sim-
ilarity selectivity approach uses query feedbacks where no
training is necessary. Our approach is close to [22] where
KNN is used. We keep it simple by gathering similar feed-
backs into a single predicate cache. The one to one mapping
between predicate types and predicate caches makes it easy
to integrate the approach into optimizer architecture.

SQL on HDFS Apache HAWQ [8] was originally devel-
oped out of Pivotal Greenplum database [10], a database
management system for big data analytics. HAWQ was
open sourced a few years ago and currently incubated within
Apache community. With its MPP architecture and robust
SQL engine from Greenplum, HAWQ implements advanced
access library to HDFS and YARN to provide high perfor-
mance to HDFS and external storage system, such as HBase
[4]. SQL Server PDW allows users to manage and query data
stored inside a Hadoop cluster using the SQL query language
[29]. In addition, it supports indices for data stored in HDFS
for efficient query processing [28].

With the success of AWS Redshift [2], Amazon recently
announced Spectrum [3]. One of the most attractive features
of Spectrum is its ability to directly query over many open
data formats including ORC [6], Parquet [7] and CSV. FI-
MPPDB also supports ORC and CSV formats, while neither
Redshift nor Spectrum supports HDFS.

In the Hadoop ecosystem, Hive [5] and Impala [24] are
popular systems. SparkSQL [16] starts with the focus on
Hadoop, then expands its scope onto S3 of AWS. While
they are popular in open source and Hadoop community, the
lack of SQL compatibility and an advanced query optimizer
make it harder to enter enterprise BI markets. In contrast,
our SQLonHDFS system can run all 99 TPC-DS queries
without modification and achieve good performance.

Intelligent JIT Compiled Execution CPU cost of
query execution is becoming more critical in modern database
systems. To improve CPU performance, more and more
database systems (especially data warehouse and big data
systems) adopt JIT compiled query execution. Amazon
Redshift [2] and MemSQL (prior to V5) [12] transform an
incoming query into C/C++ program, and then compile
the generated C/C++ program to executable code. The
compiled code is cached to save compilation cost for fu-
ture execution of the query since the cost of compilation
on a C/C++ program is usually high [27]. In comparison,
the LLVM JIT compilation cost is much lower so there is
no need to cache the compiled code. Cloudera Impala [24]
and Hyper system [27] apply JIT compiled execution us-
ing LLVM compiler infrastructure, but they only have a
primitive cost model to decide whether applying the JIT
compilation or not. Spark 2.0’s [16] Tungsten engine emits
optimized bytecode at run time that collapses an incoming
query into a single function. VectorWise database system
[23] applies the JIT compiled execution as well as the vector-
ized execution for analytical database workloads on modern
CPUs. Our FI-MPPDB adopts JIT compiled execution us-
ing LLVM compiler infrastructure to intelligently generate
the optimal code based on our cost model.

5. FUTURE WORK AND CONCLUSION
In this paper, we have presented four recent technical ad-

vancements to provide online expansion, auto tuning, het-
erogeneous query capability and intelligent JIT compiled ex-
ecutions in FI-MPPDB. It is a challenging task to build
a highly available, performant and autonomous enterprise
data analytics platform for both on-premise and on the cloud.

Due to space limit, we briefly mention two of our future
works. First, cloud storage service such as AWS S3, Mi-
crosoft Azure Storage, as well as Huawei cloud’s OBS (Ob-
ject Block Storage) have been widely used. Users often want
to directly query data from the centralized cloud storage
without ETLing them into their data warehouse. Based
on customer feedback, we are currently working on provid-
ing SQLonOBS feature in our cloud data warehouse service
based on the similar idea of SQLonHadoop described in this
paper. Second, auto tuning database performance using ma-
chine learning based techniques is just starting but gaining
heavy momentum. In addition to selectivity learning, we
plan to look into parameter learning, where key parameters
the query optimizer uses to make decisions can be auto-
matically learned. We also plan to explore other machine
learning techniques.

6. ACKNOWLEDGMENT
We thank Qingqing Zhou, Gene Zhang and Ben Yang for

building solid foundation for FI-MPPDB, and Harry Li, Lei
Liu, Mason Sharp and other former team members for their
contribution to this project while they worked at Huawei
America Research Center. We also thank Huawei head-
quarter team for turning these technologies into a successful
product on the market.

7. REFERENCES
[1] Amazon Athena - Amazon.

https://aws.amazon.com/athena/.

1833

[2] Amazon Redshift - Amazon.
https://aws.amazon.com/redshift/.

[3] Amazon Redshift Spectrum - Amazon.
https://aws.amazon.com/redshift/spectrum/.

[4] Apache - HBase. https://hbase.apache.org/.

[5] Apache - Hive. https://hive.apache.org/.

[6] Apache - ORC. https://orc.apache.org/ .

[7] Apache - Parquet. https://parquet.apache.org/.

[8] Apache HAWQ - Apache.
http://spark.apache.org/sql/.

[9] FusionInsight MPPDB - Huawei.
http://e.huawei.com/us/products/cloud-computing-
dc/cloud-computing/bigdata/fusioninsight.

[10] Greenplum Database - Pivotal.
http://www.greenplum.com.

[11] Hadoop - Apache. http://hadoop.apache.org/ .

[12] MemSQL. https://www.memsql.com/.

[13] Oracle Autonomous Database Strategy White Paper.
http://www.oracle.com/us/products/database/autonomous-
database-strategy-wp-4124741.pdf.

[14] Postgres-XC.
https://sourceforge.net/projects/postgres-xc/.

[15] Snowflake - Snowflake. https://www.snowflake.net/.

[16] Spark SQL & DataFrames - Apache.
http://spark.apache.org/sql/.

[17] Transwarp Inceptor. http://www.transwarp.cn/.

[18] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database Tuning
Advisor for Microsoft SQL Server 2005. In Proceedings
of the 30th VLDB Conference, Toronto, Canada,
pages 1110–1121, 2004.

[19] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic Database Management System Tuning
Through Large-scale Machine Learning. In Proceedings
of SIGMOD 2017, Chicago, USA, pages 1009–1024,
2017.

[20] J. Cohen, J. Eshleman, B. Hagenbuch, J. Ken,
C. Pedrotti, G. Sherry, and F. Waas. Online
Expansion of Large-scale Data Warehouses. In
PVLDB, 4(12):1249-1259, 2011.

[21] C. Garcia-Alvarado, V. Raghavan, S. Narayanan, and
F. M. Waas. Automatic Data Placement in MPP
Databases. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering
Workshops, 2012.

[22] O. Ivanov and S. Bartunov. Adaptive Query
Optimization in PostgreSQL. In PGCon 2017
Conference, Ottawa, Canada, 2017.

[23] M. Z. J. Sompolski and P. Boncz. Vectorization vs.
compilation in query execution. In In Proc. of the 7th
International Workshop on Data Management on New
Hardware, 2011.

[24] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs,
I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-milne, and M. Yoder.
Impala: A modern, open-source sql engine for hadoop.
In In Proc. CIDR15, 2015.

[25] H. Liu, M. Xu, Z. Yu, V. Corvinell, and C. Zuzarte.
Cardinality Estimation using Neural Networks. In
Proceeds of the 25th Annual International Conference
on Computer Science and Software Engineering
(CASCON15), pages 53–59, 2015.

[26] H. Lu and R. Setiono. Effective Query Size Estimation
Using Neural Networks. In Applied Intelligenve, pages
173–183, May 2002.

[27] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. In PVLDB, 4(9):539-550,
2011.

[28] V. Reddy Gankidi, N. Teletia, J. Patel, A. Halverson,
and D. J. DeWitt. Indexing hdfs data in pdw:
Splitting the data from the index. In PVLDB,
7(13):1520-1528, 2014.

[29] S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung,
M. Elhemali, A. Halverson, E. Robinson,
M. Subramanian, D. DeWitt, and C. Galindo-Legaria.
Query Optimization in Microsoft SQL Server PDW.
In Proceedings of SIGMOD 2012, Scottsdale, USA,
pages 767–776, 2012.

[30] M. Stillger, G. Lohman, V. Markl, and M. Kandil.
LEO - DB2s LEarning Optimizer. In Proceedings of
the 27th VLDB Conference, Roma, Italy, 2001.

[31] F. Waas. Beyond Conventional Data Warehousing
-Massively Parallel Data Processing with Greenplum
Database. In In Proc. BIRTE, 2008.

[32] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C.
Ooi, and K.-L. Tan. Database Meets Deep Learning:
Challenges and Opportunities. In SIGMOD Record,
Vol. 45, No2, 2016.

1834

